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1 Introdução

Ataques de phishing são uma das principais ameaças à segurança digital, explorando engenha-
ria social e disfarce técnico para obter informações sensíveis. O aumento de fraudes baseadas em
URLs falsas exige métodos automáticos para identificar e bloquear esses endereços em tempo real.
Este trabalho apresenta uma abordagem baseada em aprendizado de máquina para detecção auto-
mática de URLs de phishing, com foco em desempenho e aplicabilidade prática. São comparados
dez algoritmos supervisionados quanto à acurácia, precisão, recall e tempo de execução [1, 3, 10].

2 Base de Dados e Atributos

O estudo utiliza a base PhiUSIIL Phishing URL [7], contendo 235.795 registros e 54 atributos (31
quantitativos e 23 categóricos), incluindo:
• Da URL: número de subdomínios e caracteres ofuscados;
• Do HTML: número de scripts, imagens e referências externas;
• Derivados: índice de similaridade com domínios legítimos [6].
Foi verificada a presença de desbalanceamento entre classes legítimas e maliciosas, mas não foi
necessário o uso de técnicas como oversampling ou SMOTE, visto que a distribuição estava pró-
xima de 52/48, permitindo avaliação equilibrada dos modelos.
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3 Metodologia

3.1 Pré-processamento

Foram eliminados atributos redundantes e observações extremas. Atributos categóricos foram
convertidos para inteiros via codificação ordinal simples.

3.2 Seleção de Atributos

Os critérios aplicados foram: (i) correlação com a variável-alvo; (ii) importância dos atributos
via Random Forest [2]; (iii) custo computacional no ambiente real. A análise demonstrou que
variáveis relacionadas ao comportamento dinâmico da página, como chamadas externas e inserção
de scripts, possuem maior poder discriminativo que características mais estáticas, como tamanho
da URL. Tal resultado reforça a predominância de estratégias modernas de phishing, baseadas em
manipulação visual e estrutura de carregamento, em vez de simples variações textuais.
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Figura 1: Importância dos atributos calculada por floresta aleatória.

3.3 Modelagem e Avaliação

Foram testados dez classificadores: Naive Bayes, KNN, Regressão Logística, Decision Tree (DT),
Random Forest (RF), AdaBoost, SVM, LightGBM, XGBoost e MLP [4, 5]. A validação cruzada
(k=10) foi utilizada no treino, e o F1-score foi a métrica principal por equilibrar precisão e recall
[9]. Também foi considerado o tempo de inferência como métrica prática adicional, uma vez
que modelos aplicados a filtros de tráfego devem operar em milissegundos, evitando impacto
perceptível na navegação do usuário.

4 Resultados e Discussão

KNN, RF, XGBoost e DT obtiveram F1-score acima de 0,98, destacando-se DT pelo menor tempo
de processamento. A Tabela 1 resume os resultados. O XGBoost apresentou o melhor desempenho



geral (F1=0,9847).

Tabela 1: Desempenho no conjunto de teste.

Modelo Acurácia Precisão Recall F1

DT 0.983 0.9879 0.976 0.9819
RF 0.984 0.9849 0.9826 0.9837
XGBoost 0.986 0.9831 0.9863 0.9847

Figura 2: Curva ROC e AUC para o modelo XGBoost.

Um teste t indicou diferença estatística significativa entre DT e XGBoost (p < 0.05). Com Optuna
[8], a DT obteve pequena melhoria (F1=0,9831), reforçando que a qualidade dos atributos impacta
mais que a otimização de hiperparâmetros. Observou-se ainda que o treinamento do XGBoost
demandou 8,4 vezes mais tempo que a DT, evidenciando que o ganho marginal em desempenho
deve ser considerado frente ao custo operacional em ambientes de grande escala.

5 Conclusões

Modelos clássicos de aprendizado de máquina demonstraram elevada precisão na detecção de
URLs maliciosas com baixo custo computacional. A Decision Tree apresentou excelente equilí-
brio entre desempenho e velocidade, permitindo inferência rápida e interpretabilidade direta. Em-
bora existam modelos mais complexos, a eficácia de algoritmos simples pode dispensar soluções
mais sofisticadas com maior tempo de processamento, reforçando a importância de considerar
escalabilidade, consumo de recursos e explicabilidade em sistemas reais de segurança.
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