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Summary

� Tall trees (height ≥ 60m) are keystone elements of tropical forests, strongly influencing bio-

diversity, carbon storage, and ecosystem resilience. Yet, their density and spatial distribution

remain poorly quantified, especially in remote Amazonian regions, limiting our understanding

of their ecological roles and contribution to forest–climate interactions.
� We combined airborne LiDAR data from 900 transects across the Brazilian Amazon with

environmental predictors to model tall-tree density. Spatial extrapolations allowed us to gen-

erate regional distribution estimates and assess associations with climate, topography, and dis-

turbance regimes.
� Our model predicts that tall trees are unevenly distributed, with c. 14% of the estimated

density concentrated in c. 1% of the Amazon and c. 50% within c. 11%. The highest densi-

ties occur in Roraima and the Guiana Shield provinces, where water availability is high and

lightning or storm incidence is low. Modeled density strongly correlates with aboveground

biomass, highlighting the disproportionate contribution of tall trees to carbon stocks. We esti-

mate c. 55.5 million tall trees across the Brazilian Amazon.
� These findings demonstrate that tall-tree distribution is a crucial but underused predictor for

biomass models. Understanding their ecological and spatial dynamics is vital for forest conser-

vation and climate-resilience strategies under increasing anthropogenic pressures.

Introduction

Understanding the density and distribution of larger trees in the
Amazon is vital for predicting the carbon balance of Amazonian
ecosystems with global environmental change (Bastin
et al., 2018; Lutz et al., 2018; Enquist et al., 2020). Particularly,
the local and regional variations in the density of large trees are
strongly linked to spatial variations in the aboveground biomass
(AGB) of tropical forests (Slik et al., 2013; Birdsey et al., 2023)

and regulate the microclimate, water availability, light intensity,
and understory species diversity (Lindenmayer, 2017; Linden-
mayer & Laurance, 2017; Brando, 2018; Pinho et al., 2020; Dra-
per et al., 2021). Around 390 billion trees are estimated to
inhabit the Amazon (Crowther et al., 2015). However, large
uncertainties remain regarding how many tall trees reach the
uppermost stratum of Amazonian forest canopies and how their
survival is locally and regionally distributed. These large trees take
centuries to reach such sizes, and many of the species may be
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unable to regenerate on timescales compatible with the planet’s
rapidly changing climate (Larjavaara, 2014; Bennett et al., 2015;
Ali & Wang, 2021). Although there is still limited empirical evi-
dence quantifying the recovery dynamics of giant trees across tro-
pical forests, their exceptional longevity – combined with
increasing forest degradation and intensifying climate-related dis-
turbances (e.g. drought, wind, lightning) – suggests that they are
being lost at a faster rate than they are being replaced (Trenberth
et al., 2014; McDowell et al., 2018; Gora et al., 2025). This
imbalance makes them particularly vulnerable under current
environmental pressures (Piovesan & Biondi, 2021). Monitoring
the density of giant trees is therefore essential to understanding
forest ecosystem stability, resilience, and long-term carbon sto-
rage potential.

The density of tall trees is largely influenced by variables that
determine their growth and survival rates, encompassing both
genetic factors and environmental conditions, such as climate,
soil, and topography, which shape their structural characteristics
(Jucker et al., 2018; Caron et al., 2021; Mills et al., 2023; Ter
Steege et al., 2023). Previous studies, such as Slik et al. (2013),
have demonstrated that large-diameter trees – often strongly cor-
related with extreme height – play a dominant role in explaining
AGB variation across tropical forests. Moderate temperatures and
increased light availability (i.e. providing more energy for
growth), alongside low water stress, are factors that can favor a
large density of tall trees (Stephenson, 1990; Madrigal-González
et al., 2023). However, the future survival of large trees may be
threatened by climate change and land-use changes. For example,
large climatic and atmospheric oscillations may lead to physiolo-
gical and mechanical instability in the structure of tall trees (Gora
& Esquivel-Muelbert, 2021; Jackson et al., 2021). The efficient
vascular systems of tall trees are particularly vulnerable to pro-
longed droughts, which can lead to the collapse of water and
nutrient transport (Barros et al., 2019; Araújo et al., 2024),
and high turbulence caused by strong winds and a high incidence
of lightning kills tall trees disproportionately (Gora et al., 2021;
Feng et al., 2023). Therefore, the ability of Amazonian forests to
support tall trees likely depends on a balance between environ-
mental factors associated with resource availability that promote
tree growth to its potential maximum size, alongside mechanisms
that promote survival under vegetation disturbances (Gorgens
et al., 2021). Analyzing the density of tall trees as a function of
environmental determinants is crucial to understanding the Ama-
zon’s stability under increasing environmental pressures and cli-
mate change.

Field inventories have traditionally played a crucial role in
mapping forest patterns and assessing tree diversity in the Ama-
zon, offering essential insights into species composition and dis-
tribution (ter Steege et al., 2013, 2023; ForestPlots.net
et al., 2021; De Lima et al., 2023). However, conventional
approaches based on forest inventory plots provide limited spatial
coverage for evaluating the density of tall trees. This limitation is
largely due to the logistical and technical challenges of detecting
these rare and spatially scattered individuals, which often require
large sampling areas in remote and difficult-to-access regions
(Harris et al., 2021; Carvalho et al., 2023). Although

field inventories remain fundamental for understanding
tree-environment interactions and ecological mechanisms, they
frequently fall short in capturing the broad-scale spatial variabil-
ity and true density of tall trees across the Amazon.

The advent of Light Detection and Ranging (LiDAR) has
transformed forest assessments by providing high-resolution,
three-dimensional data on forest structure over large spatial
scales. This technology can be used for rapid and accurate esti-
mates of canopy height and AGB in remote regions (Asner
et al., 2010; Dubayah et al., 2010; Coomes et al., 2017). The
‘Biomass Estimation in the Amazon’ (EBA) program, for exam-
ple, mapped 900 transects, covering 375 ha each, which repre-
sents a remarkable increase of > 100-fold in sampling capacity
compared to traditional forest inventory plot methods (Fig. 1).
This technological breakthrough has, for the first time in the
Amazon, enabled more precise and accurate mapping of biomass
stocks (Ometto et al., 2023) and reshaped our understanding of
forest structure and the distribution of giant trees in the Amazon
(Gorgens et al., 2019, 2021). In particular, Gorgens et al. (2019)
identified the tallest tree ever recorded in the Amazon – a Dinizia
excelsa reaching 88.5 m height in the eastern portion of the Ror-
aima biogeographical province in Brazil. This discovery under-
scored the ecological importance of these towering giants and
highlighted the critical role remote sensing techniques have in
uncovering previously unknown aspects of tropical forest
ecosystems. Despite these advances, there is still a dearth of
LiDAR-based estimates of large tree density across the tropics.
Better estimates of large-tree density are crucial to improving our
understanding of the ecological processes and mechanisms driv-
ing tree–environment interactions, which are vital for predicting
the carbon cycle dynamics and species vulnerability of Amazo-
nian forests.

Here, we generated the first map of the spatial distribution of
the giant tree density (height ≥ 60 m) in the Amazon basin, inte-
grating spatially explicit climate, topography, atmosphere, and
soil information. We fit a Random Forest (RF) machine learning
model to predict the density of giant trees across the Brazilian
Amazon, based on environmental and climatic variables. Then,
we assessed the underlying environmental factors and identified
the principal components that explain most of the variance in
tall-tree density in these biogeographic provinces. We also ana-
lyze the broader implications of these results for biomass esti-
mates. These comprehensive analyses provide new insights into
how different environmental variables influence tall-tree density
and provide crucial information for forest conservation and man-
agement policies in the Amazon.

Materials and Methods

LiDAR data collection and standardization

The point cloud from airborne LiDAR was acquired between
2016 and 2018 for 900 transects distributed throughout the Bra-
zilian Amazon biome (Fig. 1, Supporting Information Fig. S1a,
b). The data collection was part of the EBA project developed by
National Institute for Space Research (Gorgens et al., 2021;

� 2025 The Author(s).

New Phytologist� 2025 New Phytologist Foundation.

New Phytologist (2026) 249: 152–168
www.newphytologist.com

New
Phytologist Research 153

 14698137, 2026, 1, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.70634 by C

apes, W
iley O

nline L
ibrary on [16/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Ometto et al., 2023). The sensor used was the LiDAR HARRIER
68i, coupled to a CESSNA model 206 aircraft. The scanning
angle was 45°, and the flight altitude was c. 600 m. The point
cloud is formed by 4 returns m�2. Each transect mapped
3.75 km2 (representing 12.5 × 0.3 km strips). See more details at
https://zenodo.org/records/4091222#.YDe7l2hKjIV.

For each LiDAR transect, tall trees were identified using a local
maxima detection algorithm applied to a canopy height model
(CHM) derived from a normalized digital surface model and a
digital terrain model (Silva et al., 2022). The CHM was gener-
ated at 1-m resolution, and local maxima were identified using a
100-m circular moving window, which helps to suppress noise
and avoid the overdetection of treetops in dense canopy areas.
Each treetop was assigned a geographic coordinate and its maxi-
mum height extracted from the CHM. To facilitate analysis,
detected treetops were aggregated by transect and categorized into
three height strata: < 40, ≥ 40 and < 60, and ≥ 60 m, with the
latter defined as ‘giant trees’ for the purposes of this study
(Fig. S1b). A unique string for each transect assigned as ID
(transect number); the transect central coordinates (latitude

(LAT) and longitude (LON)) and total area (in hectares) formed
the initial dataframe for subsequent analyses (Dataset S1). To
ensure consistency and maximum accuracy in the density data
per transect and the final density maps, we standardized the area
size to square kilometers (km2). Considering only tall trees
(height ≥ 60 m), we detected their presence in 313 out of the
900 transects (c. 35%) across the Amazon biome. However, all
900 transects, including those with zero density of tall trees
(n= 587), were used in the spatial modeling (RF) and principal
component analysis (PCA). This approach ensured a comprehen-
sive and representative analysis of the full gradient of environ-
mental conditions and tall tree occurrence across the biome.

All transects in the final tree density data matrix cover eight
biogeographic provinces proposed by Morrone (2014). This bio-
geographic definition seeks a universal classification in provinces
with similar macroecological characteristics of biodiversity. To
understand the optimal environmental conditions for the occur-
rence of the tallest trees, the density data km�2 were linked to
spatially explicit environmental factors. The wide distribution of
our sampling points (in number and distribution of LiDAR

Fig. 1 Distribution of transects mapped by airborne Light Detection and Ranging (LiDAR) across the Amazon Basin. The figure shows 900 randomly
distributed transects covering the eight biogeographic provinces in the region. Red points represent transects where trees taller than 60m were identified,
whereas green points indicate transects without trees ≥ 60m. Yellow lines delimit major biogeographic regions, including Imeri, Roraima, Guiana Shield,
Pantepui, Madeira, Rondônia, Xingu-Tapajós, and Pará. The LiDAR data transects are available at https://zenodo.org/records/4091222#.YDe7l2hKjIV.
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transects) provides a substantially representative sampling effort
for this vegetation stratum. It ensures that any uncertainty in
transect locations or minor changes in forest area in the Amazon
region are unlikely to alter mean values or estimates of giant’s tree
density.

Environmental factors

Our research initially involved 16 spatially explicit environmental
predictor variables representing topography, climate, and soil, as
detailed in Table 1 and Fig. S2. The data were then carefully
cropped to fit the geographic boundaries of the Brazilian Amazon
biome and, when necessary, resampled to a spatial resolution of
30 arc seconds (c. 1 km).

Information on temperature and precipitation derived from
19 bioclimatic variables was obtained from WORLDCLIM v.2 (Fick
& Hijmans, 2017). Precipitation seasonality (BIO15) represents
the coefficient of variation of monthly precipitation values and is
used as an indicator of the intensity of the dry season. Tempera-
ture seasonality (BIO4) reflects the SD of monthly mean tem-
peratures (×100). Higher values for both variables indicate
greater climatic variability across the year. The average number of
cloudless days throughout the year was obtained using surface
reflectance products from the MODIS (Moderate Resolution
Imaging Spectroradiometer) sensor. We used the Terra
MOD09GA v.6 product, which estimates the MODIS surface
spectral reflectance duly corrected for atmospheric conditions.

The annual average number of days with precipitation
> 20 mm was calculated from the precipitation time series of the

Climate Hazards Group InfraRed Precipitation with Station
(CHIRPS) dataset (Funk et al., 2015). Potential evapotranspira-
tion was derived from data provided by TerraClimate, which
combines WorldClim climatological normals, Climatic Research
Unit (CRU) Ts4.0, the 55-yr Japanese Reanalysis (JRA-55) data,
and the Penman-Monteith methodology. The fraction of
absorbed photosynthetically active radiation (FAPAR) was
obtained from the calibrated and corrected land surface reflec-
tance product of the Advanced Very High-Resolution Radio-
meter (AVHRR) of the National Oceanic and Atmospheric
Administration (NOAA), providing information on the photo-
synthetic activity of plants (Baret et al., 2013).

Lightning frequency, associated with weather events and tree
mortality (Gora et al., 2020), was obtained from the Lightning
Imaging Sensor (LIS) instrument aboard the Tropical Rainfall
Measurement Mission, provided by NASA’s Earth Observing
System’s Global Hydrological Resources Center (EOSDIS).
Lightning activity was represented by average annual flash rate
(flashes yr�1), derived from LIS/TRMM data at c. 0.1° spatial
resolution. The variable expresses the total number of lightning
flashes per year per grid cell and is not normalized by area, as each
value is associated with a fixed spatial extent defined by the sensor
resolution. To represent long-term wind disturbance patterns, we
used 5-yr (2014–2018) averages of the daily maximum wind
speed components (zonal-uspeed and meridional-vspeed), calcu-
lated from hourly wind data derived from the ERA-Interim rea-
nalysis (ECM-RWF). For each grid cell, the maximum wind
speed for each day was identified from hourly records, and these
daily maxima were then averaged across the 5-yr period to

Table 1 List of the main environmental variables selected for this study.

Environmental variable

Category Sub-category Name and unit Abbreviation Spatial resolution (period) Source

Topographic Elevation Elevation above sea level (m) elev 30m SRTM
Climatic Temperature Mean annual temperature (°C) tannual 30 arc seconds WorldClim

Maximum temperature (°C) tmax 30 arc seconds WorldClim
Temperature seasonality (%) tseason 30 arc seconds WorldClim

Precipitation Average annual precipitation (mm) pannual 30 arc seconds WorldClim
Precipitation seasonality (%) pseason 30 arc seconds WorldClim
Precipitation of the wettest month pwettest 30 arc seconds WorldClim

Physiologic influence Number of clear days per year (days) clearDays 500m (2014–2018) MODIS
Days with precipitation > 20mm (days) days20 0.05° (2014–2018) CHIRPS
Potential evapotranspiration (mm yr�1) pet 2.5 arc minutes

(1990–2016)
TerraClimate

Fraction of absorbed photosynthetically active
radiation (%)

fapar 0.05° (2016–2018) NOAA
AVHRR

Stressors Lightning rate (flashes rate yr�1) lightning 0.1° LIS TRMM
Meridional speed (N–S) (m s�1) vspeed 0.25° (2014–2018) ECM-RWF
Zonal speed (W–E) (m s�1) uspeed 0.25° (2014–2018) ECM-RWF

Edaphic Fraction of clay
content

Soil structure physical properties water availability
(%)

clayContent 250m SoilGrids

Fraction of water
content

Soil structure physical properties water availability
(%)

waterContent 250m SoilGrids

Variable categories, subcategories, names and their corresponding units and abbreviations are shown. AVHRR, Advanced Very High-Resolution
Radiometer; CHIRPS, Climate Hazards Group InfraRed Precipitation with Station; LIS TRMM, Lightning Imaging Sensor instrument aboard the Tropical
Rainfall Measurement Mission; MODIS, Moderate Resolution Imaging Spectroradiometer; NOAA, National Oceanic and Atmospheric Administration;
SRTM, Shuttle Radar Topography Mission; WorldClim, global climate data.
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produce a robust indicator of prevailing peak wind conditions.
Previous studies indicate that winds are correlated with distur-
bances that result in tree mortality in the Amazon (Marra
et al., 2014; Rifai et al., 2016).

Soil variables were obtained from the SoilGrids database
(Hengl et al., 2017), which applies machine learning to a global
compilation of soil profiles. From this dataset, we selected two
variables relevant to forest structure: clay content (% of fine parti-
cles < 2 μm) and soil water content (% volume at field capacity
at 30 cm depth). Both layers were used at a spatial resolution of
250 m.

All geospatial data were processed in ArcMap 10.1 software.
We extracted all geospatial covariate values from raster datasets
for transect location points using the raster::extract function from
the R RASTER package (Hijmans et al., 2025) to construct a stan-
dardized plot-level dataframe.

Principal component analyses

To explore associations between environmental factors and
understand the patterns governing giant tree density, we applied
PCA to the normalized dataset of predictors. PCA was conducted
separately for the entire Amazon biome and for each biogeo-
graphic province, allowing us to identify the main environmental
gradients at both regional and local scales. The input variables
were standardized to zero mean and unit variance before analysis
to account for differences in measurement scales. Biplots of the
first two principal components were generated using the FACTOEX-

TRA R package (Kassambara & Mundt, 2020), providing a visual
representation of how environmental variables covary and how
these patterns may influence tall tree density in different parts of
the biome.

Spatial modeling

A RF model was used to model the density of tall trees from the
environmental variables (Cutler & Wiener, 2022). This machine
learning method detects global trends present in data using an
ensemble strategy of decision trees to predict tree density in the
uppermost strata of the Amazon rainforest canopy using the 16
environmental covariates. The RF algorithm applies the general
bootstrap aggregation technique (bagging) with a modified tree
learning algorithm that selects a random subset of the features at
each candidate split in the learning process (Liang et al., 2022).
Since a random subset of variables is chosen for each tree, the RF
algorithm based on trained tree ensembles avoids overfitting
(Calhoun et al., 2020). It circumvents potential multicollinearity
issues (Genuer & Poggi, 2020) between the predictor variables.

For rigorous evaluation of the RF model, we employed the
k-fold cross-validation method and spatial cross-validation. First,
the 900 sampled transects were randomly divided into k subsets
(or folds) of approximately equal size. The randomized
cross-validation was of the k-fold type, randomly dividing into k
groups. In this procedure, k is defined as 15. For each k subset,
the RF model is trained using k�1 subsets as the training set and
the remaining subset as the test (or validation) set. This process

was repeated 100 times with sample replacement to examine the
accuracy of the estimated tree density values. After each round of
training and validation, we calculated model performance
metrics, such as root mean square error (RMSE) and coefficient
of determination (R2). RMSE is a measure of accuracy that
reflects the average magnitude of prediction errors, while R2

represents the proportion of variance explained by the model.
Both provide a comprehensive assessment of model accuracy.
These metrics are stored for each fold. At the end of the process,
the metrics obtained in each k validation round are aggregated,
usually by the average, to provide an overall estimate of the
model performance. This average provides a more stable and reli-
able measure of model accuracy than a simple single split between
training and testing.

A spatial cross-validation methodology was employed to
assess the predictive ability and spatial uncertainty of an RF
model in estimating the density of tall trees (height ≥ 60 m)
based on environmental variables. The spatial cross-validation
accounts for the spatial autocorrelation among sampling points,
thereby minimizing the overestimation bias of model accuracy
metrics due to the spatial proximity between training and test
data. Initially, the data were organized in a spatial structure
using the sf library (Pebesma et al., 2024), allowing for the
manipulation and visualization of sample points with geo-
graphic coordinates. Ten folds were used for spatial cross-
validation, each representing a unique data partition. This divi-
sion was conducted randomly and in a balanced manner, ensur-
ing that each sample point was used exactly once as a test set.
By contrast, the others were used for training, thus ensuring the
generalization of the results and control over prediction variabil-
ity. We acknowledge that there is ongoing debate regarding the
balance between spatial independence and representativeness in
training/testing splits, particularly in ecological studies involving
complex environmental gradients. To address this, we examined
residual spatial patterns separately to identify areas of potential
model underperformance.

For each fold, the model was fitted using the ranger package
(Wright et al., 2017), an efficient implementation of RF config-
ured with 500 trees. The response variable was the density of tall
trees (#N_trees_h60_km2). The explanatory variables included
climatic, topographic, and edaphic environmental factors, care-
fully selected to capture spatial variability in environmental con-
ditions. To avoid missing data issues (NA), the complete cases
function was applied to the training data, ensuring that only
complete records were used to fit the model. After fitting the
model in each fold, predictions were made for the corresponding
test set. These predictions were stored in a matrix, where each
column represented the predictions of a specific fold. The uncer-
tainty associated with the predictions was estimated by calculat-
ing the SD across folds for each sample point, creating an
uncertainty map. This SD measure reflects the variability in pre-
dictions across different folds, indicating areas with greater or les-
ser confidence in the model estimates. The statistical metrics used
to evaluate model performance included the RMSE and the coef-
ficient of determination (R2) of the tall tree density calculated for
each fold. The mean bias was calculated as the mean difference
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between the predicted and observed values of tall tree density
across all transects:

Mean bias=
1

n
∑
n

i = 1

byi�yi
� �

,

where byi is the predicted value, and yi is the observed value for
transect i, and n is the total number of transects (n= 900). This
metric provides a straightforward indication of whether the
model tends to systematically overestimate or underestimate tall
tree density.

After cross-validation, the final model is fitted using the entire
available dataset (all 900 transects) and is used to predict giant
tree density across the study area, considering environmental fac-
tors as predictor variables. The final RF model refers to the struc-
ture (i.e. hyperparameters and predictor variables) that achieved
the best performance during spatial cross-validation. The impor-
tance of environmental variables was analyzed using marginal
plots, holding the other variables constant at a mean value. This
approach consisted of a sensitivity analysis in which the impor-
tance of variables is measured by permuting variables in the
model and measuring the increase or decrease in tree density.

Finally, the parameters of the final RF model were applied to
stacked environmental layers at the pixel level across the entire
Amazon biome using map algebra, producing spatially explicit
density maps for the uppermost strata of the forest canopy, with
emphasis on giant trees (≥ 60 m) (Fig. S1). All statistical and spa-
tial modeling and analysis procedures were conducted in the R
ENVIRONMENT v.4.2.1 (R Core Team, 2024), using the MASS

(Ripley et al., 2022) and RANDOMFOREST (Cutler & Wiener,
2022) packages.

Assessing biomass estimates

To estimate AGB as a function of tall tree density in the Amazon
biome, we used LiDAR transect biomass reference data devel-
oped by Ometto et al. (2023). To ensure consistency and metho-
dological independence from interpolated values, we recalculated
AGB per transect based on observed biomass estimates. Each
3.75 km2 transect was subdivided into square pixels, and biomass
was estimated per pixel using LiDAR-derived structural metrics
calibrated with field inventory data. These pixel-level values were
then aggregated using the PRODES forest mask (250 m × 250 m
resolution), retaining only those pixels classified as forest. For
each transect, total AGB was calculated by summing the biomass
values of all intersecting PRODES-classified pixels. Finally, AGB
values were converted from megagrams per hectare (Mg ha�1) to
gigatons per square kilometer (Gt km�2), enabling a standardized
interpretation of biomass stocks at broader spatial scales. This
harmonization of spatial resolution and biomass estimation
ensured coherence between the tall tree density and AGB datasets
while minimizing redundancy in data derivation.

To assess the relationship between tall tree density and biomass
stocks across the Amazon biome, we initially fit a linear model
(AGB� density_of_tall_trees) to quantify the strength and direc-
tion of the correlation, reporting the coefficient of determination

and significance level. However, for better visual interpretation
and to account for nonlinear trends – especially at higher density
levels – a locally weighted smoothing function (LOESS) was
applied to the scatterplot. This methodological approach enables
a robust analysis of the role of tall trees in biomass stocks in the
Amazon, contributing to the understanding of the spatial distri-
bution of carbon stored in tropical forests and the factors that
influence this dynamic at different geographic scales.

Results

Density of tall trees and underlying environmental factors

LiDAR mapping detected 5522 736 trees, with an approximate
average of 767 trees km�2 in c. 7.2 km2 of overflown area. The
maximum height found was 88.5 m, validating this information in
the field as the tallest known tree in South America (Gorgens
et al., 2019). The density of tall trees showed weak to moderate
positive correlations with the FAPAR (R= 0.13), the number of
clear days (R= 0.11), and soil clay content (R= 0.12), while dis-
playing negative associations with wind speed (R=�0.27), preci-
pitation seasonality (R=�0.02), and lightning frequency
(R=�0.34), indicating potential limiting effects of wind and dis-
turbance on the occurrence of giant trees (Fig. S3). The observed
density of trees ≥ 60m per transect ranged from 0 to 227
trees km�2 (see Dataset S1; Fig. S4a,b). The correlation structure
revealed moderate to strong associations among several climatic
variables. Variables, tannual, tmax, and tseason were strongly posi-
tively correlated (R> 0.7), as were pannual and pwettest. These
patterns reflect expected coherence between related environmental
drivers (e.g. different dimensions of temperature or precipitation).
Conversely, wind variables (uspeed and vspeed) showed weak to
moderate correlations with most other predictors.

PCA revealed the dominant environmental gradients across
the Amazon (Fig. 2) and within provinces. The first two compo-
nents explained 48.7% of the variance (PC1= 32.1%,
PC2= 16.6%). PC1 summarized broad climatic–disturbance
contrasts and water balance, whereas PC2 captured edaphic/
topographic variation. These axes separated provinces along
moisture–disturbance and soil–terrain gradients, respectively;
variable loadings and biplots are shown in Fig. 2.

PC1 was primarily structured by climatic variables, including
precipitation seasonality (pseason) and potential evapotranspira-
tion (pet), whereas PC2 reflected a combination of disturbance-
and soil-related factors, including wind speeds (uspeed, vspeed),
clay content, and lightning frequency. The spread of data points
in PCA space showed partial separation of biogeographic pro-
vinces, indicating regional differences in environmental condi-
tions.

While PCA does not predict tall tree density directly, the ordi-
nation helps contextualize environmental heterogeneity. For
instance, provinces such as Guiana Shield and Roraima were
positioned in regions of PCA space associated with lower wind
speed, higher clay content, and fewer clear days – conditions that
may indirectly favor the persistence of tall trees. By contrast, pro-
vinces like Pará and Pantepui clustered in areas associated with
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stronger wind regimes, higher climatic seasonality, or more eda-
phically constrained conditions, aligning with their generally
lower density of giant trees (see also Fig. S2). Province-level
PCAs further revealed differences in the correlation structure of
environmental variables. These local-scale analyses complement
the biome-wide PCA by illustrating how the relative influence
and collinearity of predictors may vary across ecological regions,
supporting the interpretation of region-specific environmental
constraints on tall tree distributions.

Spatial modeling

Our analysis confirmed, with a high level of accuracy, that the
fitted RF model (k-fold cross-validation: RMSE= 4.8
trees km�2) indicates a general spatial trend in the density of tall
trees throughout the Amazon basin. The spatial model explained
79% of the variation in tall tree density and presented a signifi-
cant correlation between the observed and estimated values
(R= 0.96; RMSE= 10.45, Fig. S4a). The distribution of predic-
tions closely matched observed values (Fig. S4b), although the
model tended to slightly underestimate higher densities. Residual
analysis revealed systematic overestimation at low densities and

underestimation at higher values, indicating some nonlinearity
not fully captured by the model.

The results from the spatial cross-validation demonstrated
satisfactory performance of the RF model in estimating the den-
sity of tall trees. The RMSE was 10.5 trees km�2, indicating rea-
sonable accuracy in the predictions. By contrast, the mean
coefficient of determination (R2) of 0.6 shows that the model
could explain a substantial portion of the variability in the
observed data. Additionally, the mean bias of 0.4 reveals a low
systematic deviation, suggesting that the model showed good
overall accuracy without tendencies toward underestimation or
overestimation. Spatially, most transects exhibited low residuals,
but localized deviations in northeastern Amazonia suggest areas
with greater environmental heterogeneity or reduced predictor
performance (Fig. 4c,d). Transects with exceptionally
high-observed densities of giant trees tended to have their values
underestimated by the model. This pattern likely reflects the rar-
ity of such high-density transects in the training data and high-
lights a common limitation of machine learning models in
capturing extreme values.

The spatial model prediction of large tree density shows dif-
ferences among biogeographic provinces, Fig. 3, with markedly

Fig. 2 The biplot shows the first two principal components of the principal component analysis (PCA), together explaining 48.7% of the data variance. The
length of the arrows indicates the degree of contribution (influence) of the environmental variables to the principal axes. Variables with longer arrows (such
as pseason, pet, and lightning) significantly impact discriminating biogeographic provinces. The direction of the arrows indicates correlation: vectors that
are close or aligned indicate positive correlation. Vectors that are opposite (> 90°) indicate a negative correlation. For example, pseason positively
correlates with Dim1, whereas uspeed and vspeed correlate negatively. The arrow colors reflect each variable’s relative contribution to the model, with a
gradient from light blue (low contribution) to dark blue (high contribution). Variables with high contribution best explain the observed variation between
provinces, such as pet and lightning. Each point represents a sampling unit (site) within a specific biogeographic province. Point sizes in the biplot are scaled
using a transformation (1+ tree density) to enhance visual clarity while retaining zero-density information. Ellipses group provinces based on their
environmental similarities. Example: Guiana Shield (blue) is associated with specific environmental features such as elevation. Pantepui (red) is strongly
associated with clayContent and waterContent. The size of the dots reflects the density of tall trees (contribution of giant species) in each biogeographic
province. Areas with larger dots indicate a higher density of tall trees, possibly associated with variables such as lightning and clearDays.
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higher values in the northeastern portion of the Amazon, where
there is a predominance of terra firme forests in the northern
Guiana Shield and the eastern portion of the Roraima biogeo-
graphic provinces (darker area on the map, c. �58 to �51°
longitude, and �4° to �3° latitude). The density of tall trees in
these areas may exceed 120 individuals km�2, estimated by the
spatial model (Figs S4b, 3). Note that these regions are charac-
terized by a low incidence of lightning and lower wind speeds
(Fig. S2). Densities close to zero can be seen in large portions
of the south-central eastern Amazon (Pará, Xingu-Tapajós, and
Madeira provinces; note that these biogeographic provinces
coincide with the arc of deforestation). We also noted lower
densities throughout the Imerı́ province and the entire northern
portion of the Madeira province. This westernmost strip of the
biome is characterized by the solid influence of the seasonality
of the dry season (Fig. S2). Most regions, including the
Madeira, Rondônia, and Xingu-Tapajós provinces, exhibited
low to moderate uncertainty (≤ 6.86 trees km�2), reflecting
well-sampled areas with more predictable environmental condi-
tions. By contrast, higher uncertainty (> 16.03 trees km�2) was

concentrated in northeastern Amazonia, particularly in parts of
the Guianan Lowlands, Pará, and Roraima provinces (Fig. 4).
Prediction uncertainty is heteroscedastic: absolute errors and
interval widths increase with the predicted mean density, parti-
cularly in the highest-density bins, whereas relative errors
remain comparable across most of the range. This scale effect is
as important as variation in sampling intensity or environmental
predictability (Fig. S4d).

Across the 4.2 million km2 Brazilian Amazon biome, the spa-
tial model estimates c. 55.5 million trees taller than 60 m
(0.0001% of the estimated ≈ 390 billion trees for the Brazilian
Amazon biome), with an average density of 13.5 (�4.5) tall
trees km�2. However, we found a sizeable spatial aggregation of
these tall trees, with c. 14% of tall tree density occurring in
1.28% of the total area of the Amazon (latitudes �2° to 3° S and
53° to 58° W) and 50% occurring in 11.2% (latitudes �5° to 5°
S and 51° to 60°W).

The essential variables according to %IncMSE for the model
were pannual (13.01%), tannual (11.89%), uspeed (11.65%),
and clayContent (10.98%) (Fig. S5b). Meridional wind speed

Fig. 3 Potential map generated by the random forest spatial model to define ideal zones for the occurrence of high density of giant trees in the Amazon.
The areas are color coded according to different density ranges, where lighter shades indicate lower tree density (≤ 5 trees km�2), darker shades indicate
higher density (up to 141 trees km�2). Gray lines delimit major biogeographic provinces within the Amazon biome (such as the Guiana Shield, Xingu-
Tapajós, and Roraima), showing distinct density patterns across the Amazon region. Gray shading on the top and side of the map represents latitudinal and
longitudinal distribution of density. The highest densities of giant trees are concentrated in the Guiana Shield province and northern Roraima province. By
contrast, potential areas with near-zero density of giant trees include parts of the Madeira and Rondônia provinces as well as extensive regions in the
southwestern Amazon. The map is available at https://doi.org/10.5281/zenodo.13850976.
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(N–S, m s�1) (vspeed) and lightning rate, claycontent, and num-
ber of clear days per year (clearDays) were found to be the pri-
mary environmental factors associated with decreases in spatial
model residual variance (IncNodePurity) and contributed signifi-
cantly to separating the observations into more homogeneous
groups along the trees in the RF model (Fig. S5a). High mean
and maximum temperatures also negatively affected the density
of tall trees. Tree density increased with photosynthetically active
radiation (fapar) by > 70% but decreased with the number of
clear days linked to direct radiation (Fig. S6). Mean annual preci-
pitation (pannual) and precipitation regimes (pwettest, days20),
as well as soil clay content (Claycontet), elevation above sea level
(m) (elev), and temperature seasonality (tseason), indicate
increases and stability in spatial model-estimated density values.
Although water availability is a fundamental driver of tall tree
density, we observed that biome-wide relationships between
climate-based indicators – such as precipitation seasonality

(pseason) and potential evapotranspiration (pet) – and tall tree
density were generally weak or inconsistent. This suggests that
large-scale climatic seasonality alone does not fully explain the
spatial variation in giant tree occurrence. One possible explana-
tion is that local-scale ecological processes, including topographic
heterogeneity, soil buffering capacity, or historical disturbance
regimes, may mask or override broader climatic signals in shaping
density patterns (Fig. S7). By contrast, the effect of soil water
content showed a clearer pattern: a generally positive or unimodal
response, where tall tree density declined under very low water
content (indicative of stress), but increased once a certain thresh-
old of soil moisture was surpassed (Fig. S6).

Implications for biomass estimates

At a regional and biogeographic scale, we compared our tall tree
density estimates with the potential AGB stock map produced by

Fig. 4 Relative prediction uncertainty for tall-tree density (height≥ 60m) across the Brazilian Amazon. Uncertainty is expressed as the standardized width
of the prediction interval (z score of pixel-level PI width from spatial cross-validation/predictive distribution). Thus, negative values indicate below-average
uncertainty, and positive values indicate above-average uncertainty. Legend colors denote nonoverlapping value ranges (classes), with warmer colors
indicating higher uncertainty and cooler colors indicating lower uncertainty. Biogeographic provinces are delineated for reference. Uncertainty is generally
low across most of the biome but is concentrated in the northeast, particularly in the Guianan Lowlands, Pará, and Roraima provinces. Gray marginal bars
at the top and right depict the latitudinal and longitudinal distributions of modeled tall-tree density.
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the same airborne LiDAR campaign as this study (Ometto
et al., 2023). As expected, a higher density of tall trees is strongly
associated with higher AGB (R= 0.5, P< 2.2e�16) (Fig. 5a).
These relationships are more pronounced where large tree density
is higher, specifically in the provinces of Roraima and Guiana
Shield, which also correspond to the largest AGB densities across
the biome. Interestingly, Xingu-Tapajós and Madeira have rela-
tively high AGB even in areas with a low density of tall trees.

However, in areas with higher densities of tall trees, the rela-
tionship is not linear and may indicate saturation at extreme den-
sity rates. For example, areas with low density of tall trees may
still have significant biomass levels due to the contribution of
smaller trees. The relationship between giant tree density and
AGB was also analyzed in different classes of tree density (0–50,
50–100, and 100–150 trees km�2) (Fig. 5b). We observed that,
across the biome, spatial patterns agree well and that our density
estimates are predictive of biomass even in biogeographic pro-
vinces with densities of up to 50 tall trees km�2. Notably, the

relationship between biomass and density is most significant in
areas with > 100 tall trees km�2 (Fig. 5b). The results reveal a
consistent increase in biomass with increasing tall tree density,
mainly in Roraima and the Guiana Shield. The classes with the
highest density (100–150 trees km�2) presented the highest med-
ian biomass values (40.0–50.0 Gt km�2) and the lowest variabil-
ity, while the lower density classes (0–50 and 50–100
trees km�2) exhibited more visible dispersion in biomass values,
reflecting structural heterogeneity.

Discussion

Patterns of tall tree density and environmental drivers

The density of tall trees is a valuable input for modeling large-
scale biological and biogeochemical processes and a prominent
component of ecosystem structure, governing elementary pro-
cesses such as carbon, water, and nutrient retention, competitive

Fig. 5 Relationship between aboveground biomass (AGB) and the density of tall trees (i.e. ≥ 60m) for the 900 LiDAR plots studied in the Amazon biome.
(a) Scatterplots colored by biogeographic province, showing AGB (Gt km�2) as a function of tall tree density (trees km�2). The black curve is a LOESS
smoother to aid visual interpretation. The inset colored annotations report province-specific linear model statistics (R and P ) used to quantify association
strength; linear regression lines are not plotted to avoid over-plotting and misleading linearity when the relationship is non-linear at higher densities (gray
shading representing confidence intervals (CI = 95%)). The top panel highlights density values <10 trees km�2, while the bottom panel shows the full
distribution. (b) Boxplots of biomass values across three tall-tree density classes (0–50, 50–100, and 100–150 trees km�2). The horizontal lines in the
boxplots represent the first, second (median), and third quartiles of the biomass data distribution. The vertical lines indicate the interquartile range of the
data.
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dynamics, and habitat suitability for many plant and animal spe-
cies (Slik et al., 2013; Bastin et al., 2018; Pinho et al., 2020).
Our results show that a complex combination of environmental
factors influences the density of tall trees in the Amazon. Clay-
rich soils, moderate precipitation and temperature, and low inci-
dence of lightning and strong winds create stable conditions for a
high density of tall trees. These findings are consistent with the
existing literature highlighting the importance of water availabil-
ity and stable climatic conditions for the growth and mainte-
nance of large trees (Venter et al., 2017; Gorgens et al., 2021).
Areas located in the northeastern portion of the biome, between
the provinces of Roraima and the Guiana Shield (c. �58° to
�51° longitude, and �4° to �3° latitude), have the highest local
density of tall trees across the Amazon. We estimate up to 140
individuals per km2 in these areas, where well-drained hilltops
terra firme forests predominate. These patterns confirm previous
results at the same scale for biomass (Ometto et al., 2023), maxi-
mum height (Gorgens et al., 2021), and diversity of large species
(De Lima et al., 2023). Furthermore, these areas are among the
most remote and least explored in the Amazon (Carvalho
et al., 2023), suggesting a possible role of a low current human
population density and the absence of roads or large infrastruc-
tures as factors controlling the occurrence of tall trees. Being iso-
lated areas with low anthropic pressure enhances the conservation
value of these areas.

Lightning and strong winds associated with convective storms
and cold fronts in the southern and western Amazon can cause
significant mortality of tall trees through damage, toppling, or
structural failure (Arellano et al., 2019; Cushman et al., 2021;
Ibanez et al., 2024). The relative height and canopy exposure of
giant trees makes them particularly vulnerable to these distur-
bances (Rifai et al., 2016; Cushman et al., 2021; Ibanez
et al., 2024). In regions where tall trees are scarce, this may reflect
selective mortality pressure exerted by recurrent windthrow or
lightning events, rather than an absence of disturbance. Such fil-
tering processes may help explain regional variations in tall tree
density across the biome. Recurrent increases in wind speed can
significantly modify density patterns in many regions (Marra
et al., 2014). Wind and lightning act as disturbance constraints
across tropical forests of varying canopy height. While exposure
and crown architecture likely amplify risk for tall trees (≥ 60 m),
empirical studies demonstrate that lightning is a leading cause of
large-tree mortality even in forests with 25–45 m canopies (Gora
et al., 2020; Yanoviak et al., 2020; Gora & Esquivel-
Muelbert, 2021). Since most trees in the biome are not tall (aver-
age canopy height 30–45 m, e.g. Lang et al., 2023), lightning and
wind are much less critical for forests with lower canopies
(Zoletto et al., 2023). In our maps, provinces with higher wind
speed and lightning frequency show lower modeled densities of
giant trees, consistent with these agents as limiting factors rather
than implying they are unimportant in shorter forests.

At local scales, topography and hydrological conditions play a
critical role in shaping the density of tall trees. Our results sup-
port previous findings that giant trees are more frequently asso-
ciated with elevated terrains, such as plateaus, which offer more
stable edaphic and hydrological conditions (Jucker et al., 2018;

Zuleta et al., 2020). By contrast, lowland areas, particularly those
< 50 m above sea level and close to river systems, experience fre-
quent or seasonal flooding that imposes oxygen and nutrient lim-
itations on root systems (Meinzer et al., 2001; Koch et al., 2004).
These conditions limit vertical growth by favoring species
adapted to flooding stress over those that invest in structural
height (Schöngart et al., 2002; Durgante et al., 2023). Moreover,
hydrological variability and sediment loads can lead to unstable
nutrient availability, further constraining the development of tall
trees (Koch et al., 2004; Bittencourt et al., 2020; Bartholomew
et al., 2022). Because tall trees have high energy and hydraulic
demands, particularly for transporting water and nutrients over
long vertical distances, any restriction in root oxygenation can
compromise their growth and survival (Domec et al., 2008;
Couvreur et al., 2018; Skiadaresis et al., 2021). Thus, lowland
and seasonally flooded environments tend to support tree com-
munities with shorter statures, better suited to mechanical and
physiological stability under these challenging conditions.

Our findings also indicate that clay and soil water content are
critical for the occurrence and density of giant trees in the Ama-
zon, as they directly influence nutrient availability and water sta-
bility, which are essential for the growth of these trees (Quesada
et al., 2011; Spanner et al., 2022). Soils with high clay content
have a higher cation exchange capacity, which allows the reten-
tion of essential nutrients such as calcium, magnesium, and
potassium, favoring the sustained growth of trees. In addition,
clay contributes to the formation of aggregates in the soil,
improving its structure and increasing water retention. In Amazo-
nian regions with clayey soils, giant trees’ density and biomass are
higher than in areas with sandy soils due to their water retention
capacity (Durgante et al., 2023). Soil water availability, especially
during dry periods, is crucial for the survival of these trees, and
clayey soils provide a stable source of moisture. However, other
studies suggest that in the tropics, higher soil fertility is often
associated with lower maximum canopy height (Muller-Landau
et al., 2021; Jucker & Ali, 2023). One proposed explanation is
that faster-growing plants in fertile soils may prioritize growth
over structural defenses or longevity, resulting in increased vul-
nerability to disturbances such as windthrow (Jackson
et al., 2021; Joswig et al., 2022; Durgante et al., 2023; Sanchez-
Martinez et al., 2025). While this growth–defense trade-off
hypothesis offers a compelling framework, especially in explain-
ing species-level differences in wood density and mortality risk, it
remains challenging to test directly and should be interpreted as a
conceptual model in need of further empirical validation.

In environments well drained with regular rainfall and defined
seasons, there is a constant supply of water in the soil, which is
essential for continued growth and for the maintenance of com-
plex physiological processes that require high levels of water, such
as transpiration and photosynthesis for many tall trees (Fig. S5b),
and this is directly related to the number of days with clouds or
days with few clouds (‘clear days’). An increase in cloudless days
indicates a greater incidence of sunlight and high temperatures,
which can increase the rate of photosynthesis, favoring tree
growth to a thermal tolerance threshold (Green et al., 2020; Sulli-
van et al., 2020).
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Although atmospheric drought – driven by increased tempera-
tures, clear-sky radiation, and reduced precipitation – can tem-
porarily enhance photosynthetic activity when water is abundant
(Aguirre-Gutiérrez et al., 2019; Green et al., 2020), prolonged
drought conditions increase the risk of hydraulic failure, particu-
larly in tall trees. Taller individuals are thought to be more vul-
nerable to xylem embolism due to longer water transport
pathways and higher evaporative demand under exposure to
intense solar radiation (Oliveira et al., 2019; Garcia et al., 2023;
Mattos et al., 2023). Indeed, Bennett et al. (2015) found a consis-
tent negative effect of drought on the growth and survival of large
trees at the global scale. However, it is important to note that this
pattern is not universal–studies such as (Fauset et al., 2012;
Zuleta et al., 2017) have shown that smaller trees can also exhibit
elevated mortality under drought conditions, depending on forest
structure, rooting depth, and competition for light and water.
Therefore, while tree height is a key factor influencing drought
vulnerability, drought-induced mortality patterns are context-
dependent, and shaped by the interaction of multiple structural
and environmental factors. On broader scales, climatic drivers
such as the number of clear days and precipitation seasonality
have also been linked to spatial patterns in tree density (Bruijn-
zeel et al., 2011; Wagner et al., 2016; Jiang et al., 2017; Ehbrecht
et al., 2021).

Importance of giant trees density for biomass stocks

The positive relationship between tall tree density and biomass
for the entire biome and biogeographic provinces highlights the
importance of giant trees, which play an essential role in biogeo-
chemical processes despite representing a small fraction of the
total trees (Bastin et al., 2018; Ali & Wang, 2021). For example,
in the tropics, Sullivan et al. (2020) showed that only 1% of trees
in tropical forests account for c. 50% of AGB. Slik et al. (2009,
2013) suggest that the impact of large trees (dbh ≥ 70 cm) on
AGB is, on average, 25.1% in South America and more than
two-thirds at the pantropical scale. These results are consistent
with the meta-analysis by de Lima et al. (2022) in the Amazon
biome, which highlighted that only one giant tree (dbh ≥ 70 cm)
could accumulate 82% of all stored AGB Mg ha�1. In general,
tall tree density maps can potentially characterize habitat hetero-
geneity directly (Tuanmu & Jetz, 2015; Bastin et al., 2018), so
canopy height has been classified as a high-priority biodiversity
variable to be observed from space (Lang et al., 2023). Therefore,
the density of tall trees can be used as a direct indicator of the
potential for carbon storage in tropical forests.

Our comparison between giant-tree density and LiDAR-
derived AGB should be interpreted as a relationship between two
structural metrics derived from canopy height, rather than as an
independent validation. The AGB surface is modeled from top-
canopy height calibrated with field plots (Ometto et al., 2023),
whereas giant-tree density reflects the upper-tail exceedance of
the height distribution (height ≥ 60 m). This shared dependence
on LiDAR height introduces partial circularity, making a positive
association unsurprising. We therefore avoid causal language and
frame the result as co-variation within canopy structure: AGB

largely captures stand-level central tendency of height and bio-
mass, while giant-tree density captures the frequency of extreme
canopy elements. Future work will quantify the incremental
information provided by the exceedance metric (e.g. partial corre-
lations or SEM controlling for mean or P90 height) and, where
possible, confront both layers with fully independent field-based
biomass estimates.

Our study did not test the effect of local processes influencing
the density of tall trees on AGB. However, a possible explanation
for the high AGB in biogeographic provinces dominated by large
trees may be related to the reproductive strategy of wind dispersal
of some species, that is they need to be tall and emergent to effec-
tively disperse their seeds and exceptionally maximize their geo-
graphic influence (Slik et al., 2013, 2024). In the Amazon, the
most abundant larger species (dbh ≥ 70 cm) were Goupia glabra,
D. excelsa, Aspidosperma excelsum, Couratari guianensis,Manilkara
huberi, Dipteryx odorata, Tabebuia serratifolia, Bertholletia excelsa,
and Caryocar villosum (de Lima et al., 2022). These species repre-
sented c. 20% of the individuals sampled in 240 plots inventoried
in the eight biogeographic provinces in the biome. Therefore,
although environmental controls influence maximum tree height
and the diversity of large species at a regional scale (Gorgens
et al., 2021; De Lima et al., 2023), this dominance is also driven
by species-specific traits that provide the ability to reproduce and
support large biomass stocks at a local scale (Loubota Panzou
et al., 2018). Different strategies in seed dispersal are linked to
maximum tree height and aggregation patterns (Wunderle, 1997;
Clark et al., 2005; Slik et al., 2024). In particular, wind-dispersed
species such as D. excelsa, A. excelsum, and T. serratifolia show
more aggregated patterns than animal-dispersed species such as
B. excelsa and M. huberi, which may affect large tree density and
AGB at the local scale, as animals are more effective at dispersing
seeds in a more uniform spatial distribution (Wright
et al., 2003). This finding emphasizes the importance of includ-
ing species traits and changes in species composition as explana-
tions for AGB gradients in tropical forests (Slik et al., 2009,
2013; Loubota Panzou et al., 2018).

Another critical factor at the local scale is gap formation, which
provides opportunities for seed germination and recruitment,
especially in areas where light is a limiting resource. Higher den-
sities of tall trees produce more significant gaps when they fall
(Arasa-Gisbert et al., 2021; Reis et al., 2022), although the fre-
quency and size of these gaps are also influenced by disturbances
such as wind and lightning (Hubbell et al., 1999; Cramer
et al., 2007; Cushman et al., 2021). A relatively low proportion
of significant gaps is observed in the provinces of Roraima and
Guiana Shield, where we found the highest densities of tall trees
and stored biomass (probably caused by the low mortality rate of
large trees caused by strong winds and lightning). These results
suggest that low gaps may limit the recruitment of tall trees, con-
tributing to their aggregated patterns and more prominent AGB
stock over time, as germination and recruitment may be limited
to fewer areas with more significant gaps. For example, clusters of
D. excelsa and T. serratifolia can be found in an aggregated form,
likely due to a combination of anemochoric seed dispersal, a
potential dependence on light for germination and seed

� 2025 The Author(s).

New Phytologist� 2025 New Phytologist Foundation.

New Phytologist (2026) 249: 152–168
www.newphytologist.com

New
Phytologist Research 163

 14698137, 2026, 1, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.70634 by C

apes, W
iley O

nline L
ibrary on [16/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



recruitment, as well as local topography (lowlands vs plateaus)
that favor their aggregation patterns (Lewis et al., 2017; Ali
et al., 2020; de Lima et al., 2022).

The results presented here reinforce the hypothesis that preser-
ving areas with a high density of giant trees is crucial to maintain-
ing ecosystem services associated with carbon storage. Including
tall tree density as a critical variable in biomass estimation models
can substantially improve the accuracy of these estimates. These
models need to better account for the role of these large trees,
and airborne LiDAR surveys are practical tools to detect and
quantify large trees and quantify their contributions to biomass
stocks (Asner et al., 2010; Coomes et al., 2017). This is especially
interesting in difficult-to-access regions with limited ground-
based measurements. The observed relationship suggests that the
loss of tall trees due to deforestation or forest degradation can sig-
nificantly reduce biomass stocks. Inadequate management that
does not consider the conservation of these trees can have drastic
implications for the carbon budget, amplifying the impacts of
glasshouse gas emissions.

Broader implications and concluding observations

The main findings of this study are significant for understanding
the ecology and conservation of giant trees in the Amazon biome.
We also detail some of the main limitations of the study that can
be seen in notes S1. Mapping tall tree density provides valuable
insights into forest structure and health, which are crucial for bio-
diversity conservation and climate change mitigation. The data
generated can inform forest management and conservation strate-
gies, helping to identify areas in need of protection or restoration.
Furthermore, by linking tree density to environmental variables,
the study can reveal the key factors influencing the distribution
and health of tall trees and offers a beacon of hope in the face
of climate change and deforestation, providing a roadmap
for more effective conservation efforts. Practical application
of the data must be accompanied by a deep understanding
of ecological interactions and an adaptive approach to environ-
mental management.

The relationship between tall tree density and local factors,
such as soil characteristics, dispersal strategies, and gap formation,
is a promising area for future investigation. The hypothesis that
local density correlates with reproductive success and recruitment
can be tested in different soil types and terrains. Furthermore,
exploring density patterns across topographic gradients and relat-
ing them to climatic and edaphic variables can provide insights
into the interaction between regional and local factors. Regional
factors, such as wind and lightning, shape tall tree density pat-
terns in the Amazon. However, they are refined at local scales by
processes such as dispersal, topography, and gap formation.
These results highlight the importance of integrating multiple
scales of analysis to understand the ecology of giant trees in the
Amazon and provide support for their conservation under a cli-
mate change scenario.

This study contributes to the discussion on the relevance of
approaches based on high-resolution data, such as those provided
by LiDAR sensors, to better understand tropical forests’ structural

dynamics. Furthermore, combining tall tree density data with cli-
mate change projections could provide insights into the future of
carbon storage in the Amazon. Considering their disproportionate
importance in biomass stocks, conserving tall trees should be a
priority in global conservation initiatives such as REDD+ (Redu-
cing Emissions from Deforestation and Forest Degradation).
Investments in remote monitoring and forest inventories that inte-
grate metrics from emerging trees can improve understanding of
forest dynamics and support global mitigation strategies.

Although this study does not aim to model the potential
impacts of climate change, it is concerning to note that several
climate variables strongly associated with giant tree density may
undergo significant changes in future climate crisis scenarios.
Environmental changes induced by rising temperatures are
already being observed. Changes in environmental variables asso-
ciated with disturbances can significantly negatively impact the
density and survival of large trees. For example, the frequency of
anomalous events, such as increased storms and lightning strikes,
has already been observed (Dale et al., 2001; Seidl et al., 2017;
Bauman et al., 2022; Kamimura et al., 2022). Furthermore, in
the current scenarios projected by the sixth climate report of the
Intergovernmental Panel on Climate Change (IPCC), the average
global temperature is estimated to increase by 1.5°C between
2030 and 2052. If temperature continues to increase and precipi-
tation levels decrease, drought scenarios in the Amazon will
become more frequent, directly impacting all biodiversity (Flores
et al., 2024). Even in this scenario, only c. 15% of the Brazilian
Amazon is protected by conservation units, covering only c. 58%
of the remaining vegetation. Given the ecological importance of
giant trees, understanding the effects of climate change on density
patterns is critical and it should be explored quickly at finer scales
within the Amazon. This knowledge is critical to refining conser-
vation perspectives in a changing world – for example, to what
extent are protected areas in the Amazon currently susceptible to
impacts induced by climate disruptions, and how can the giant
trees withstand or respond to these changes? Efforts to under-
stand how deforestation and climate change interact and mitigate
their impacts are urgently needed in light of the high and increas-
ing rates of deforestation in the Brazilian Amazon, which directly
threaten sanctuaries of ancient trees throughout the biome.
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