TOPOLOGICAL CLASSIFICATION OF SIMPLE MORSE
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ABSTRACT. We present a global topological classification of Morse Bott
functions on orientable closed surfaces. The invariant is based on the
Reeb graph of the function and the topological type of the singular level
sets. Connection with other known invariants it is shown. We also prove
a realization Theorem and some stability properties of the Morse Bott
functions.

1. INTRODUCTION

The characterization of a set of functions that verifies a determined prop-
erty involves two major questions. To get an invariant for particular func-
tions of the set and how the entire set is organized in the space of smooth
functions.

With respect to the first question, the classification problem of singular
points of smooth map germs is an important problem in Singularity The-
ory, nevertheless not local results are not abundant. The classification of
functions on surfaces up different types of equivalence can be found, for
instance, in [3, 23] considering smooth equivalence and in [14, 26, 27] con-
sidering topological equivalence.

In particular, Arnold, [2], Kulinich [14] and Sharko [27] classified Morse
functions on surfaces using Reeb graphs with some additional information
and Prishyak [21] classified smooth functions with isolated critical points on
closed surfaces.

In this paper we present a topological classification of Morse Bott func-
tions on orientable closed surfaces. In order to obtain this classification we
construct an invariant that is based on the Reeb graph of the function and
on the topological type of the singular level sets. This is a kind of additional
information that, as far as we know, it was not used until now. In the section
3 of the paper we will show how the topological type of the singular level
sets of a function is related with the order of the vertex of the Reeb graph
associated to f and induced by the values of f.

Given a Morse Bott function f and denoting by R"(f) the ordered Reeb
graph associated to f the first main result of this paper is:
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Theorem 1. Two simple Morse Bott functions f, g : ¥ — R are conjugate
if and only if R"(f) and R"(g) are isomorphic.

The definition of conjugated functions is given in Section 2.

The second main result of this paper is a realization theorem for Morse
Bott functions.

Theorem 2. Let X be an orientable closed surface. A connected directed,
finite graph G can be the Reeb graph associated to a Morse Bott function
f:2 =R on X if and only if the following conditions are satisfied:

(a) local conditions: the sink and source vertices of G have degree 1
or 2; the interior vertices has degree 3.
(b) global conditions:
(b.1) the cycle rank of G coincides with the genus of the surface 3,
(b.2) the direction of the graph defines a linear ordering of the ver-
tices.
(c) Conditions for orientability: G possesses no loops nor oriented
cycles

With respect to the second problem stated at the beginning of the in-
troduction, the natural approach will be to consider a stratification of the
space of smooth functions on surfaces and to locate the space of Morse Bott
functions in this stratification. The case of Morse function is considered in
the paper [8]. But as the Morse Bott functions have not isolated singulari-
ties, in a neighborhood of one particular function one must expect to have
another type of singularities. A stability property is studied in the last part
of the paper. We present a new topology on the set C*°(X) of the smooth
functions defined from ¥ to R, such that endowed with this topology some
Morse Bott functions on the sphere are stable, as stated in Theorem 28 of
Section 6.

A final remark is that the classification of functions is related with some
topological questions as homology theory and, at the same time, with prob-
lems pertaining to areas outside the topology since Morse Bott functions
or Morse functions are associated with other concepts such as polynomials,
flows and computer graphic recognition. See for instance [2, 16, 20].

2. BASIC CONCEPTS

Let f : M — M™ be a twice continuously differentiable function. A
point p € M" is called a singular point if rank(df(p)) is not maximum.
Otherwise it is a regular point. A point b € R is called a singular value of f
if f~1(b) contains a singular point of f. The singular set of f, denoted by
Sing(f)(M™), is the set of all singular points of f on M". In this paper we
assume that M™ is R unless otherwise indicated.

For each a € R consider the level set I,(f) = f~!(a). I,(f) is a union
of connected components, i¥(f), k = 1,...,m(a), called fibers. A singular
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FiGURE 1. Left: the 2-torus; Right: the Reeb graph of the
height function.

fiber is a connected component of a level set I,(f) which contains a singular
point of f and it is denoted by s4(f).

If all nearby fibers around a singular fiber are homeomorphic to it then
this fiber is reducible. See [1] for details.

From now on, we assume that f is a simple or non resonant function,
what means that there is a unique connected component of singular points
in the singular level. It is contained in a singular fiber s,(f) C I,(f) for
each a € R.

If f: M™ — R has isolated singular points then the Reeb graph of f,
denoted by R, is the graph obtained by contracting each fiber to a point,
the vertices correspond to the singular fibers of f (see [22]). The Reeb graph
is also known as the Kronrod-Reeb graph [27]. See Figure 1 for an example
where f is the height function on the 2-torus.

As the target of f is R, the linear order in R defines a unique direction
on the Reeb graph. This direction, in turn, induces an order in the set of
singular fibers.

Associated with the quotient map 7 : M" — Ry and the inclusion map
t: Ry — M" there are two known functions
(i) Stein factor of f (f), such that f = f o7 (see [23] for instance).
(i) The restriction of f to Ry (fr), given by fr = fo.

Both functions are closely related since the Reeb graph can be considered
as a sub-complex of the surface, (see [12]).

Definition 3 ([6]). Let f : M" — R be a smooth function on an-dimensional
manifold. A smooth submanifold S C Sing(f)(M"™) is a nondegenerate sin-
gular submanifold of f if:

e 0S=10
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e S is compact and connected
o Vs €S, we have TsS = ker (Hesssf).

The function f is a Morse Bott function (MB function from now on) if
the set Sing(f)(M™) consists of isolated points and nondegenerate singular
submanifolds.

Let p € Sing(f)(M™). By the Morse Bott Lemma([4]) there exists a
local chart of M around p and a local splitting of the normal bundle of .S,
Np(S) = NS (S) @ N, (S) so that if p = (s,z,y), s € S, 2 € NS(5), y €

N, (S):

Tp(IM™) = T,(S) & N, (S) & N, (S) and
f(p) = £(9) +|af* — Jy[*.

The dimension of N, (S) is the index of S and if p is not an isolated singu-
larity of f then f is locally a Morse function on N, (.5).

It also follows from the Morse Bott Lemma that Morse functions are MB
functions with isolated singular points. Moreover, if M" is compact then
the function has a finite number of isolated singular points.

Another particular case of M B functions consist of the Round Bott func-
tions ([13]) where all singular submanifolds are circles.

Let M™ be a compact connected orientable surface ¥ of genus g > 0,
denoted by ¥(g,0). Considering the dimension of the singular submanifolds
and its index, the singular set of f, Sing(f)(3(g,0)) can be subdivided in
three subsets

(i) Cir(f)(X(g,0)): points in singular submanifolds that are homeomor-
phic to S'. On these circles the function assumes extremal values.
We call such singular submanifolds singular circles.
(ii) Cen(f)(X(g,0)): isolated singular points which are extremum points
of f called center points.
(iii) Sad(f)(3(g,0)): isolated singularities of index 1 of f called saddle
points.

2.1. Morse Bott foliations and its singularities. Let F (3, f) be the
foliation on 3(g,0) defined by the level sets of f and let Sing(F(X, f)) be
the set of singularities of F (X, f). Some arguments in these notations may
be omitted if are irrelevant or can be determined from context. A Morse
Bott foliation (MB foliation from now on) is a foliation defined by the level
sets of a MB function.

As f is simple then F (3, f) is also simple.

Two MB foliations on X are topologically equivalent if it exists a homeo-
morphism on Y that sends leaves of one foliation to leaves of the other.

As ¥ is an orientable surface, the singular set of a MB foliation Sing(F (X))
consist of (see [24], [25] for more details): Cen(F(X)) center points and
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Sad(F (X)) saddle points. The singular circles of f are not singularities of
the foliation.

2.2. Equivalence of Morse Bott functions. Let ¥(g,0) be a compact
connected orientable surface of genus ¢ and f1, fa: ¥(g,0) — R, smooth
functions. Functions f1, fo are topologically equivalent if there are homeo-
morphisms k : ¥(g,0) = X(g,0), { : R — R such that fi ok =1lo fyo. The
choice of k£ and [ is not unique and k sends level sets of f; to level sets of fo
since they are related by the following equality [j(,)(f2) = k(La(f1))-

We say that fi and fy are topologically conjugated if they are topologically
equivalent and [ preserves the orientation. See for instance [28, 21, 27, 26].
In this case if fi; and fo are topologically conjugated then f; and —fo are
not necessarily topologically conjugated.

In the case of a MB function the homeomorphism & could send a singular
circle and its neighborhood to a regular cylinder, i.e. it does not preserve
the singular circle, so the definition of topologically equivalence must be
adapted here for the case of MB functions.

Definition 4. Two MB functions fi and fa from ¥ to R are conjugated if
there exist homeomorphisms k : ¥(g,0) — 3(g,0), [ : R — R such that |
preserves orientation, fo =lo fi o k™! and k sends singular fibers of fi to
singular fibers of fa.

As f is simple we get the following result.

Proposition 5. If fi and fs are simple conjugated MB functions such that
fo=1lo fiok™!, then the sets s,(f1) and Si(a)(f2) are homeomorphic.

An essential singular value of a MB function is a value a € R such that
I,(f) is topologically distinct to I(f) for any b in a neighborhood of a. In
the case of Morse functions all singular values are essential.

We will use the notion of slicing of a Morse function defined in [20, 19]
and adapted here for the case of MB functions. This definition will be useful
in this paper. An slicing of a MB function f with n isolated singular fibers
is an increasing sequence of real numbers

—=agyg< a1 << ap <X
such that for every i = 1,...,n the intervals (a;—1,a;) contain precisely one
singular value of f.

The definition of topologically equivalent Morse functions on (g, 0) given
in [20] uses the idea of the slicing as follows. Two Morse functions f; and
f2 on X(g,0) are topologically equivalent if there exist a slicing of f1, ap <
a1 < -+ < ap, a slicing of fo, by < by < --- < b, and homeomorphisms &;,
1 =1, ..,n preserving orientation

(I)i : Mai(fl) — Mbi(fQ), = 1, Lo, ny
where M.(f;) = {p € (g9) : fi(p) <c}, j =1,2 (see [18)]).
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Then, if fi and f2 are conjugated M B functions on (g, 0), the existence
of the homeomorphisms k from ¥(g,0) to 3(g,0) and [ from R to R such
that k sends singular fibers of f; to singular fibers of fs gives us the existence
of homeomorphisms ®;, i = 1,..,n. In fact, each set M.(f;) is the union of
level sets of f1 and fo respectively, and k generates a bijection between these
sets.

3. CONSTRUCTION OF THE INVARIANT

The main objective of this section is to define a topological invariant to
classify Morse Bott functions on compact, connected and orientable surfaces.
To do this we will use the classification of the singular level sets of Morse
Bott functions that are closed curves and eights. This classification is done
in the paper [16].

3.1. Classification of circles and separatrix eights.

Definition 6. An embedded circle on ¥(g,0) will be the image of an em-
bedding ¢ : S* — %(g,0).

Definition 7. A separatriz eight B, or in short an eight, is the image
of an immersion of S' into X, ¥ : S — %(g,0), homeomorphic to two
circumferences glued by a point p. A component s;, will be any of the two
circumferences.

Denote by 98B a closed regular neighborhood of 8 = s1Usa. (for details
about regular neighborhoods see [9], [11]). Then:

Lemma 8 ([16]). A closed regular neighborhood of B is homeomorphic to
3(0,3) or X(1,1). The B whose regular neighborhood is %(1,1) is not an
admissible singular fiber of a MB function.

Definition 9 ([16]). We will say that B is a toroidal eight, if B is home-
omorphic to ¥(1,1) and a planar eight, if B is homeomorphic to (0, 3).

Definition 10. We will say that two circles (or two eights) are topologically
equivalent if there is an homeomorphism on ¥(g,0) that sends one of them
in the other.

Let FE (a) be the largest integer not greater than a and C (a) is the smallest
integer not less than a.

Theorem 11 ([16]). Let X(g,0) be an orientable closed surface. The number
of non-equivalent embedding of S* on ¥ is

(i) 1ifg=0,

(ii) E (%) + 2 with representant ly, 1, . . .,ZE(%),ZK if g > 0.

Theorem 12 ([16]). Let ¥(g,0) be an orientable, closed surface with g > 0.
Then, the number of topological types of eights on ¥(g,0) is

(1) 3g+1, ifg=0,1,
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(2) E($)C($)+E (%) +29+3,ifg>2.

If f is a MB function then ‘B is a planar eight so 918, the closed regular
neighborhood of B, has three boundary curves. Two boundary curves J;
and Jo of 9B are contractible to s; and s9 respectively and we will note
these type of curves by Js. The third boundary curve, Js, is contractible
to B and will be noted by Jy. Considering the Reeb graph of f, in a
saddle singularity the edge containing Jg curves bifurcates in two edges of
Js circles.

Foliations defined by Morse functions may differ from foliations defined
by a MB functions:

Proposition 13. Let f be a Morse function on ¥ and F(X, f) the Morse
foliation induced by the level sets of f. Then two components of an eight
B of F(X,f) cannot be connected by a family of closed invariant curves.
Moreover, two regular cylinders connecting two eights only contain circles
of the type Js.

Proof. Assume that two components of an eight 25 are connected by a family
of closed invariant curves. This family can be parameterized by an open
interval ]a,b[ with a and b assigned to the components of the eight. As
f(a) = f(b), f must have a least a singular value on ]a,b[. The singular
level set will be a circle but this is not an admissible singularity in Morse
foliations.

Given an eight B, in MB the signs of f(B) — f(Js) and f(B) — f(Jn)
are always opposite. This sign induces an order in the level sets of 9U8.
Suppose that there are two regular cylinders connecting %; and B, and
one of the cylinders are bounded by all B5; therefore it contains Jg circles.
Consider a parametrization on the second connecting cylinder as in the last
case and f(B1) = f(a) < f(B2) = f(b). Let c2 be a J, invariant circle near
Bo; assume that it corresponds to the parameter b + €.

Assume that by the ordering in MBo, f(c2) > f(b). Then f decreases
from f(b+e€) to f(b), but f must also be an increasing function in part of the
cylinder since f(a) < f(b). Therefore f must have at least one singularity
along this second cylinder. Other assumptions on the ordering on 91985 and
MNB, conclude similarly. O

3.2. Invariant for topologically equivalent MB functions. First of all
we recall some basic terminology from topological graph theory (more details
in [10]). A directed graph G (or digraph) consists of a finite nonempty set V'
of points together with a prescribed collection E of ordered pairs of distinct
points. The elements of V' are called vertices and the elements of E are
directed edges or arcs. By definition, a directed graph is simple if it has no
loops or multiple edges. Denote by e = (u,v) an edge of G. Then, the edge
goes from u to v and it is incident with v and v. We also say that e is
adjacent to v and v is adjacent from u. The outdegree of a vertex v, denoted
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by e™, is the number of vertices adjacent from it, and the indegree, denoted
by e, is the number of vertices adjacent to it. The sum of the indegree and
the outdegree of v is called the degree of v. A source vertex is a vertex with
indegree 0, a sink vertex has outdegree 0 and an interior verter has nonzero
indegree and nonzero outdegree.

Let v > 0 be the number of critical values of a simple MB function f
and R the Reeb graph of f. Let n be the function that associates to each
vertex a natural number between 1 and v following the order induced by the
slicing of f. From now on, R"(f) denotes the pair (R¢, 1), i.e. the ordered
Reeb graph of f. A vertex of Ry is a saddle vertez if it is a vertex associated
to a saddle point of f.

Definition 14. Let £ be the function that associates to each saddle vertex
of Ry the edge that contains the Jg circle. See Figure 2.

YeX

FiGURE 2. The function &.

In [16] the authors proved:

Proposition 15. The Reeb graph of a MB function and & determines the
topological type of the eights.

Proposition 16. Given a MB function f, n determines the function & on
the Reeb graph Ry.

Proof. Given a saddle point s there exists an interval (a;, a;+1) in the slicing
of f such that s corresponds to a real value in the interval (a;,a;1+1) and
this real number splits the interval (a;, a;+1) in two components. Each point
of an edge bounded by s and near s is associate with a real value in the
interval (a;, a;+1). Therefore given pi, py and ps points on different edges,
two of theme have associated real numbers in the same component of the
interval (a;,a;4+1). The other component is associated to the edge bounded
by s which contains the curves of type Jp. (|

The values of f on the vertices make Ry a directed graph. Conversely,
given a directed graph, we can not compare final vertices as the values of a
function are not specified.

Proposition 17. Let I' be a connected subgraph of the Reeb graph associated
to a MB function f having only saddle vertices. The function & and the
direction of one edge of I' determines the direction in all I'. In other words,
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the function & determines a linear ordering of the vertices of I' that coincides
with the order defined by n or with the inverse order, depending on the choice
of the direction of one edge of T.

Proof. Given a saddle vertex s, the function ¢ distinguish what is the s-
adjacent edge that contains curves Jp. So the function ¢ and the direction
of an edge adjacent to a saddle vertex determines the direction on the other
two adjacent edges. If I' is a subgraph having only saddle vertices, chosen
one of the two possible directions to one edge of I' and fixing the function
¢ we obtain a directed subgraph which has the same direction (order) of n
or the inverse order, depending on the chosen direction. This concludes the
proof of this proposition. O

Two graphs are isomorphic if there exists a one-to-one correspondence
between their vertices and edges which preserves adjacency.

The graph of a MB foliation on orientable closed surface ¥ is defined in
[16] as follows.

Definition 18. Let F be a MB foliation and f such that F = F(f). Then
the Graph ©(F) of the MB foliation is:
a)A circle, in the case of a regular foliation by circles on the torus.
b)The graph obtained from the Reeb graph of f transforming the union of
each verter v associated to singular circles of f and the two incident edges
m a new edge.

O(F) does not depend on the particular function f such that F = F(f).
This construction is related to the construction described in [7], section 1.3
and page 13. This graph ©(F) carries the information about the surface ¥
since the number of independent cycles in ©(F) is the genus of 3.

Proposition 19 ([16]). Let £ be a function on O(F) that associates to
each saddle vertex the edge that contains the Jy circles. The graph and &
determines the topological type of the eights.

By O¢(F) we denoted the pair formed by ©(F) and the function & intro-
duced in Proposition 19.

We assume here that ©¢(F1) and ©¢(F3) are isomorphic if there exists
an isomorphism from O(F;) onto ©(F2) that preserves the assignments of
the functions &.

Theorem 20 ([16]). O¢(F) is a complete topological invariant for MB
foliations on orientable closed surfaces.

Definition 21. We say that R"(f) and R"(g) are isomorphic if Ry and
Rg are isomorphic and the assignments of the function n are preserved.

Theorem 22 (Completeness Theorem). Two simple MB function f : ¥ —
R and g : ¥ — R are conjugate if and only if R"(f) and R"(g) are isomor-
phic.
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Proof. (Necessity). Let f and g be simple MB function conjugated and
ag < a1 < -+ < ap is a slicing of f and by < b; < -+ < b, a slicing of g
then there exist a homeomorphism preserving the orientation ®; : M, (f) —
My, (g), i=1,...,n. and R"(f) and R"(g) are isomorphic.

(Sufficiency). The functions f and g induces Morse Bott foliations F(f)
and F(g) respectively on ¥. The isomorphism from R"(f) onto R"(g) de-
fines a isomorphism between O¢(F(f)) and ©¢(F(g)). By Theorem 20, we
conclude that there is a homeomorphism k from ¥ into ¥ that conjugates
F(f) and F(g). Since the singular circles are reducible singularities we
can choose k in such a way that it sends singular circles of one foliation to
singular circles of the other foliation.

The function fok™! is conjugate to f and defines on the surface the same
foliation than g. Therefore f o k~! and g are conjugate and by transitivity,
g and f also. O

4. EXAMPLES

In this section we present several example of Morse Bott functions.

Example 1. Let ¥ = S? and embed S? in R? as the unit sphere. Consider
f:8% =R, fr,y,2) =z and g : > = R, g(x,y,2) = —22.

The functions f and g are Morse Bott functions. The non degenerate
critical sub manifolds of f are two critical points the north pole and the
south pole, and the non degenerate critical sub manifolds of g are the north
pole, the south pole and the equator points z = 0. As they have non
isomorphic Reeb graphs, from Theorem 22, f and g are not conjugated.

The Reeb graph is not enough to characterize M B functions on orientable
connected and compact surfaces.

Example 2. In [2] there is an example (see Example 1 and 3 in [2]) of two
Morse functions with the same ordered Reeb graph which are non conjugated.

There are other special examples of Morse Bott functions, for instance,
Wigner’s functions. These functions are quasi-probability distribution func-
tions in phase-space. See [15], [29]. According to [29] Wigner’s functions
have been useful in describing transport in quantum optics; nuclear physics;
and quantum computing, decoherence and chaos. We present here some
particular cases.

Example 3. Let us consider

fn(xap) = _
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1

where L, = —'ezﬁg(e_zz”) are Laguerre polynomials, for n = 0,1, 2, so
n!
4H 8H? 8H
that Lo = 1, L1 = 1 — T Ly = T2 T, + 1. When we suppose

- p2 + :C2
2
(i) fo(z,p) = (2p® + 222) /- -P°—2%)
(ii) fi(z,p) = (—2p% — 222 + 4p* + 82%p? + 4a*) /7 - e(*ptx?);
(iil) fo(z,p) = (4p% + 1222p* + 1224p? — 8p* — 162%p? + 2p? 4 42% — 8z +
222) /7 - eP* 7%

These function are Morse Bott functions. All these functions have the
origin as non degenerate critical point. Also, they have one, two and three
non degenerate critical sub manifolds homeomorphic to circles, respectively.
See Figures 3, 4 and 5.

H and h =1 the Wigner’s functions are:

FIGURE 3. The FIGURE 4. The
function fo(z,p). function fi(z,p).

5. REALIZATION THEOREM

In this section we describe sufficient and necessary conditions for a con-
nected oriented and finite graph G to be associated with a Morse Bott
function defined on an orientable closed surface X.

A walk in a graph is an alternating sequence of vertices and edges, vy, e1,
V1, €2, ... Tp, Uy in which each edge is either e; = (v;_1, v;) or e; = (v;, Vi—1).
A walk is a path if its vertices (and thus necessarily all the edges) are distinct.
A walk is a cycle is vg = v, and its edges are distinct. The first vertex of the
first edge of a path is the origin and the second vertex of the last edge is the
final vertex. Both origin and final vertex are called endpoints of the path. A
graph is connected is every pair of vertices are joined by a walk. An oriented
cycle is a cycle with all the edges being oriented in the same direction. If G
is a connected graph, then the cycle rank is m(G) = #E — #V + 1.
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FIGURE 5. The function fa(z,p).

Let be a f Morse function, we will say that R¢ is canonical (see [8]) if:

- it has exactly a maximal and a minimal vertex.

- the cycles, if any, have length two.

A path graph or linear graph is a connected simple graph that contains
only vertices of degree 2 and 1.

Let ¥ be an orientable closed surface and f be a MB function defined
on it. Then, the Reeb graph R associated to f is a finite graph, G, with
labels at the vertices. Suppose that G has vertices of degree 1, 2 or 3. Each
vertex of degree 1 is associated with the basin of a maximum or minimum
value of f. Each vertex of degree 2 is associated with a neighborhood of
a singular circle (a cylinder) and each vertex of degree 3, which is not a
endpoint, with a neighborhood of a saddle point. Moreover, we endow each
edge of the graph with a f-orientation given by the direction in which the
function f increases (see [28]). Thus, each vertex of a saddle point has one
(respectively two) incoming edge and two (respectively one) outgoing edges
and a vertex of a singular circle has two incoming edges or two outgoing
edges.

5.1. Prove of Theorem 2. We prove here Theorem 2 that gives necessary
and sufficient conditions for a connected oriented and finite graph G to be
associated to Morse Bott function on an orientable closed surface with values
in R. To prove this result, we recall the following theorem.

Theorem 23 ([17]). Let G be a finite graph without loops. Then, there
exists a smooth function f : X — R on a closed surface ¥ with finitely many
critical values such that its Reeb graph Ry is homeomorphic to G.
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From Theorem 23, any finite graph satisfying the conditions (b) and (c)
of Theorem 2 can be realized as the Reeb graph of a smooth function with
finitely many critical values on a compact surface without boundary.

The proof of this theorem is constructive, Masumoto and Saeki [17] showed
how to construct a smooth function f by means of conditions (a)-(c) of The-
orem 2. At first, they construct a continuous function fi from G to R that is
an embedding on each edge. Such a function can be constructed considering
first any injective map V(G) — R and then by extending it to the edges
so that it is linear on each edge, where V(G) denote the set of vertices of
G. Then, for each vertice v € V(G), its neighborhood satisfies one of the
conditions in (a) of Theorem 2 and for each cases in (a) Masumoto and
Saeki construct a smooth function g, : N, — R on a compact surface with
boundary where N, is a neighborhood of v.

Finally, it is performed a gluing operation of the smooth function g, for
each vertice v of G in order to get the smooth function f from X to R, such
that f|n, = g, for each vertice v of G and f; can be identified with the
function f : Ry — R.

Proof. (Necessity) Let Ry be the Reeb graph associated to a MB function f
on Y. Condition (a) of Theorem 2 is a consequence of the type of singularities
in a MB function and from the definition of the Reeb graph. Condition (b-1)
is necessary since the surface can be contracted to the Reeb graph. Moreover,
since f is a monotonic function, we can provide R with an orientation given
by the sense of growth of f. Then f determines an order on the vertices of
R by the following relation: vy < vy if f(v1) < f(v2). Then the conditions
(b-2) and (c) are satisfied.

(Sufficiency) We must guarantee the existence of a MB function f : 3 —
IR such that the Reeb graph associated to f is isomorphic to the abstract
graph G satisfying the conditions (a)-(c) of Theorem 2.

We begin by enumerating the vertices of G, vi,..., v, in such a way
that this order will be consistent with the order defined in G. Consider a
neighborhood N; for the vertex v; in G that contains v; but not any other
vertex of G. According to the degree of v; we associate a MB function to IV;
for ¢ = 1,...,n. These functions are constructed using the same arguments
and ideas by Matsumoto and Saeki (see more details in the proof of the
Theorem 23 in [17]). O

Given an ordered Reeb graph associated to a Morse function f on a fixed
surface Y it is possible to transform the graph into another one correspond-
ing to another Morse function g on ¥ by means of a set of elementary
deformations. These deformations are listed in [8] and we call them Fabio-
Landi transformations. To obtain a similar result in the case of Morse-Bott
functions a new elementary deformation must be added:

Definition 24. Consider a Reeb graph, R}(f), a saddle vertex v with three
adjacent edges ui,us,us where ug connects v with a final center vertex c.
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FIGURE 6. On the left a Morse Bott foliation on the 2-torus; on
the right the associated Reeb graph.

A direct MB elementary deformation applied to R7(f) yields another Reeb
graph without the edge us and the center c. The verter v is now associated
with a singular circle.

Definition 25. Given a Reeb graph R1(f), f a Morse Bott function, v a
vertex associated with a singular circle, with uy, us adjacent edges, an inverse
MB elementary deformation on a R(f) consist of adding a new adjacent
edge to v connecting v with a new vertex ¢ associated to a center singular
point. Moreover, min(f(z),z € uy Uug) < f(c) < maz(f(z),r € ug Uug).

In the Figure 6 we consider a Morse Bott foliation on the 2-torus asso-
ciated to a particular MB function g. In the Reeb graph R} (g) of g, the
vertex vg is associated with a singular circle of g with w1, us adjacent edges.
Applying an inverse MB elementary deformation on R7(g), we add a new
adjacent edge to vg connecting v with a new vertex c associated to a center
singular point. Then the Reeb graph obtained is associated to the foliation
of the height function in the Figure 1.

Proposition 26. Every R"(f) can be transformed into a canonical one
through a finite sequence of elementary deformations.

Proof. An inverse MB elementary deformation does not change the graph
genus or cycles. A sequence of inverse MB elementary deformations trans-
forms a Reeb graph associated with a MB function in a graph associated
with a Morse function in the same surface. By applying Fabio-Landi trans-
formations it is possible to transform the graph into a canonical graph. [

A realization theorem based in transformations of the graph is important
to define a topology in the set of Reeb graphs of Morse Bott functions (see
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[5, 8]). When Reeb graphs are used to recognize images, to have stability of
the graph against small perturbations is a very convenient property.

6. STABILITY OF MORSE-BOTT FUNCTIONS ON X

Let C°(X) be the set of all smooth functions from ¥ to R and endowed
the Whitney topology. Although the set of the Morse Bott functions on X
is a dense set of C°°(X) (as it contains the set of the Morse function defined
in the same space) it is not an open set.

In this section we define a new topology on the set of all smooth func-
tions defined on ¥ to R in order to obtain a stability result for some MB
functions .

Given a MB function f, each regular point p and each point in a critical
circumference is contained in a fiber of f homeomorphic to S' that will be
denoted o(p) and called a circled component. When p is a saddle critical
point it is contained in 2 circles o01(p), 02(p).

A path or a cycle ¢; in the Reeb graph of f can be embedded in the
surface and represented by this embedding i(cs). We will say that i(cy) is
properly embedded if:

(i) The representative point in the surface is not a singular point if p is
not a center nor a point in a critical circumference

(ii) The embedding is smooth and cuts transversally one-dimensional
fibers.

The set of all properly embeddings i(cs) will denoted by C;. Thus a
component ¢y of Cy is either a line or a circle.

s2

sl

The restriction of f to an i(cy) defines a new function f;( f)
Theorem 27. Given a MB function f, fi(cf) is a Morse function.

Proof. The singularities of f;, on i(cy) are local non degenerate maximums
or minimums since they correspond to centers or circle singularities. O
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Given two smooth functions on a compact surface f,g : ¥ — W and a
point p € ¥ define the tV distance between f and g at p as

(£, 9)(0) = |f () — 9(p)|
The t" distance at p is given by

t"(f, 9)(p) = max (|d" f(q) — d"g(r)],q € Ip)(f), 7 € Ly (9))
The T distance between f and g at p is

max (£°(f,9)(p), ' (f,9)(p) - - £"(f, 9)(p))
Finally we define the T" distance between f and g as

max (T"(f, 9)(p), p € £(g,0))

Theorem 28. In the space of smooth functions from a compact orientable
surface ¥ to R such that the Reeb Graph is a path graph, the set of MB
functions is open with the topology induced by the T",r > 2 distance.

Proof. Since the T topology is more restrictive that the Whitney topology,
saddle and center singularities are preserved in a neighborhood of a MB
function .

Given a ¢y that do not intersect saddle levels of f, it can be considered as
the quotient space under the level equivalence. On ¢; the quotient topology
of the T" topology is the Whitney topology. As f, is a Morse function, and
Morse functions are generic, from the preservation of critical points of f,
for close enough functions, derives the preservation of critical circles of f .

Since the number of singularities is finite, the last two properties imply
the Theorem. O
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