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The number o undamental
constants rom a spacetime‑based
perspective
George E. A. Matsas1,5*,Vicente Pleitez1,5, Alberto Saa2,5 & Daniel A.T.Vanzella3,4,5

We revisit Du, Okun, andVeneziano’s divergent views on the number o undamental constants
and argue that the issue can be set to rest by having spacetime as the starting point.This procedure
disentangles the resolution in what depends on the assumed spacetime (whether relativistic or not)
rom the theories built over it. By defning that the number o undamental constants equals the
minimal number o independent standards necessary to express all observables, as assumed by Du,
Okun, andVeneziano, it is shown that the same units fxed by the apparatuses used to construct the
spacetimes are enough to express all observables o the physical laws defned over them.As a result,
the number o undamental constants equals one in relativistic spacetimes.

Keywords Physical units, Fundamental constants, Du-Okun-Veneziano controversy

In 2002, Du, Okun, and Veneziano published an intriguing paper exposing their divergent views on the number 
of fundamental  constants1. Although this paper has attracted considerable attention, no clear-cut resolution for 
this issue has been presented yet. Let us stress that this is not a false controversy whose answer is a question of 
opinion. In order to make it indisputable, we rephrase the problem into an “operational question” (see question 
in display further in this section). It is on this one-answer (basic) question that Du, Okun, and Veneziano 
(DOV) disagree, and this is what the present article aims to resolve. Although science progresses in the middle 
of unresolved controversies, it is imperative to step back from time to time to tie up the loose ends le in the 
way before proceeding.

Firstly, we must concord what the quest for the “number of fundamental constants” is all about. In the abstract 
of Okun’s  chapter1, we nd

“It is necessary and sucient to have three basic units in order to reproduce in an experimentally 
meaningful way the dimensions of all physical quantities.”

In the abstract of Veneziano’s  chapter1, we have:

“I summarize my previous work on the question of how many fundamental dimensionful constants 
(fundamental units) are needed in various theoretic frameworks such as renormalizable QFT...”

and, nally, in footnote 5 of Du ’s  chapter1, we read

“I take the number of dimensionful fundamental constants to be synonymous with the number of 
fundamental (or basic) units.”

e connection established by DOV between the “number of dimensionful fundamental constants” and the 
“number of fundamental units” stems from the understanding that we eventually only compare numbers in 
physics. In this sense, DOV wonders about the minimal number of dimensional constants (or units) necessary 
to convert all physical quantities into dimensionless numbers. For instance, the dimensionful electron mass, 
me , can be converted into a (comparable) number provided distinct laboratories share some common standard:

1031 me/1 kg ≈ 9.
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Indeed, the connection between the “number of dimensionful fundamental constants” and the “number of 
fundamental units” is endorsed by modern metrology since, aer the 2019 revision, each basic unit of the 
International System (SI) was dened by xing the exact value of one constant of  nature2. Were all the SI basic 
units necessary to express the physical observables, the answer to the number of the fundamental constant (in 
DOV’s sense) would be seven (one fundamental constant for each unit), although we know that this is not the 
case: the SI serves multiple communities and is guided by functionality instead of economy.

Hence, let us combine (i) DOV’s identication of the “number of dimensionful fundamental constants” with 
the “number of fundamental units” and (ii) Du ’s suggestion of sticking with an operational denition, and pose 
the following question to be answered in order to resolve the contention:

What is the minimum number of apparatuses (or standards if one prefers) that a cosmic factory must build 
and distribute all over the Universe to allow distinct labs to compare the values of the observables?

We take as an “apparatus” any device that xes the “units” needed to express the observables. For example, the (i) 
“International Prototype of the Meter” (IPM), and the “International Prototype of the Second” (IPS) [associated 
with 9,192,631,770 periods of the radiation corresponding to the transition between two hyperne levels of 
the ground state of the cesium-133 atom] are scales or units xed by bona de rulers and clocks (apparatuses), 
respectively. (e specications clocks and rulers must satisfy to be eligible as bona de apparatuses are presented 
in Sect. "Galilei and Minkowski spacetimes"). e existence of bona de apparatuses is not an option since they 
are demanded to make sense of the underlying spacetimes themselves. is central observation was overlooked in 
the past, leading to most confusion.

We emphasize that being an one-answer question, the query above pertains to the domain of physics. Okun 
argues that the answer for the question in display above is 3 (associated with the usual 3 MKS units), Veneziano 
favors 2 (associated with the units of a standard ruler and clock), and Du does not x any upper bound for the 
number of standards, contenting himself with choosing dierent standards depending on the occasion.

Our strategy to answer the question above is to start from the spacetime concept (whether relativistic or not), 
over which all other theories are built. To construct a spacetime, some apparatuses are required. Minkowski 
and other relativistic spacetimes only demand the existence of bona de clocks, while Galilei spacetime also 
needs rulers. e units xed by these apparatuses account for expressing spacetime observables, posing a lower 
bound for the number of dimensional units. Interestingly, we show that these units are also sucient to express the 
entire set of observables of the physical laws constructed in the corresponding spacetimes. As a result, the number of 
fundamental constants (in DOV’s sense) equals two in Galilei spacetime and one in relativistic spacetimes. 

e paper is organized as follows. In Sect. "Galilei and Minkowski spacetimes", Galilei and Minkowski 
spacetimes are revisited, emphasizing that the denition of Galilei spacetime demands “bona de” rulers and 
clocks while for Minkowski spacetime (and other relativistic ones) bona de clocks suce. ose apparatuses 
provide the space and time units that account for expressing all spacetime observables. In Sect. "Recuperating 
the MKS system from the SI" we run history in reverse and recall how the SI units can be reduced to the 
MKS system that suces to express all observables oTime to rule us all in relativistic spacetimesf the physical 
laws. Although DOV do not dispute that MKS is enough to express all observables, we have included this section 
for completeness. In Sect. "Two units to rule us all in Galilei spacetime", observables of the physical laws in Galilei 
spacetime are shown to be expressible solely in terms of space and time units. In Sect. "", observables dened 
in Minkowski spacetime are shown to be expressible in terms of units of time only. In Sect. "One fundamental 
constant", we fulll the program and connect the single unit necessary to express all observables in relativistic 
spacetime with one “fundamental constant.” Our closing remarks are in Sect. "Closing remarks". Finally, in App. A 
we present a coordinate-oriented derivation of Eq. (4) and in App. B we oer a detailed (special-relativistic) 
derivation of Eq. (18).

Galilei and Minkowski spacetimes
Galilei and Minkowski spacetimes are sets of events satisfying certain conditions. ey are both four-dimensional, 
homogeneous, spatially isotropic, and rigid (meaning here that they have no dynamical degrees of freedom). 
For every event O , let us dene the

• past of O as the subset of events P that O can be reached from ( P ≺ O),
• future of O as the subset of events F  that can be reached from O ( F ≻ O).

Moreover, Galilei and Minkowski spacetimes are time-oriented in the sense that

Galilei and Minkowski spacetimes demand the existence of “bona de” clocks. Bona de clocks are pointlike 
apparatuses that ascribe the same real number (time interval) to any given arbitrarily-close-causally-connected 
pair of events they visit regardless of the state of motion and past history of the  clocks3. Next, the properties that 
characterize each spacetime are separately summarized.

Galilei spacetime
It follows from above that

(1)P ≺ F ⇒ F ⊀ P .

(2)O1 ∼ O2 ⇔ O2 ∼ O1,
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where “ ∼ ” was used as a shortcut for  (neither precedes nor succeeds). Equation (2) supplied with the nontrivial 
property of Galilei spacetime,

allows the foliation of Galilei spacetime in equivalence classes  t ( t ∈ R ) of events that are neither to the future 
nor to the past of each other, and every event will belong to one, and only one, t . us, for every event O , let 
us dene the

• present of O as the subset of simultaneous events S that belong neither to the past nor to the future of O 
( S ∼ O).

Each t of Galilei spacetime is a 3-dimensional Euclidean space, (R3, δ) , where δ stands for the Euclidean metric. 
To make sense of the Euclidean spaces �t = (R3, δ) , Galilei spacetime must be endowed with bona de rulers. 
Bona de rulers are identical one-dimensional straight segments as dened by Euclid’s axioms, assigning the 
same real number to every given pair of simultaneous events they visit regardless of their states of motion and 
past histories.

In order to calibrate the rulers, such that the units are the same in dierent t , one can use congruences of 
inertial observers. A congruence of observers is a set of observers covering the spacetime such that each event is 
visited by one, and only one, observer. A congruence of inertial observers is composed of freely-moving observ-
ers as witnessed by comoving “inertiometers.” An inertiometer may be realized through a small cubic box with 
a mass at the center held by six identical springs attached to the cube faces. An observer is inertial if, and only 
if, the mass of the inertiometer lies at rest in the center. It is a property of Galilei spacetime that observers of a 
given inertial congruence lie still from each other at a constant distance.

Finally, bona de clocks (as dened above) are necessary to make sense of the following nontrivial property 
of Galilei spacetime: the time interval, t2 − t1 , as measured by any (inertial or non-inertial) observers between 
any events P ∈ t1 and F ∈ t2 ( P ≺ F  ) is the same. Once some hypersurface is chosen to be 0 , the other 
ones, t , are labeled accordingly.

In practice, apparatuses able to accurately count 9 192 631 770 oscillations of the radiation emitted in the 
transition between two hyperne ground states of cesium-133 fulll all the requirements to be considered bona 
de clocks for all actual purposes, and the corresponding time-lapse is dened to be 1 s . Similarly, space seg-
ments traced by light rays along 1/299 792 458 s can be considered bona de rulers, and the corresponding size 
is dened to be 1 m . (Whether nature realizes perfect bona de clocks and rulers is a separate issue, which we 
shall briey touch on at the end.)

So far, we have required bona de rulers and clocks to build up Galilei spacetime. Let us move on and show that 
bona de clocks suce to dene Minkowski spacetime. (We will focus on the Minkowski spacetime for simplicity 
since the same conclusions reached for it will hold in any relativistic spacetimes.)

Minkowski spacetime
Although Minkowski spacetime complies with Eq. (2) it does not with Eq. (3) (see Fig. 1). is precludes us 
from sorting out its events in equivalence classes of simultaneous events as in Galilei’s case. Instead, Minkowski 
spacetime roots on distinct presumptions:

• Galilei’s principle of relativity, namely, that identical experiments conducted by distinct congruences of inertial 
observers lead to equivalent results.

• e causality surfaces consisting of the boundary separating events that can from those that cannot be reached 
from each event P are absolute (meaning that this is a property of the spacetime itself).

e second postulate can be rephrased in a more familiar way using light rays. We avoided doing so to empha-
size that the denition of relativistic spacetimes does not depend on the existence of massless elds. Regarding 
light rays, the second postulate can be rephrased as follows: “Worldlines of light rays in the vacuum are absolute 
(meaning they do not depend on the emitter’s worldline).”

As a consequence, the structure of Minkowski spacetime turns out to be (R4, η) , where η stands for the 
spacetime metric. To make sense of it, bona de clocks dened above are all one needs. To see it, let it be two 
arbitrary events, P and Q , and some inertial congruence C — see Fig. 2. Now, suppose that some observer O of 
congruence C passes through P . is observer emits a light ray at event R to hit event Q . e ray is then reected 
back and received by O in event S . Observer O uses bona de clocks to measure the proper time intervals �τRP 
and �τPS between events R-P and P-S , respectively. Naturally, some other inertial observer O′ of some other 
congruence C′ going through P and repeating the same procedure will obtain, in general, other values �τR′P 
and �τPS ′ . However, Minkowski spacetime is characterized by the fact that the product of these time intervals is 
an invariant:

(In general relativistic spacetimes, this is also true for every pair of events P and Q belonging to small enough 
neighborhoods of each other.)

In order to put in contact Eq. (4) with the usual Minkowski line element in Cartesian coordinates, let us dene 
the spatial distance between P and Q with respect to observer O (in light-seconds) as

(3)(O1 ∼ O2 and O2 ∼ O3) ⇒ O1 ∼ O3,

(4)�τRP�τPS = �τR′P�τPS ′ .
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Let us also dene a time interval between P and Q as the time interval between P and the (arbitrarily dened) 
simultaneous-with-respect-to-O event, here denoted by Qs , located at the middle point between events R and S 
(on the worldline of observer O):

(5)�ℓO ≡ (�τRP + �τPS )/2.

Fig. 1.  e gure illustrates three events in Minkowski spacetime. Event B is neither in the past nor in the 
future of A , A ∼ B , and event C is neither in the past nor in the future of B , B ∼ C . Despite this, C  ∼ A . 
Indeed, C is in the future of A : C ≻ A.

Fig. 2.  Let a pair of events P and  Q and two arbitrary inertial observers O and O′ passing through P . Here 
P ∼ Q but we could have chosen P  ∼ Q , as well. Observers emit light rays at event R and R′ , respectively, 
to be received at Q , where they are reected back reaching the corresponding observers in S and S ′ . In this 
illustration, R ≺ P and P ≺ S , and, hence, both time intervals, �τRP and �τPS , are positive denite and, 
similarly, for �τR′P and �τPS ′.
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Analogous denitions hold to O′ . Using them to rewrite Eq. (4), one obtains

which reects the invariance of the line element of Minkowski spacetime in Cartesian coordinates (t, x, y, z):

Denitions (5), (6) might seem articial, but they only reect the arbitrariness in the choice of the Cartesian 
coordinates. (Note that �ℓO , as well as x, y, z, is dened to have time units, say, seconds, although it is usual to 
add the unnecessary “light-” prex to them.)

us, embracing a given spacetime automatically presupposes the existence of the apparatuses needed to 
dene it, with respect to which the corresponding spacetime observables are expressed. In particular, in relativis-
tic spacetimes (taken for granted by DOV), bona de clocks are all that a cosmic factory of standards must build 
and deliver to allow distant experimentalists to measure and compare the value of any spacetime observables as, 
e.g., the area of black holes. We will show in the following that the units xed by these apparatuses are enough to 
express not only spacetime observables but all observables.

Recuperating the MKS system rom the SI
Although DOV do not dispute that MKS is enough to express all observables, this section was included for 
completeness and further reference. us, let us run history in reverse and recall how the SI units can be reduced 
to the MKS system.

e SI has seven basic units: meter, second, kilogram, kelvin, ampere, candela, and mol. Its birth can be traced 
back to 1960. Aer the last revision in  20194, the units of SI were dened by xing the exact numerical values of 
seven  constants5–7: the speed of light in vacuum c, the transition frequency between two hyperne ground states 
of cesium-133 �νCs , the Planck constant h, the elementary charge e, the Boltzmann constant kB , the Avogadro 
constant NA , and the luminous ecacy Kcd . If all seven SI units were needed to express the observables of nature, 
then, according to the criterion stated in the Introduction, the number of fundamental constants would be seven 
(one for each unit), but this is not so.

The mol equals a natural number and will not concern us here. By the same token, 
1 cd ≡ (1/683) kg · m2 · s−3/sr is simply a unit of power per solid angle for a green-light source emitting at a 
frequency of 540 × 1012 s−1 (which approximates the frequency of maximum sensitivity of the human eye). us, 
let us move on and focus on the kelvin and ampere units.

Aer the 2019 revision, the kelvin was dened by xing the exact value of the Boltzmann constant. is also 
claries the role played by the Boltzmann constant as an energy-to-temperature conversion factor:

Had the scale of thermometers been xed in units of energy from the start, the Boltzmann constant would have 
been needless. at said, one can eliminate the kelvin unit by rewriting the physical laws in terms of kBT , S/kB, . . . 
rather than temperature T, entropy S, . . . , respectively; i.e. kB should escort the thermodynamic variables to 
convert their units into MKS. Clearly, this would not impact the physical content of the four laws of thermody-
namics and, consequently, the derived ones. For example, the Clapeyron equation for perfect gases would read 
PV = N(kBT), where P, V, N, and kBT would stand for pressure, volume, number of molecules, and temperature 
expressed now in units of energy, respectively.

e situation is quite analogous if one replaces the kelvin with the ampere and the Boltzmann constant with
the Coulomb one. Aer the 2019 revision, the fundamental charge e was xed to have an exact magnitude, while 
the Coulomb constant ke was determined  experimentally8. Although convenient, this is conceptually as good 
as the practice adopted before 2019 when the exact value of ke was dened, while the value of e was experimen-
tally determined. us, similarly to the Boltzmann constant, the Coulomb constant is an MKS unit-to-ampere 
conversion factor:

Conversely, any quantities that involve the ampere unit may be combined with the Coulomb constant to be writ-
ten in terms of MKS units only. For instance, the value of the fundamental charge in MKS units is

and the well-known electrostatic force between two charges Q1 and Q2 (expressed in Coulomb units) set far apart 
by a distance L = const (expressed in meter) would be written as

where Qi ≡ k
1/2
e Qi (i = 1, 2) is the charge written in MKS units: kg1/2 · m3/2 · s−1 . Equation (12) is how the 

electrostatic force reads in Gaussian–centimeter-gram-second (G-CGS) units, wherein the G-CGS system the 
unit of electric charge is statcoulomb ≡ g1/2 · cm3/2 · s−1 . (We address the reader to the Appendix of Ref.9 for 
a more comprehensive discussion. In particular, Jackson emphasizes in the footnote of p. 776: “e question of 

(6)�tO ≡ (−�τRP + �τPS )/2.

(7)−(�tO)2 + (�ℓO)2 = −(�tO
′

)2 + (�ℓO
′

)2,

(8)ds2 = −dt2 + dx2 + dy2 + dz2.

(9)1.380 649 × 10−23 kg · m2 · s−2 ×k−1
B

−→ 1 K.

(10)9.480 270 × 104 kg1/2 · m3/2 · s−2 ×k
−1/2
e

−→ 1 A.

(11)k1/2e e = 1.518 907 × 10−14 kg1/2 · m3/2 · s−1

(12)F = Q1 Q2/L
2,
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whether a fourth basic dimension like current is introduced or whether electromagnetic quantities have dimensions 
given by powers (sometimes fractional) of the three basic mechanical dimensions is a purely subjective matter and 
has no fundamental signicance.”)

Two units to rule us all in Galilei spacetime
In the previous section, we have recalled that the MKS system suces to express all observables of the physical 
laws. Now, let us show that all observables of our theories dened in Galilei spacetime can be solely expressed in 
terms of time and space units of the bona de clocks and rulers needed to dene the spacetime itself.

Before 2019, the kilogram was dened by a cylinder of platinum-iridium in the custody of the International 
Metrology Center at Sèvres in France. Aer 2019, the kilogram was dened by xing the exact value of the Planck 
constant: h = 6.626 070 15 × 10−34J · s while the value of the Newtonian constant G was measured. Although this 
is understandable from a metrological perspective, it would be conceptually better if the kilogram was dened 
by xing the exact value of G (see Ref.10 for CODATA’s recommended value for G).

Let us note that h gives the spin scale of elementary particles while G alone gives no scale at all. e physical 
quantity responsible for the gravitational attraction between bodies is GM, which has units of m3 · s−2 , being 
measured, hence, with clocks and rulers. Apparently, this common knowledge faded out in the last 150 years. 
Let us  quote11 (in Preliminaries):

“... the unit of mass is deduced from the units of time and length, combined with the fact of universal gravita-
tion. e astronomical unit of mass is that mass which attracts another body placed at the unit of distance 
so as to produce in that body the unit of acceleration... If, as in the astronomical system the unit of mass is 
dened with respect to its attractive power, the dimensions of M are L3T−2.”

Maxwell’s statement emphasizes that the attractive power of a mass is GM = aL2 and can be determined by 
measuring the acceleration a of a test mass resting at a distance L from (the center of mass of) the mass M, where 
the equivalence between “gravitational” and “inertial” masses is taken for granted, as well as, in DOV’s trialogue. 
(Recent experiments have shown that the equivalence principle holds at an uncertainty many orders of magnitude 
smaller than the uncertainty given by Kibble balances used to x the kg scale, making it irrelevant to distinguish 
between inertial and gravitational masses in  practice12. Nevertheless, it is conceptually important to note that if 
the equivalence principle were not valid, this would imply the adoption of an extra standard for inertial masses. 
We will not dwell on this further because, eventually, our focus will be on relativistic spacetimes, satisfying the 
equivalence principle, as assumed by DOV.)

Interestingly enough, the gravitational constant was only introduced in 1873, the same year Maxwell published 
his  masterpiece11, to convert a mass of GM = 6.674 × 10−11 m3 · s−2 into 1 kg (dened for convenience during 
the French Revolution as the mass corresponding to 1 liter of water):

As noted in Ref.13:

“Newton did not express his law of gravitation in a way that explicitly included a constant G, its presence was 
implied as if it had a value equal to 1. It was not until 1873 that Cornu and Bailey explicitly introduced a 
symbol for the coupling constant in Newton’s law of gravity, in fact, they called it f. (e current designation G 
for the gravitational constant was only introduced sometime in the 1890s.)” 

us, had G not been introduced, all observables would be expressed in units of distance and time, (MS) system, 
and all equations of physics would remain the same with the MKS observables

being replaced by the MS observables OMS
i :

where �MS
i = (6.674 × 10−11)γi × �i . e index i gives information not only on the physical quantity (energy, 

spin, ...) but also on the state of the system, no matter how the theory chooses to describe it. (As a result, i , 
for given i, is a real number instead of a real-valued function.) In the MS system, Newton’s constant equals one: 
G → GMS = 1 , as the other conversion factors: kB = ke = 1.

Clearly, the posterior unveiling of non-relativistic quantum mechanics and other theories would be naturally 
written in the MS system had G never been introduced. In particular, the Schrödinger equation for a free particle
would be cast as

where, in Galilei spacetime, c refers to the speed of light with respect to some assumed ether. e complete 
information on the particle mass in the Schrödinger equation (as well as in its relativistic counterparts: Klein-
Gordon and Dirac equations) is codied in the reduced Compton wavelength ƛ=ℏ/mc. For electrons, the m/ℏ 

(13)6.674 × 10−11 m3 · s−2×G−1

−→1 kg.

(14)Oi = �i m
αi · sβi · kgγi , �i ,αi ,βi , γi ∈ R

(15)
Oi

×Gγi
−→O

MS
i ≡Gγi × Oi

=�MS
i mαi+3γi · sβi−2γi

(16)i
∂φ

∂t
+

c–

2
∇2φ = 0
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ratio can be determined from the measurement of the Rydberg constant via hydrogen spectroscopy, leading to 
ƛe = 3.862 ×  10−13 m. Hence, in the MS system,

where the independently measured value of ℏMS ≡ Gℏ = 7.039 × 10−45 m5 · s−3 was used. We stress that if G 
had not been introduced, the same metrological experiments used today would lead the Planck constant to have 
the constant value

provided the labs are simply endowed with bona de rulers and clocks, as dened in Sect. "Galilei and Minkowski 
spacetimes".

In modern metrology, h is assumed constant from the start. is is perfectly ne since all physics is con-
sistent with it. But to disentangle DOV’s controversy, it is better to start from the spacetime (endowed with its 
indispensable apparatuses; clocks and rulers, in the Galilei spacetime case), and add more structure only when 
necessary (e.g., h).

We close this section by answering the question posed in the Introduction. In Galilei spacetime, the minimum 
number of apparatuses a cosmic factory must build to allow distinct labs to compare the values of all observables is 
two. Let us progress now and see what changes in relativistic spacetimes as tacitly assumed by DOV.

Time to rule us all in relativistic spacetimes
Let us focus on the Minkowski spacetime for simplicity since the conclusions follow the same for any relativ-
istic spacetimes. In Minkowski spacetime, space and time are connected and, hence, it is natural to expect that
observables can be expressed in terms of one single unit. We shall avoid using light rays since the Minkowski spa-
cetime does not depend on the existence of physical worldlines evolving on the causality cone. us, let us present an 
elegant protocol due to Unruh (private communication) according to which distances are measured with three 
bona de clocks, implying that all observables in relativistic spacetimes can be simply expressed in units of time.

Suppose a rod is given to a congruence of inertial observers in Minkowski spacetime with respect to which 
the rod is at rest. Let O1 and O2 be the members of this family located at the ends of the rod. e task of this family 
is to attribute a length to the rod by measuring only time intervals. e ingenious protocol which accomplishes 
this, devised by Unruh, is the following: 

 (i) e observer O1 resets a clock C1 and sends it to O2 along the rod. e motion of C1 from O1 to O2 is free 
(i.e., inertial);

 (ii) When C1 reaches the observer O2 , O2 reads the time marking on C1. Let τ1 be this value;
 (iii) At the same time that C1 reaches O2 , O2 resets another clock C2 (identical to C1) and sends it back to 

O1 , along the rod. e motion of C2 from O2 to O1 is, again, inertial;
 (iv) When C2 reaches O1 , O1 reads the time marking on C2. Let τ2 be this reading;
 (v) During the whole process, the observer O1 keeps a third clock, C3 (identical to C1 and C2), which he/

she uses to measure the time interval between the departure of C1 and the arrival of C2. Let τ3 be this 
value.

 (vi) Using τ1 , τ2 , and τ3 , this family of observers attributes to the rod the following length: 

Notice that the only requirement of the protocol is that the clocks C1 and C2 travel freely along the rod; the 
values of their speeds are irrelevant—which completely avoids any risk of cyclic reasoning. Note also that light 
rays and their speed c play no role at all in the protocol, as anticipated.

e fact that such a protocol leads to a consistent denition of length (i.e., one which is independent of the 
speeds of the clocks and gives the same result when repeated for the same rod under the same condition) follows 
directly from the structure of Minkowski spacetime (see Appendix B; this is also true for relativistic spacetimes 
in general, when the protocol is restricted to “small” rods—i.e., small values of τ3 ). In fact, it is easy to verify that 
if one were to apply this protocol in the Galilei spacetime (where τ3 = τ1 + τ2 ), D would identically vanish, lead-
ing to no sensible denition of length. is merely reects the fact that, in contrast to relativistic spacetimes, in 
Galilean physics there is no privileged way of measuring spatial lengths and time intervals using a single standard 
unit (in agreement with the discussion in  Sect. "Two units to rule us all in Galilei spacetime").

Although light and its speed c have played absolutely no role in the protocol above,   the interpretation of the 
value D becomes clearer when we use clocks C1 and C2 with speeds arbitrarily close to the speed of light c. In this 
case, τ1, τ2 → 0 , which leads to D → τ3/2 . In other words: D is the time that light takes to travel (one way) along 
the rod, according to the congruence of inertial observers with respect to which the rod is at rest. us, the protocol 
above recovers the usual concept of measuring lengths in terms of light-seconds, light-years, etc., without ever 
needing to use light or its speed c—which shows that D’s unit is truly a unit of time, with the prex “light” being 
totally unnecessary. Within the line of reasoning presented here, the speed of light being c = 2D/τ3 = 1 (with 
τ3 being the time measured by clock C3 for the light ray to make a round trip along the rod) is a consequence of 
the light-independent length denition Eq. (18), not the other way around.

mMS
e = –hMS/c–e = 6.080 × 10−41m3 · s−2,

(17)
1045 hMS

(1m)5(1 s)−3
≈ 7,

(18)D :=
[(τ 23 − τ 21 − τ 22 )2 − 4τ 21 τ 22 ]1/2

2τ3
.
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at said, we understand that in metrology it is convenient (and perfectly ne) to dene, from the beginning, 
the speed of light to have the constant value c ≡ 299 792 458 m/s, as given by bona de clocks and rulers. Never-
theless, to resolve DOV’s controversy, it is crucial to disentangle what is primary (bona de clocks in relativistic 
spacetimes) from what is secondary (the history-rooted value of c).

We close this section by answering, in the relativistic realm, the question posed in the Introduction:

e minimum number of apparatuses a cosmic factory must build and deliver to allow distinct labs to compare 
the values of their observables dened over relativistic spacetimes is one.

To move on from the MS system, where observables take the form

to the S system, where observables are measured only in units of time, one must replace OMS
i  by OS

i ,

in all equations, where �S
i = (299 792 458)−αi × �MS

i  . Eventually, the S system corresponds to the geometrized 
system of units, where kB = ke = G = c = 1.

In the geometrized system, the fundamental charge and reduced Planck constant equal

respectively. Du claims that the values of e and ℏ could not be directly compared by experimentalists in distant 
labs: only “dierences in dimensionless parameters like the ne structure constants are physically signicant and 
meaningful”1. His no standards advocating comes out from this. Nevertheless, as we have seen, (besides the ne 
structure constant) experimentalists can independently compare the values of eS and ℏS provided they possess 
bona de clocks (that must necessarily equip relativistic spacetimes).

One undamental constant
We have shown so far that kB, ke ,G , and c are conversion factors in relativistic spacetimes and that all observables 
can be expressed in units of time. As a result, our cosmic factory is released from producing all but one (time) 
standard associated with bona de clocks. e transition frequency between two states of cesium-133 is seen to 
satisfy all the conditions required for bona de clocks (as far as tested under present technology).

Now, instead of demanding the cosmic factory to produce and deliver bona de clocks (which would be very 
expensive), we can follow the International Committee for Weights and Measures and x the exact value of one 
second as the time that elapses during 9 192 631 770 cycles of the radiation produced by the transition between the 
two hyperne ground levels of the cesium-133 atom. Following DOV’s understanding of “fundamental,” this could 
be elected as the fundamental constant associated with the time unit of 1 s.

Clearly, any physical quantity tested constant by bona de clocks can be used as a standard to express the 
observables. Once ℏ is tested constant, as veried by the International Committee for Weights and Measures 
(see section 2.2.1 of Ref.2), one may move, e.g., from the geometrized system (S) of  Sect. "Time to rule us all in 
relativistic spacetimes", where observables read

to the Planck system (P), commonly used in high-energy physics, by replacing OS
i  by OP

i  in the equations:

w h e re  ℏS = 2.907 × 10−87 s2  a n d  �P
i = (2.907 × 10−87)−αi/2 × �S

i  .  In  P l an c k  u n i t s ,  t hu s , 
ℏ = kB = ke = G = c = 1 (where the P labels are omitted for simplicity), and all observables are dimensionless.

Nevertheless, we stress that this does not change the demand for the existence of bona de clocks, which are still 
necessary for testing whether or not ℏ is constant, and allow distant labs to measure and compare the values obtained 
for ℏ independently. (Correspondingly, whether or not the spin of particles is constant must be experimentally tested 
rather than taken for granted.)

Closing remarks
We have shown that observables of the physical laws dened in relativistic spacetimes can be solely expressed 
in units of time dened by bona de clocks that are demanded in the rst place to construct the spacetime. e 
transition frequency between two states of cesium-133 satises the conditions required for bona de clocks 
under state-of-the-art technology. us, the answer to the core question posed in the Introduction about the 
minimum number of apparatuses that a cosmic factory must produce to allow distinct labs to compare the values 
of observables is one (assuming relativistic spacetimes as DOV do).

Instead of demanding the cosmic factory of producing and delivering bona de clocks, we can follow the 
International Committee for Weights and Measures and dene one second as being the time that elapses dur-
ing 9 192 631 770 cycles of the radiation produced by the transition between the two hyperne ground levels of the 

(19)O
MS
i = �MS

i mαi · sβi ,

(20)
O

MS
i

×c−αi
−→O

S
i ≡ c−αi × O

MS
i

= �S
i s

αi+βi ,

eS = 4.6 × 10−45 s and ℏS = 2.9 × 10−87 s2,

(21)O
S
i = �S

i s
αi ,

(22)
O

S
i

×(ℏS)−αi/2

−→ O
P
i ≡(ℏS)−αi/2 × O

S
i

=�P
i ,



9

Vol.:(0123456789)

Scientifc Reports | (2024) 14:22594 | https://doi.org/10.1038/s41598-024-71907-0

www.nature.com/scientificreports/

cesium-133 atom. Following DOV’s understanding of “fundamental,” the 9 192 631 770 cycles of cesium-133 
would be a fundamental constant associated with the 1 s standard, which should be communicated to the alien 
labs to allow them to x the scale of their bona de clocks and permit the comparison of all physical observables.

Finally, let us comment that although some atomic  clocks14 have reached a precision better than 10−17 s , being 
excellent realizations of bona de clocks for all present practical purposes, quantum mechanics tells us that there 
are no arbitrarily good clocks15. is jeopardizes the very concept of relativistic spacetime, (M, g) , as a smooth 
manifold M endowed with a metric g . Most probably when our technology reaches the Planck scale (being able 
to measure time intervals with a precision of order 10−44 s ), we will be urged to replace our spacetime concept 
with something else. How many dimensional units (if any) will be granted by the quantum gravity spacetime 
(to express observables of the new laws of physics) we do not know.

Data availibility
All data generated or analyzed during this study are included in this published article.

AppendixA derivation o Eq. (4) rom the line element (8)
In Sect. "Minkowski spacetime", we rst dene the relationship between events of Minkowski spacetime through 
Eq. (4), and aerward we connect it with the Minkowski line element (8). Here we do the opposite: we rst dene 
the relationship between the events through the Minkowski line element:

and aerward derive Eq. (4). (We note that space coordinates are expressed in second units which equals the 
more customary light-second denomination.) Although both approaches are equivalent the one presented in 
Sect. "Minkowski spacetime" is superior for the goal of this paper since it does not use coordinates (which are 
dispensable although oen useful). e Cartesian coordinate system (t, x, y, z) is assumed to be xed through the 
familiar clock synchronization process. (Although “light rays” are idealizations of electromagnetic waves with 
arbitrarily large energy [geometrical optics approximation] they can be approximated by suciently energetic 
particles approaching the causality cone.) In Fig. 3 we exhibit the same pair of events P and Q of Fig. 2, and the 
arbitrary inertial observer O passing through P in a spacetime diagram covered with Cartesian coordinates.

With no loss of generality, let us choose the coordinates of the events P and Q to be

respectively. e coordinates of the events R and S are determined by looking for the intersection of the lines 
x = vt with x = xQ + (t − tQ) and x = xQ − (t − tQ) , respectively:

ds2 = −dt2 + dx2 + dy2 + dz2,

(23)x
µ
P

= (0, 0, 0, 0) and x
µ
Q

= (tQ, xQ, 0, 0),

Fig. 3.  e tilted line represents the evolution of inertial observer O in Minkowski spacetime covered with 
Cartesian coordinates (t, x, y, z). Light rays are represented by dashed lines. �τRP and �τPS are the proper 
times measured by a clock carried by O in the corresponding intervals.
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where v = dx/dt is a dimensionless quantity expressing how fast O moves in the (t, x, y, z) reference frame. e 
proper time measured by clocks following segments RP and PS are

and

respectively, where tR , tP , and tS can be directly read from Eqs. (23) and (24). Clearly, �τRP and �τPS depend 
on the observer through v but the product

does not.The product depends only on the events P andQ. Equation (4) immediately
ollows then.Appendix B derivation o Eq. (18)
Let us assume that a rod with unknown proper length D lies at rest with a congruence of inertial observers 
evolving in Minkowski spacetime as shown in Fig. 4. Now, let us assume that an inertial clock C1 takes a proper 
time interval τ1 to move from the le end to the right end of the rod with some (unknown) speed v1 = const . 
Immediately aer C1 reaches the right end, some clock, C2, is sent back with (unknown) speed v2 = const , tak-
ing a proper time interval τ2 for its return trip. Finally, a third clock, C3, stays at rest at the le end, registering 
the total proper time τ between the departure of C1 and the return of C2. en, one can write the rod’s proper 
length in terms of τ1,τ2 , and τ as

To derive this, it is enough to note from Eq. (8) that the squared proper times of clocks C1 and C2 can be cast 
as (see Fig. 4)

(24)x
µ
R

=

(

tQ − xQ

1 − v
,
v(tQ − xQ)

1 − v
, 0, 0

)

and x
µ
S

=

(

tQ + xQ

1 + v
,
v(tQ + xQ)

1 + v
, 0, 0

)

,

(25)�τRP =

∫ tP

tR

dt

[

1 −

(

dx

dt

)2
]1/2

= −

(

1 + v

1 − v

)1/2

(tQ − xQ)

(26)�τPS =

∫ tS

tP

dt

[

1 −

(

dx

dt

)2
]1/2

=

(

1 − v

1 + v

)1/2

(tQ + xQ)

�τRP �τPS = −(tQ − tP )2 + (xQ − xP )2, tP = xP = 0,

(27)D =
[(τ 2 − τ 21 − τ 22 )2 − 4τ 21 τ 22 ]1/2

2τ
.

Fig. 4.  e (blue) rectangle represents the worldsheet of an inertial rod with proper length D. e rod lies at 
rest in a frame dened by a congruence of observers at x, y, z = const who are represented by vertical (black) 
lines. e graph also shows the worldlines of three inertial clocks. Clock C3 stays at rest at the rod’s le end and 
measures the round trip from the departure of C1 to the return of C2. Note that clock C2 departs as C1 arrives 
at the rod’s right end. All clocks are inertial.



11

Vol.:(0123456789)

Scientifc Reports | (2024) 14:22594 | https://doi.org/10.1038/s41598-024-71907-0

www.nature.com/scientificreports/

respectively. By using the rst equation to eliminate coordinate t1 from the second one, Eq. (27) follows. Let us 
stress that it is the relativistic nature of the spacetime that guarantees that Eq. (27) does not depend on v1 and v2 , 
ascribing a meaningful value for the rod’s length. us, it could not be used in the Galilei spacetime. Indeed, this 
can be used as a test of the relativistic nature of the spacetime.

Just as a curiosity, note that Eq. (27) can be cast in the more suggestive form

where p := (τ + τ1 + τ2)/2 is the semiperimeter of the (spacetime) triangle determined by the time-like edges 
C1, C2, and C3 in Fig. 4, as measured in time units by the corresponding clocks. Note that both the le- and right-
hand sides of Eq. (29) are simply two well-known expressions for calculating the area of such a triangle. is 
provides a more direct geometrical meaning to Eq. (27).

Let us also note that in arbitrary relativistic spacetimes, a sound prescription of distance for arbitrarily close 
events lying on the simultaneity hypersurface of some local congruence of observers can be given, rendering 
Eq. (27) valid in the proper limit. e distance D given by Eq. (27) is expressed in units of time, say, seconds, but 
it can be converted into meters through the conversion rule:

at one’s discretion. us, in relativistic spacetimes, c ≡ 299 792 458 m/s is downgraded to a conversion factor that 
converts the second unit of bona de clocks (which must equip relativistic spacetimes) into the disposable meter unit. 
Finally, we emphasize that the construction of relativistic spacetimes does not rest on any velocity concept (which 
depends on congruences of observers holding synchronized clocks and so on), as illustrated in the derivation of 
Eq. (4) dening the Minkowski spacetime.
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(28)τ 21 = t21 − D2 and τ 22 = (τ − t1)
2 − D2,

(29)
τD

2
=

√

|p(p − τ )(p − τ1)(p − τ2)|,

(30)(299 792 458)−1 s
×c

−→1 m;
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