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Abstract

Plant breeding programs involve the selection of new superior lines. However, for a large number of test
lines, there are several limitations in the use of certain designs. Therefore, the success of these programs
depends on an adequate experimental design that allows obtaining accurate estimates of genetic effects,
increasing the eﬂiciency of the experiment and controlling experimenta] variability. In addition, con-
sidering the dependence between genetic effects is desirable to ensure the validity and generalization of
results, avoiding biased estimates and incorrect interpl'etations. For this purpose, using partia]]y replicated
designs (p—l'ep), in which a percentage, p, of test lines are replicated and the others not, can be a good
option. Thus, a simulation study was conducted to evaluate designs for early phase wheat breading exper-
iments according to the optimality criterion C, considering the dependence or independence between
test lines, comparing them in relation to the realized genetic gain and, consequently, the quality of the
material selection, for a given experimental area and for p = 20%, for different genetic variance values. It
could be concluded that the differences between designs are small, and that they are more affected by the

magnitude of the genetic variance assumed for data.

Keywords: Optimality criterion C; Spatially optimized designs; Partially replicated design; Genetic gain;
Quality of genetic selection; Relationship matrix A.

1. Introduction

In the early stages of plant breeding programs, trials allow the testing of a large number of
lines, or test lines, with the aim of detecting superior ones. Such trials are generally characterized
by limited resources, either in terms of genetic material or restrictions regarding the experimental
area, which results in the use of unreplicated designs (Kempton, 1984).
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According to Kempton (1984), initially, the desighs most commonly used in these trials were
grid-plot designs. These are row-column designs that include replicates of the standard varieties
systematically occupying the check plots in a regular grid, and the unreplicated test lines. Standard
varieties are usually varieties already present in the market and with desirable characteristics, which
are used as a reference to evaluate the yields of the test lines and also as a way of dealing with possible
trends in soil fertility.

Seeking to improve these tests, Federer (1956) proposed augmented designs. Such designs
present the same two treatments groups, those that will be repeated, the standard varieties, used
to explain part of the spatial variability, and unreplicated ones, or test lines. The augmented block
design consists of distributing the replications of varieties in blocks and then, augmenting each block
with unreplicated test lines. Others augmented designs were proposed by Federer (1961), Federer
(2002), and Federer (2005), Federer & Raghavarao (1975), Federer et al. (1975), Lin & Poushinsky
(1983) and Lin & Poushinsky (1985) and Federer & Crossa (2001).

Cullis er al. (2006) proposed an alternative to grid-plot and augmented designs, the partially
replicated (p-rep) design. This new class of designs assumes replication for p percent of test lines,
which totally or partially replace check plots, and the remaining test lines are not repeated. Origi-
nally, p-rep designs were obtained in such a way to achieve maximum genetic gain, a characteristic
in common with optimal designs specifically designed to maximize the precision of estimates of
the effects of interest. When working with optimal designs, some assumptions are made, since the
following are necessary: the design model, the values of parameters and a search criterion (Shah &
Sinha, 1989).

The grid-plot and p-rep designs were compared by some authors. Cullis et al. (2006) showed
that p-rep designs improved the precision of line selection. In the work, the p-rep designs evaluated
are spatially optimized (C-optimal), that is, given the model and its parameters, the design found is
the one that presents the lowest average variance for simple contrasts of the effects of test lines.

Clarke & Stefanova (2011) carried out this comparison in uniformity trials. Moehring ef al.
(2014) simulated the genetic effects and allocated them according to four designs, two of which were
grid-plot and p-rep, to represent triticale yields. Santos (2017) compared these designs in a specific
study with sugarcane. Goes (2020) also compared these types of designs through simulation studies.
It is worth mentioning that, in these works, p-rep designs presented better results for selecl:mg
superior test lines. Furthermore, these designs are widely used in most plant breeding programs in
Australia (Cullis ef al, 2020) and are being introduced in Brazil.

There are several measures to evaluate and compare designs, two of which are the realized ge-
netic gain (RGG), which is the ratio between the mean of the s superior EBLUPs (empirical best
linear unbiased predictions) and the mean of the s superior true genetic effects, where s corresponds
to the percentage of selection of the genetic material, which in this work was defined as s = 15%
(Cullis et al., 2006; Smith et al., 2006; Santos, 2017; Goes, 2020; Sermarini et al., 2020), and the selec-
tion success, defined by the percentage of truly superior test lines selected from EBLUPs (Sermarini
et al, 2020). Both the RGG and the selection success depend on the true genetic effects, so they can
only be obtained through simulation studies.

There are other comparison measures that do not depend on simulation studies. For example,
Miiller ef al. (2010) used the mean of the empirical variance, a measure that depends on the number of
genotypes, including test lines and standard varieties, when present, and on the sum of the differences
in the adjusted means of the genotype. Another proposal is the SE ratio, which is the ratio between
the standard error of the comparison between test lines and checks, calculated from the design under
study and also from a completely randomized design (Clarke & Stefanova, 2011). Piepho & Williams
(2016) evaluated the use of relative efficiency, which is the harmonic mean of non-zero eigenvalues
of the information matrix of test lines.

The p-rep designs are usually obtained by ighoring information about genetic relationship (pedi-
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gree), although in plant breeding programs, it is often possible to access some information about the
degree of genetic relationship of individuals included in the trial (Bueno Filho & Gilmour, 2003;
Butler et al,, 2014). Therefore, given that the relatedness information is known, that is, information
about the parents of each individual, it is possible to consider it when obtaining an optimal p-rep
design.

Few authors use the kinship matrix A in the search for optimal designs. Bueno Filho & Gilmour
(2003), considered correlated genetic effects for unresolvable incomplete block designs of size four
to six treatments. The genetic effects in the design were analyzed in three situations of A: A; =
11d, where Id denotes the identity matrix, A, is a simple family structure, i.e., three families of two
siblings (half-siblings) and A3 is a complex kinship, i.e., two treatments are related if they have a
common parent. In all situations, the A-optimality criterion was used for which the search is made
for designs with the minimum sum of variances of treatment effects estimates.

In another study, Bueno Filho & Gilmour (2007) investigated the effect of varying degrees of
uncertainty in point estimates of a range of parameter settings of additive genetic variance expressed
in terms of heritability on design selection. The authors reported that in some situations in plant
breeding programs, it is very likely to have a sparse relationship matrix, A, or discrete family struc-
tures. For some of these situations it is possible to find optimal designs that are robust to assumptions
about heritability. However, for complex kinship structures, the choice of design can change dras-
tically depending on previous point estimates.

Butler ef al. (2014) studied three cases: variety selection in canola, estimation of the crossing value
in sorghum genetic selection (hybrid) and estimation of the breeding value for forest improvement,
with different selection objectives, genetic complexity and scale. They extend the work developed
by Bueno Filho & Gilmour (2003) and also by Cullis er al. (2006). The extension concerns the
specifications of the linear model, both in terms of genetic and nongenetic components.

Cullis ef al. (2020) evaluated simulation studies for early stages, S1 and S2, based on a plant
breeding case study, with the aim of reinforcing the importance of including information on genetic
relationship. Selection in advanced stages in genetic breeding generally occurs sequentially. These
stages are called S1, S2, S3 and S4. In the study, they evaluated 256 test lines from stage S1 with
the aim of making selections for progression to test stage S2. The study also included four standard
varieties. To this end, a mixed linear model for genetic and nongenetic effects in a p-rep design
was adopted. Thus, the authors considered different p values and different values for the genetic and
residual variance ratio. For different p values, the field scenarios varied the number of lines, between
22 and 28 lines, with a ixed number of 12 columns.

dos Santos (2023) investigated the effectiveness of spatially optimized designs in multienviron-
mental trials to select the best test lines in plant breeding grain yield, regarding genetic gain and
quality of genetic material selection. For this, a simulation study compared the grid-plot and p-rep
designs. For the p-rep design, the p percentages of duplicated lines were varied for p = 11%, 22%
and 33%, and number of standard varieties (0, 5, 10, 15 and 20). The analysis was performed using
mixed linear models considering joint and individual analyses, which incorporated spatial variation
in plot errors. In both designs, the assumption of dependence and independence between line effects
was considered.

It is observed that studies that evaluate p-rep designs in such a way to consider the relationship
between test lines are limited. In this context, the objective of this study is to compare the p-rep
designs with and without the inclusion of relationship matrix regarding the realized genetic gain
and, consequently, the quality of the selection of the genetic material to be considered for a next
phase of the plant breeding study for a given experiment size, based on linear mixed models and
simulation studies. Here, spatially optimized p-rep designs were generated for an experimental area
composed of 36 rows by 20 columns, assuming 598 test lines, with p = 20% and a selection percentage
s = 15%. In the design model, random treatment effects were assumed, different parameter values
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for the genetic variance and independence (Id) or dependence (A) between treatment effects.

2. Materials and Methods

In this study, a dataset was used as a motivating example. This section presents this dataset,
the designs and how they are obtained, the models for simulating data and the measures used to
compare designs. The procedures used in this study are similar to those presented by Santos, 2017;
Goes, 2020; Sermarini ef al., 2020; dos Santos et al., 2024.

2.1 Material

The motivating example was a set of 598 wheat lines developed by CIMMYT (CIMMYT, 2021),
the International Maize and Wheat Improvement Center, available in the package 1me4GS (Perez-
Rodriguez, 2021). The CIMMYT breeding program has conducted numerous international trials
in a wide variety of wheat production environments. The environments represented in these trials
were grouped into four basic sets of environments, comprising four main agroclimatic regions pre-
viously defined and widely used by CIMMYT. The dataset includes information on average grain
yield and parentage, among others.

The file wheat .Pheno contains four columns: environments (env), replicates (rep), genotype
identifiers (GID), and grain yields (Yield). The file wheat .Pedigree contains three columns, gpid1
and gpid2 correspond to the GIDs of parents 1 and 2, respectively, and progeny, which correspond
to the GIDs of the progeny. Finally, the file wheat .X contains a matrix of dimensions 598 x 1279,
which corresponds to the Diversity Array Technology (DArT) markers encoded as 0 and 1.

2.2 Generated designs

The configuration for generating the designs in this work was a rectangular experimental area
with 36 rows (n,) by 20 columns (n), totaling 720 plots. A total of 598 test lines (n;) were considered,
as in the motivating example, in a p-rep design, with p = 20%. Thus, 122 test lines were replicated
and 476 were not.

The linear mixed model for generating p-rep designs was based on Gilmour ef al. (1997):

y=Xp +ngugd +Z,u,+ €, (1)

where y, 1 is the vector of the response variable being # = n, x n; By is the vector of fixed

9x1)

effects with design matrix X( ) is the vector of random genetic effects with design matrix

nxq)> U (n,x 1

) is the vector of nongenetic random effects with design matrix Z and

Zg iy’ Bo(npendx1 O (s 2)°
€nx1 is the vector of random errors. It was assumed that (u,, ug,, €) are independent with Gaussian
joint distribution with zero mean and variance-covariance matrix:

Do(y,) 0 0
| 0 Dyly,) 0 |, @
o 0 R
such thaty. = 6%/02, v, contains the variance parameters for the row and column effects. Addition-

ally, we assume R(¢p) = Z,(d,) @ Z(d.), where ¢, and ¢, are the correlation parameters for rows
and columns, respectively, that characterize first-order separable autoregressive processes.

To generate the designs, 02 =1,y =v.=0.1, b, = b, = 0.75 and four Yo values (0.5, 1,2 and 3).
The values adopted for the nongenetic parameters were assumed based on the works of Goes, 2020
and Sermarini et al, 2020, which reported estimates for similar experimental conditions in different
crops. These parameters reflect environment aspects, such as spatial correlation and dependence,
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and are not directly associated with genetics or a specific crop. The deﬁgm were generated under
two assumptions: the first in which the test lines were assumed unrelated, i.e., D, = v, Id, and the
second in which they were assumed related and D, = v, A, in which A is the pedigree matrix,
totaling eight evaluated designs.

The pedigree matrix, A, was obtained in R (R Core Team, 2021) using the pedigreem package
(Bates & Vazquez, 2014). The process began by assuming the A matrix to be an identity matrix,
where all off-diagonal elements are zero and on-diagonal elements are one, representing that each
individual is completely related to itself. For each individual, a;; is calculated in the pedigree, check-
ing whether it has information about its father (f) and mother (m). Based on this, the additive
kinship coefficients are calculated according to Henderson (1976), where

) 1+0,5a s 1E1 =
@i = (J,S(ag+a,m), ifisj -

The A matrix is updated and this process continues until all individuals in the pedigree have been
processed. The A matrix is symmetric, since the coeflicient of kinship between i and j is the same
as that between j and i.

The optimality criterion adopted was the C-optimal, which seeks a design with minimum av-
erage variance of pairwise differences of test lines effects (AVPD), so that,

2 1
(l:r (c-1) — Tt 1) ,
ﬁf - 1 ﬂt

where tr() represents the trace of the matrix and C is the information matrix of test lines, which for
the proposed model is given, according to Hooks ef al. (2009), by:

AVPD =

C=2,,(2,Do(0,)Z; +R(P))'Zy, + D' (0,,) - Zy,(Z,Do(0,)Z; + R(¢))
X(XT(ZoDo(00)Z; +R())” 1X) ‘XT(Z Dy(0)Z] +R($)'Z

One thousand moves were adopted for the design search. The package used was odw (Butler,
2022) for the R software (R Core Team, 2021).

2.3 Simulation study
After obtaining the designs, a simulation study was carried out to obtain data. Data were simu-
lated for 32 scenarios setting as presented in the previous Section, with the same definitions, adding

only the genomic relationship structure. Thus, the linear mixed model for data generation was based
on Perez-Rodriguez (2021):

y =X +Zgug, + Zg,uy, +Zou, + €, 3)

where y, 1 is the vector of the response variable being n = n, x n; By is the vector of fxed

gx1)
effects with the design matrix X, 0 Yea(ux1) ~ MN(0, OﬁaA) is the vector of random additive
genetic effects with design matrix Z,, ()’ A is the pedigree matrix described in Section 2.2, O‘i is
- 3
the associated variance parameter; u,, (mx1) ™ MN(0, ngG] is the vector of random genomic effects
- ] P
with design matrix Z , G = WW'/k is a genomic relationship matrix, W is the centered and
L (nxng)
standardized marker matrix, k is the variance parameter associated with the number of markers, o2

L
is the variance parameter associated with the markers.

The scenarios evaluated are the combinations of eight experimental designs and four values
for Yo = Vg, (0.5, 1, 2 and 3), as particular cases for the genetic variances. In all cases, o2 =1,
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Yr =Ye=0.1and ¢; = . = 0.75 and vy, A + g, G) were assumed. As mentioned in Section 2.2,
to generate data, the values for the adopted nongenetic parameters are also obtained based on Goes,
2020 and Sermarini et al,, 2020.

Independent samples were generated for the genetic and nongenetic effects and for the errors,
using the standard normal distribution. In this way, 1,000 vectors of size 598 were obtained for the
genetic effects, 1,000 vectors of size 56 (36+20) for the nongenetic effects of rows and columns, and
1,000 vectors of size 720 (36x20) for the error, €. The appropriate transformation for each vector
was used, so that the variances for the genetic, nongenetic, and residual effects followed the desired
assumption.

After data simulation, the models were fitted. Data were analyzed following the model analogous
to that presented in Equation 3, with the same definitions. For this, the asreml (The VSNi Team,
2023) package for the R software (R Core Team, 2021) was used. For each set of simulated data,
the following were recorded: information on the algorithm convergence, the genetic EBLUPs, to
calculate the comparison measures and the estimates of the variance and correlation components.

2.4 Evaluation of designs

To compare the eight designs in each of the evaluated scenarios, RGG and selection success
measures were calculated. RGG is used to evaluate the genetic gain achieved in each design. For
each scenario of the generated designs, the EBLUPS of test lines are recorded and the RGG is
calculated as the ratio between the average of the best s EBLUPs and the average of the best s of
the true genetic effects, where s is the selection percentage, assumed to be 15%, a value commonly
adopted by Brazilian plant breeding programs (Goes, 2020; Sermarini et al,, 2020; dos Santos et al,
2024). Another measure calculated was the selection success (selection probability for s = 15%),
defined by the percentage of truly superior test lines selected from EBLUPs (Sermarini ef al.,, 2020).

3. Results and Discussion

In Figure 1, the layouts for the p-rep designs are presented, considering the four genetic variance
values (yy, = 0.5, 1, 2 and 3), and the variance and covariance matrix assumed for the genetic effects,
considering dependence (on the right) and independence (on the left). In general, for all designs
considered, treatments are randomly distributed in the experimental area; however, some highlights
are made. Regardless of the assumption about the test lines effects relationship, it was observed that
the greater the genetic variance, the lower the frequency of clustered replicated test lines, that is,
different replicated test lines occupy a smaller number of neighboring plots, and of these, occupying
plots on the border of the experimenta] region. It is notted that, when assuming the genetic variance
to be twice the residual variance (y,, = 2), the lowest number of clustered replicates was observed,
the lowest number of replicates w1éi1 at least one replicate occupying its neighboring plot and the
lowest number of replicates occupying plots on the border of the experimental region.
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Figure 1. Layouts for the p-rep design generated considering the kinship matrix A (on the right) and for the p-rep design
generated without considering the kinship matrix (on the left), for an experimental area of 36 rows by 20 columns and 598
test lines, with p=20%.
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Regarding simulation results, algorithm convergence was observed for all 1,000 fitted models in
each of the scenarios under the eight different designs.

In Table 1, when generating designs with the genetic variance being half of the residual vari-
ance, for the cases evaluated, it was observed that the average RGG is higher and more accurate when
using spatially optimized designs in which the effects of test lines are assumed to be independent,
not exceeding 0.3% when compared to the designs for which the matrix A was considered. Inter-
estingly, the same was observed when y,, = 2. However, when the genetic and residual variances
are equal (v, = 1) and when the former is three times the latter (y,, = 3), the spatially optimized
designs with Dy(yg,) = vy, A showed better performance, but not exceeding 0.3% and 0.1% for the
RGG, on average, for g, = 1 and y,, = 3, respectively. Similar behavior was observed when com-
paring the designs in relation to selection success. However, for this measure, greater difference was
observed between designs in relation to the assumption of genetic effects in relation to the precision
of the selection success (Table 2).

Table 1. Mean and standard deviation of realized genetic gain (RGG) for designs generated with y,, = 0.5, 1, 2, 3 and
assumed genetic variance for data, v, = Yy =05,1,2,3 considering the kinship matrix, D, = <y, A, and without
considering the kinship matrix, D, = ywld, for selection percentage s = 15%.

Ye, =05

Ye. = Yy, =0.5 Yea =Yg =1 Yoo = Vg, =2 Yea =Yg, =3

D, =y, Id 1.513(0.315) 2.239 (0.432) 3.269 (0.605) 4.053(0.732)

D, =y,A 1511(0.318) 2.233 (0.439) 3.264 (0.610) 4.048 (0.736)
Yeg=1

Ye. = Yy, =0.5 Yea =Yg =1 Yoo = Vg, =2 Yea =Yg, =3

D, =y,Id 1.510(0.318) 2.235 (0.435) 3.264 (0.607) 4.048 (0.736)

D, =y, A 1514(0.310) 2.239 (0.429) 3.268 (0.599) 4.056 (0.723)
Yy =2

Ye. = Yy, =0.5 Yea =Yg =1 Yoo = Vg, =2 Yea =Yg, =3

D, =y, Id  1.510(0.317) 2.236 (0.434) 3.267 (0.605) 4.058 (0.728)

D, =y,A 1511(0.318) 2.233 (0.436) 3.263 (0.606) 4.050 (0.734)
Yes=3

Ye. = Yy, =0.5 Yea =Yg =1 Yoo = Vg, =2 Yea =Yg, =3

D, =y,Id 1.513(0.320) 2.238 (0.439) 3.267(0.611) 4,054 (0.733)

D, =y, A  1514(0.317) 2.238 (0.436) 3.269 (0.608) 4,057 (0.731)

As in Sermarini ef al. (2020), the design generated with the same set of parameters assumed for
data does not necessarily present better performance. In the present study, by not informing the re-
lationship between test lines in the search for the optimal or near optimal design, it is recommended
to adopt low genetic variance (y,, = 0.5). However, when searching for the design when such a
relationship was declared, no consistency in results was observed, and a general recommendation is
not appropriate.

In the study by Bueno Filho & Gilmour (2003), which evaluated three different assumptions for
A, the authors showed that, for selection purposes, genetic relationship plays an important role in
the search for the optimal block design. The authors reported that some designs are quite robust to
misspecification of the covariance structure. For simple genetic covariance structures, which were
defined as A = Zld which resembles the structure used in this work Dy = v,,1d, for generating
the designs; the optimal design is in the class of optimal designs for unrelated treatments. For
special covariance structures, which resemble the D, =y, A structure used in this work, the authors
state that it is possible to find an optimal design outside the class of optimal designs for unrelated
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Table 2. Mean and standard deviation of selection success for designs generated with y,;, =0.5, 1,2, 3 and assumed genetic
variance for data, y,, = Yy =05,1,2,3, considering the kinship matrix, D, = y,, A, and without considering the kinship

matrix, D, =y, n,lcl, for selection percentage s = 15%.

Y =05

Y. =Yg, =05 Y. =Yg, =1 Yo, =Yg, =2 Y =Yg, =3

D, =y, Id 61846 (4.532) 66.559 (3.929) 71.106 (3.482) 73.297 (3.120)

D, = y,,A 61599 (4.417) 66.442 (3.879) 70.954 (3.375) 73.163 (3.204)
Vg =1

Yoo =Yg, =05 Yea =Yg, =1 Yea =Yg =2 Yo =Yg, =3

D, =v,,Id 61.608(4.320) 66.558 (3.781) 70.917 (3.358) 73.215(3.208)

D, =y, A 61582 (4.418) 66.442 (3.959) 70.938 (3.503) 73.275 (3.691)
Yo =2

Y. =Yg =05 Yea =Yg, =1 Yea =Yg =2 Yea =Yg, =3

D, =y, Id  61.626(4.320) 66.494 (3.965) 71.021 (3.437) 73.327(3.124)

D, =y,,A 61477 (4.427) 66.477 (3.919) 70.917 (3.467) 73.154 (3.144)
Vg =3

Yo =Yg, =05 Yea =Yg, =1 Yea =Yg =2 Yo =Yg, =3

D, =y, Id 61.438(4.357) 66.406 (3.889) 70.841 (3.363) 73.239 (3.164)

D, =y, A 61503 (4.363) 66.450 (3.760) 70.844 (3.554) 73.315 (3.082)

treatments.

Regarding the assumption of dependence and independence between test lines, in the study car-
ried out by dos Santos, 2023, no major differences were observed in the comparison measures when
considering the dependence or independence between the test lines effects in the design model, cor-
roborating results presented in this work. However, the author states that when the kinship matrix
is used in the analysis model, there is a gain of at least one truly good test line selected by the model.

Additionally, when observing genetic gain and selection success, these were greater in cases
where the ratio between genetic and residual variance for data were greater, a fact expected and
also observed by Cullis et al. (2006), Clarke & Stefanova (2011), Santos (2017), Goes (2020) and
Sermarini et al. (2020).

Finally, Figures 2 and 3 present the densities of the estimates of variance components of fitted
models for optimal designs obtained considering the kinship matrix A, and without considering the
kinship matrix. For y,, , in Figure 2, in general, it was observed that the assumptions considered to
generate the designs did not significantly influence the estimates of variance components. However,
itisinteresting to highlight that: (i) when assuming independence between the genetic effects when
searching for an optimal design, the cases presenting the least bias in relation to the estimates of
variance components were for y,, = 2 at Yg = 0.5 and for vy, = 3 aty, = 2; (ii) when assuming
the pedigree matrix of the genetic effects in the design model, the smallest bias in the estimates
of variance components was observed when y,, = 3 and vy, = v, = 3. The same occurs when
analyzing vy, in Figure 3, which suggests that for higher variance values it is more appropriate
to declare the information on kinship between treatments effects. In addition, there were cases in
which the components presented overestimation and underestimation, with slight tendencies.
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kinship matrix A and for the p-rep designs generated without considering the kinship matrix, for the four v, values. The
vertical line represents the expected parameter value.
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Figure 3. Estimates of parameter related to the genetic variance (v,,) for the p-rep designs generated considering the
kinship matrix A and for the p-rep designs generated without considering the kinship matrix, for the four of v, values.
The vertical line represents the expected parameter value.
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4, Conclusions

In this study, spatially optimized p-rep designs for 598 test lines were compared in an experi-
mental area of 36 rows by 20 columns, with the objective of evaluating genetic gain and selection
quality through measures of realized genetic gain and selection success when assuming some char-
acteristics for the designs. That is, four values for the generation of the designs and for the simulation
study, Yg, and v, = Vg, being 0.5, 1, 2, 3; a percentage value for the repeated test lines, p = 20%; a
value for the selection percentage, s = 15% and a scenario for the values of the nongenetic effects. In
addition, assumptions of dependence and independence between the treatment effects, in this case,
the test lines, were considered.

No large differences were identified for realized genetic gain and selection success among the
designs that were generated assuming the pedigree matrix (A) and the designs that considered in-
dependence (Id) between the treatment effects. The same was observed for selection success. Re-
garding the distribution of test lines in the experimental area, including or not the pedigree matrix
did not interfere with randomness, but it is noted that for higher values of genetic variance, the fre-
quency of test lines in neighboring plots and on the border of the experimental area is lower. When
Yg, = 2 is assumed, there is a smaller number of clustered replicates, a smaller number of replicates
with at least one neighboring replicate, and a smaller number of replicates on the border.

It is highlighted that the results for the quality of selection are strongly affected by the charac-
teristics of the data, since the higher the ratio between the genetic and residual variances, the higher
the values for the RGG and the success of selection. This study has some limitations. The data were
simulated based on a set of parameters used by plant breeding programs and the same experimen-
tal area size, the same percentage of repeated test lines, the same percentage of selection, a single
scenario for the values of nongenetic effects and the genetic variances were supposed to be equal.
In addition, the matrices A and G used in this work, extracted from CIMMYT, are for the wheat
crop. Therefore, other results could be found if different scenarios were assumed, for example, for
the percentage of repeated test lines, percentage of selection and higher values for the nongenetic
variance parameters. Therefore, it is expected that experimental designs that provide more detailed
information about treatments present a better performance in terms of precision and reliability of
results, since greater amount of information allows a more robust analysis and a better identification
of the treatment effects.
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