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Abstract— Zinc sulfide (ZnS) is a wide band gap
semiconductor with numerous technological applications in
optical devices. In this study, nanostructured Ag-doped ZnS
samples were prepared by solvothermal method. Pure-ZnS
sample exhibits cubic symmetry of sphalerite structure whereas
samples with higher values of Ag content exhibits coexistence of
sphalerite structure and wurtzite structure with hexagonal
symmetry. Photoluminescence spectra present typical four
emissions ascribed to Zn and S vacancies, Zn and S interstitials
for ZnS host matrix. As the Ag content increases, the relative
intensity increases for red-orange emissions and an additional
emission is observed, allowing a tunable photoluminescence
emission with Ag-doping.

Keywords—ZnS, Zinc sulfide, Ag-doped, silver,
Pphotoluminescence, solvothermal method, tunable color.

1. INTRODUCTION

II-VI inorganic semiconductors like ZnO, SnO., TiO,
CdS, CdSe, ZnSe, and ZnTe are well-known for their
interesting luminescence, magnetic, and electrical properties
[1-3]. Among these, zinc sulfide (ZnS) is another notable II-
VI inorganic semiconductor. ZnS has garnered significant
attention due to its fundamental physical properties,
versatility, non-toxicity, chemical stability, and potential for
numerous technological applications [1-3]. With a wide band
gap ranging from 3.7 to 3.9 eV and a high exciton binding
energy of 40 meV, ZnS finds extensive use in various optical
devices, including: ultraviolet light-emitting diodes, flat panel
display, lasers, photodectors, phosphor in electroluminescent
devices, scintillators and solar cells [1-3]. Moreover, ZnS
compounds also show activity in the photodegradation of
organic materials since trapped holes originated from surface
defects on the material.

Given its wide band-gap semiconductor behavior, zinc
sulfide (ZnS) readily accommodates various metal ions as
luminescent centers, which can improve or modify its
structural and optical performance [1-3]. Introducing dopants
or impurities creates discrete energy levels within the intrinsic
quantum energy levels of ZnS. This, in turn, enhances the host
semiconductor's optical, electronic, and magnetic properties.
Researchers have successfully incorporated a range of metal
ions, including Mn?*, Cu?", Pb?*", Ag®, Cr**, Ni**, and Eu**, into

This study was supported by FAPESP (through projects 2013/12993-4 and
2024/22584-9) and CNPq (473568/2013-6 and 314702/2023-7) funding
agencies.

the ZnS lattice [1-3]. The primary goal of this doping process
is to modulate ZnS luminescence properties by forming
various energy levels within the band gap of the host matrix.

Therefore, the photoluminescence emission can be tuned
and tailored using the appropriated doping ion. Thus, the main
aim of this study was to investigate the effect of Ag-doping on
the photoluminescent properties of ZnS host material.
Samples of Ag-doped ZnS material (ZSA) were prepared
using solvothermal method, which stands out as a particularly
advantageous route for synthesizing materials like ZnS. It
operates at relatively low temperatures and utilizes
inexpensive and low-toxicity precursors. This approach also
simplifies the incorporation of metal ions, such as silver, into
the ZnS lattice.

II. EXPERIMENTAL PROCEDURE

In this study, Ag-doped ZnS (Zn;.xAgxS) nanoparticles,
were synthesized with silver concentrations of x = 0.00
(labeled as ZnS), 0.01 (ZSA1), 0.05 (ZSAS) and 0.10 (ZSA10)
using a solvothermal method. This approach, essentially based
on a chemical co-precipitation at room temperature, offers
distinct advantages over other preparation techniques,
including precise stoichiometry control, high purity, and
excellent homogeneity of the resulting particles [3]. For the
synthesis, zinc dichloride (ZnCl, — Aldrich, 98%), silver
nitrate trihydrate (AgNOs — Aldrich, 99%), and thiourea
(HoNCSNH» — Aldrich 99%) were used as reagents. These
precursors were dissolved in ethylene glycol (CoHsO2>— Synth
99.5%). Subsequently, we added a sodium hydroxide solution
(NaOH- Vetec, 97%) dropwise before transferring the
mixture to a sealed 110 mL Teflon autoclave. The precursor
solutions underwent heat treatment at 140 °C for 30 minutes,
with a heating rate of 10 °C/min, under constant stirring.
Following the heat treatment, the autoclave was allowed to
cool naturally to room temperature. Finally, the precipitated
powders were washed multiple times with deionized water
until a neutral pH was achieved. The powder samples were
then dried at 80 °C for 12 hours.

Room-temperature X-ray diffraction (XRD) analysis was
performed with measurements using a Rigaku Ultima 4
powder diffractometer. This instrument, configured in a 6—260
geometry, was equipped with a rotating anode X-ray source
emitting Cu-Ko radiation (A=1.542 A) and a scintillation
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Fig. 1. X-ray diffraction patterns for ZSA samples.

detector. Data were collected with 0.02° step size and a 5-
second dwell time per step. We collected room-temperature
photoluminescence spectra using a Thermal Jarrel-Ash
Monospec monochromator coupled with a Hamamatsu R446
photomultiplier. A krypton ion laser (Coherent Innova), set to
an exciting wavelength of 350.6 nm and an output of 200 mW,
was used as the excitation source.

III. RESULTS AND DISCUSSION

XRD patterns fot ZSA samples are presented in Fig. 1. As
can be seen in this Fig., all samples crystallized with
broadened diffraction peaks relative to a nanoscaled structure,
in agreement with reports at the literature of ZnS based
samples prepared with the same route [4]. For ZnS and ZSA1
samples, three peaks are evidently observed at 28.9°, 48.7°
and 56.9°, which are indexed to (111), (220) and (311)
diffraction planes, respectively, of the sphalerite (zinc blend)
structure with F-43m (216) space group [4]. As the Ag content
increases, additional peaks are observed and its intensity is
augmented, indicating the coexistence of two crystalline
phases at least. The peaks positioned at 26.9°, 28.4°, 30,4°,
38°,47.6°, 51,6° and 56.5° correspond to (100), (002), (101),
(102), (110), (103) and (112) diffraction planes of the wurtzite
structure, respectively, with P63mc (186) space group [4].
Other peaks with minor intensity are also observed; for
example, in the range 32° — 38°, which can be attributed to
AgS; spurious compound. The results observed in Fig. 1 infer
that the incorporation of Ag precursor during synthesis
process, as well as the formation of S vacancies due to the
heterovalent substitution (Ag® for Zn?>"), enable the
crystallization and nucleation of the wurtzite structure, which
is less stable in lower temperatures compared to the sphalerite
structure [5],

Photoluminescence spectra for ZnS, ZSA1l, ZSAS and
ZSA10 samples are presented in Fig. 2, Fig. 3, Fig. 4 and Fig.
5, respectively. All samples exhibit broad and asymmetrical
spectrum, with multiple peaks, suggesting the involvement of
various luminescence centers in its radiative processes. In
order to understand the ZnS photoluminescence curve, a
Gaussian curve fitting were applied, deconvoluting it into four
radiative processes, which are labeled as (1), (2) (3) and (4) in
Fig. 2 and have been attributed to zinc vacancies (Vz,), sulfur

vacancies (Vs), interstitial zinc (Zn;) and interstitial sulfur (S;),
respectively [3,6].
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Fig. 2. Photoluminescence spectra for ZnS sample.
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Fig. 3. Photoluminescence spectra for ZSA1 sample.
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Fig. 4. Photoluminescence spectra for ZSAS5 sample.
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Due to the larger ionic radius of S compared to Zn,
interstitial S introduces greater strain, resulting in its electron
levels having smaller binding energy and being closer to the
valence band than interstitial Zn levels are to the conduction
band. Similarly, S vacancy states are nearer the conduction
band edge than Zn vacancy states are to the valence band edge
[6]. When compared to the photoluminescence spectra
reported at the literature, the spectrum in Fig. 2 for ZnS sample
shows a red-shift, which is, therefore, likely due to the
presence of both sulfur and zinc vacancies [6].

As the Ag™ ions are incorporated to the ZnS host matrix,
the Gaussian deconvolution is more reliable with an additional
peak in orange-red region (labeled as (5)) besides the four
emissions in blue-yellow region of the spectra. The position
of these four emissions remains practically constant, with an
increase of the relative intensity for the emissions ascribed to
defects originated by Vz, and Vs. This result is consistent with
the fact that the heterovalent substitution of Ag” ions for Zn*"
ions induces a formation of Vs. The red-orange emission has
been ascribed to a shallow donor-deep acceptor
recombination, where the shallow donor center is an Ag ion
substituting for Zn and the deep acceptor level is a defect
complex at S sites [7].

The CIE coordinates (x, y) [8] for ZSA samples were
calculated from the emission spectra and CIE chromaticity
diagram and chromaticity coordinates are presented in Fig. 6.
As expected for a photoluminescence spectrum composed by
four broadened emissions, CIE coordinates for ZnS sample
represent bright shades in the blue color emission. As the Ag
content increases, the bright shades change into red color
direction. This result is explained in terms of the emissions in
red-orange region of photoluminescence spectra whose
relative intensity is increased with Ag content as depicted in
Figs. 3,4 and 5.

IV. CONCLUSIONS

In this study, nanostructured ZSA samples were prepared
by solvothermal method. Pure ZnS sample exhibits cubic
symmetry of sphalerite structure whereas samples with higher
values of Ag content exhibits coexistence of sphalerite
structure and wurtzite structure with hexagonal symmetry.
Photoluminescence spectra present typical four emissions
ascribed to Vz,, Vs, Zn; and S; for ZnS host matrix. As the Ag
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Fig. 6. CIE chromaticity diagram for ZSA samples.

content increases, the relative intensity increases for red-
orange emissions and an additional emission is observed,
which has been attributed to defects closer de conduction band
due to Agzn. Thus, tunable photoluminescence emission is
observed with Ag-doping, as depicted by CIE coordinates.
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