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Collisional Brownian engines have been proposed as alternatives to nonequilibrium nanoscale engines.
However, most studies have focused on the simpler overdamped case, leaving the role of inertia much less
explored. In this work, we introduce the idea of collisional engines to underdamped Brownian particles, where
at each stage the particle is sequentially subjected to a distinct driving force. A careful comparison between
the performance of underdamped and overdamped Brownian work-to-work engines has been undertaken. The
results show that underdamped Brownian engines generally outperform their overdamped counterparts. A key
difference is the presence of a resonant regime in underdamped engines, in which both efficiency and power
output are enhanced across a broad set of parameters. Our study highlights the importance of carefully selecting
dynamics and driving protocols to achieve optimal engine performance.
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I. INTRODUCTION

The performance of engines and the search for protocol op-
timizations constitute fundamental issues in thermodynamics
since the seminal work by Carnot [1,2] in 1872. Notwith-
standing, the construction of different and reliable engine
setups aimed at converting one kind of energy into another
one has become more sophisticated, above all with the advent
of nanotechnology and new experimental procedures for in-
vestigating and creating nanoscale engines. Contrasting with
macroscopic engines, fluctuations in nanoscale systems can
become important, making necessary the use of stochastic
methods in order to describe their dynamics and thermody-
namic properties, as well as its relationship with the system
performance. Stochastic thermodynamics (ST) constitutes a
unified tool for describing nanoscale systems operating far
from equilibrium [3–6] and addressing the role of fluctuations
and dissipation.

Recently, a collisional (or sequential) description has been
proposed and extended for Brownian systems [7–10]. In its
simplest version, a single particle interacts sequentially with
a thermal bath and is subjected to a specific work source at
each stage. This approach differs from the situation where the
system interacts with all thermal baths simultaneously [11,12]
and has been studied in distinct cases of nonequilibrium ther-
modynamics [13,14], open quantum systems [14–17], and
information and computational processing [14,18–20]. Under
suitable conditions, the sequential interaction operates as a
heat engine or work-to-work converters, generating useful
power. Despite this, its performance can be small or strongly
reduced depending on the way it is designed, suggesting the
choice of ingredients such as period, the duration of each
stage, temperatures, the strength of driving worksources, and
others as fundamental [7–9,13,21].

For describing the motion of particles in a colloidal en-
vironment subjected to random forces, a fundamental frame-
work is the Langevin equation or Fokker-Planck approach
[22,23]. Its two employed variants, namely the underdamped
and overdamped cases, capture distinct and essential aspects
of particle dynamics and stochasticity. The underdamped vari-
ant emphasizes inertia and retains the correlation between
particle and position, while the overdamped variant simpli-
fies the description and is suitable for systems with rapid
relaxation. Despite the extensive research about them [24–31],
little is known about their thermodynamic implications and
the influence of inertial considerations on system performance
and dissipation [11,12].

In this paper, we advance upon previous works [7–10]
by introducing and extending the concept of collisional
Brownian engines to underdamped systems. For equal tem-
peratures at each stage, we obtain exact expressions for
Thermodynamic quantities such as work, heat, and dissi-
pation, solely expressed in terms of Onsager coefficients,
irrespective of the driving protocol. For distinct driving
worksources, we provide a comparative study between under-
damped and overdamped dynamics. The underdamped case is
significantly different [7–10] due to the presence of a reso-
nance phenomenon, resulting in a specific region on the phase
space in which the engine operates at maximum power and
maximum efficiency. The present study sheds light on the
importance of dynamics and driving protocols for achieving
optimal engine performances.

This paper is structured as follows: In Sec. I, we introduce
the model, present the main expressions for the underdamped
system, and discuss the optimization approaches. In Sec. II,
we compare the performance and dissipation of engines gov-
erned by each dynamic and highlight the resonant phenomena
in the underdamped engine. Finally, conclusions are drawn in
Sec. III.

2470-0045/2024/110(5)/054125(10) 054125-1 ©2024 American Physical Society

https://orcid.org/0000-0002-9668-7956
https://orcid.org/0000-0002-7850-9857
https://orcid.org/0000-0003-4980-1653
https://orcid.org/0000-0002-8450-362X
https://ror.org/036rp1748
https://ror.org/04nbhqj75
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.054125&domain=pdf&date_stamp=2024-11-20
https://doi.org/10.1103/PhysRevE.110.054125


FORÃO, FILHO, AKASAKI, AND FIORE PHYSICAL REVIEW E 110, 054125 (2024)

II. THERMODYNAMICS OF UNDERDAMPED
BROWNIAN ENGINES

Our setup is composed of a Brownian particle sequentially
placed in contact with a given thermal reservoir and subjected
to a total force f̃i(x, t ) per mass at each stage i, i ∈ {1, 2}.
The former and latter contact has duration τ1 and τ − τ1,
respectively, in which at each stroke i, the system dynamics
is described by the equations,

d

dt
vi(t ) = f i(x, t ) − γi vi(t ) + ξi(t ),

d

dt
xi(t ) = vi(t ). (1)

Here, γi represents the viscous coefficient per mass. The
stochastic forces follow standard white noise properties:
〈ξi(t )〉 = 0 and 〈ξi(t ) ξ j (t ′)〉 = 2 γi kB Ti δi j δ(t − t ′)/m. The
probability distribution of the particle Pi(x, v, t ) at the stroke
i is described by Fokker-Planck-Kramers (FPK) [5,7,23,32],

∂Pi

∂t
= −

[
v
∂Pi

∂x
+ f i(x, t )

∂Pi

∂v
+ ∂Ji

∂v

]
, (2)

where f i(x, t ) is decomposed in the following form f i(x, t ) =
f ∗
i (x) + f̃i(t ), where f ∗

i (x) = −κ xi/m depends on the posi-
tion, f̃i(t ) is time dependent and Ji is a current of probability
given by

Ji = −γi v Pi − γi kB Ti

m

∂Pi

∂v
. (3)

At t = τ1, the particle switches to a second thermal bath at
temperature T2 and is subjected to a second force f̃2(x, t ),
which acts during the interval t ∈ [τ1, τ ). At t = τ , a cycle
is completed, and the particle returns to the first thermal
bath with T1 and f̃1(x, t ), starting a new cycle. The colli-
sional approach assumes the exchange of reservoirs happens
instantaneously, effectively treating each switching as an adi-
abatic process. Some remarks about Eq. (2) are in order.
First, the probability distribution has Gaussian form regard-
less of the temperatures and drivings. Second, the specific
case where f̃1(t ) = f̃2(t ) = 0 and the temperatures are equal,
T1 = T2, corresponds to the Boltzmann-Gibbs distribution,
describing equilibrium thermodynamics. Third, even when
T1 �= T2 and/or f̃1(t ) �= f̃2(t ), the system evolves towards a
nonequilibrium steady state (NESS). Lastly, in deriving the
model’s thermodynamics, we assume that both Pi(v, x, t ) and
Ji(v, x, t ) vanish as v → ±∞ and/or x → ±∞. The mean
energy Ui(t ) = m〈v2

i 〉/2 + κ〈x2
i 〉/2 has the time derivative ex-

pressed as the sum of two components,

d

dt
Ui(t ) = −[Ẇi(t ) + Q̇i(t )], (4)

where the former and latter right terms denote the work (per
time) done on the particle by the force f̃i(t ) and the heat
flux Q̇i(t ) exchanged with the thermal bath at the stroke i.
Explicitly,

Ẇi(t ) = −m 〈vi〉(t ) f̃i(t ) (5)

and

Q̇i(t ) = γi
(
m

〈
v2

i

〉
(t ) − kB Ti

)
, (6)

respectively. From now on, we shall restrict ourselves to the
case where τ1 = τ/2, in which the external drivings can be
expressed in the following form:

f̃i(t ) =
{

X1 g1(t ), 0 � t < τ/2
X2 g2(t ), τ/2 � t < τ,

(7)

where the Xi denotes the strength of the thermodynamic force
per mass acting on the system, whereas gi(t ) defines the
shape of the protocol. By evaluating (4) over a complete cycle
and considering that the system returns to its initial state,
one derives the first law of thermodynamics averaged over
a period in NESS: Ẇ 1 + Ẇ 2 + Q̇1 + Q̇2 = 0. Similarly, the
second law of thermodynamics relates to the time evolution
of entropy Si = −kB〈ln Pi〉, which, together with Eq. (2), can
be expressed through the difference between the entropy pro-
duction rate σi(t ) and the entropy flux 	i(t ):

d

dt
Si = σi(t ) − 	i(t ), (8)

where

σi(t ) = m

γi Ti

∫
J2

i

Pi
dxdv and 	i(t ) = Q̇i(t )

Ti
. (9)

It is straightforward that σi(t ) � 0, in accordance with
the second law of thermodynamics. By evaluating the en-
tropy Si over the complete period, one has that σ = 	 =
−(Q̇1/T1 + Q̇2/T2), where σ = (

∫ τ1

0 σ1(t )dt + ∫ τ

τ1
σ2(t )dt )/τ

and 	 = (
∫ τ1

0 	1(t )dt + ∫ τ

τ1
	2(t )dt )/τ . We can also relate

σ̄ with components Q̇
′
is and Ẇ

′
is by means of the following

expression:

σ̄ = 4 T 2

4 T 2 − 
T 2

[
−(Ẇ 1 + Ẇ 2)

T
+ (Q̇1 − Q̇2) 
T

2 T 2

]
,

(10)
where we introduce the variables T = (T1 + T2)/2 and 
T =
T1 − T2, together the first law of thermodynamics. Since one
of our goals is to compare overdamped and underdamped
setups, we will focus on the simplest case where the tempera-
tures are equal (
T = 0), resulting in the system having only
two thermodynamic forces, closely related to X1 and X2. By
adjusting X1 and X2, the system can operate as a work-to-work
converter, generating useful power output during one of the
two strokes. Numerous examples exist in Brownian engines
and biological physics where work-to-work converters op-
erate [3,26,27,33–36], converting energy (e.g., chemical or
mechanical) into power output.

In this case, Eq. (10) reduces to

σ̄ = −(Ẇ 1 + Ẇ 2)

T
. (11)

In order to exploit the driving changes at each stroke,
we express gi(t ) in terms of its Fourier components. More
specifically,

g1(t ) = a0

2
+

∞∑
n=1

an cos

(
2π n t

τ

)
+ bn sin

(
2π n t

τ

)
(12)
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and

g2(t ) = c0

2
+

∞∑
n=1

cn cos

(
2π n t

τ

)
+ dn sin

(
2π n t

τ

)
, (13)

respectively, where the driving to be considered is character-
ized by obtaining the coefficients an, bn, cn, and dn under the
conditions cn = dn = 0 for i = 1 and an = bn = 0 for i = 2.
It is worth mentioning that Fourier representation ensures the
boundary conditions with respect to the probability continuity
at t = τ/2 and the fact the system returns to the initial state at
t = τ . By averaging Eq. (1), one finds the following general
expression for 〈v〉(t ):

〈v〉(t ) =
∞∑

k=1

(X1 · a1vk + X2 · a2vk ) cos

(
2π k t

τ

)

+ (X1 · b1vk + X2 · b2vk ) sin

(
2π k t

τ

)
, (14)

where aivk and bivk correspond to Fourier coefficients obtained
for the mean velocity and depend on the driving form from
Eqs. (12) and (13). Its explicit form is shown in Appendix B.
By plugging Eq. (14) into Eq. (5) and averaging over the
duration of each stroke, Ẇ 1 and Ẇ 2 can be expressed in terms
of fluxes J ′

i s and thermodynamic forces fi = Xi/T (i ∈ {1, 2})
given by

Ẇ 1 = −T J1 f1 = −T
(
L11 f 2

1 + L12 f1 f2
)
, (15)

Ẇ 2 = −T J2 f2 = −T
(
L22 f 2

2 + L21 f2 f1
)
, (16)

where Li j denote the Onsager coefficients, with their main
expressions listed in Appendix B. In the regime of small 
T ,
Eq. (10) can be rewritten as σ ≈ J1 f1 + J2 f2 + JT fT , where
the thermodynamic flux JT is given by JT = LT T fT . Here,
fT = 
T/T 2, and LT T represents the corresponding Onsager
coefficient. Since we are focused on the isothermal case,
fT = 0. Moreover, similar to the overdamped case, there is
no coupling between work fluxes and heat flux, implying that
L1T = LT 1 = L2T = LT 2 = 0, consistent with the fact that this
class of engines operates solely as work-to-work converters,
rather than converting heat into work output.

In order for the system to operate as a work-to-work con-
verter, it is required an amount of Ẇ in = Ẇ i be partially
converted into work output P = Ẇ out = Ẇ j , where P � 0 >

Ẇ in and |Ẇin| > P. The efficiency of such conversion is thus
given by

η ≡ − P
Ẇ in

, (17)

where 0 � η � 1. Notice that, for certain parameter ranges,
Ẇ j can exceed Ẇ i, meaning that in such cases, the input work

Ẇ in = Ẇ j is partially converted into output work Ẇ out = Ẇ i.

Hence, when f̃i ↔ f̃ j , it follows that Ẇ in ↔ Ẇ out, imply-
ing η ↔ 1/η. This regime change is further discussed in
Appendix C. When expressed in terms of Onsager coefficients
and thermodynamic forces, η is given by

η = −Jj f j

Ji fi
= −Lj j f 2

j + Lji fi f j

Lii f 2
i + Li j f j fi

. (18)

Overview about system maximizations

There are distinct routes for optimizing power and effi-
ciency in Brownian work-to-work converters. As stated in
previous works [8,9,11], it is possible to express their opti-
mized values in terms of Onsager coefficients. In this section,
we briefly review these methods.

Starting with the power and considering that fi is held
fixed, the engine regime is constrained by 0 < f j < | fm|,
where fm = −Lji fi/Lj j . The force f MP

j that ensures maxi-
mum power PMP is given by f MP

j = −Lji fi/2Lj j = fm/2. By
inserting this relation into Eqs. (16) and (18), we obtain the
following expressions for quantities at maximum power:

PMP = T
L2

ji

4 Lj j
f 2
i , ηMP = L2

ji

4 Lj j Lii − 2 Lji Li j
. (19)

Alternatively, one can search for f ME
j by optimizing the effi-

ciency with respect to f j ,

f ME
j = Lii

Li j

(
−1 +

√
1 − LjiLi j

L j jLii

)
fi, (20)

and associated maximum efficiency is given by

ηME = −Lji

Li j
+ 2LiiL j j

L2
i j

(
1 −

√
1 − Li jL ji

LiiL j j

)
, (21)

and corresponding PME is obtained by inserting f ME
j into the

expression for P, respectively.
We close this section by pointing out the role of distinct

temperatures. First, both Ẇ 1 and Ẇ 2 are independent on
temperatures for the sort of drivings we shall consider and,
hence, P remains unchanged. On the other hand, η will not be
affected and σ̄ is modified only by a rescaling of temperatures
for work-to-work converters. However, the situation changes
when temperatures vary at each stroke, since Q̇1 and Q̇2 will
differ due to the inclusion of a term proportional to the tem-
perature difference. Since both Ẇ 1 and Ẇ 2 remain unchanged,
η is expected to decrease in general.

III. RESULTS

Unless explicitly stated otherwise, we shall adopt kB =
m = 1, γ1 = γ2 = γ and analysis will be carried out for dis-
tinct τ ′s, f ′

2s, and κ ′s. In order to draw a comparison with
previous results (see, e.g., Refs. [7–10]), we have opted for
depicting the main results in without units. In this section, we
draw a comparison between underdamped and overdamped
Brownian engines for different driving forces. Our analysis
assumes a constant (square wave) driving, given by g1(t ) =
g2(t ) = 1, and a linear (sawtooth) driving, given by

gi(t ) =
{
λt, 0 < t � τ/2
λ(t − τ/2) τ/2 < t � τ,

(22)

where λ is a constant introduced in such a way gi(t ) is di-
mensionless. In all cases we set λ = 1. Fourier components
of each driving protocol can be found in Appendix B. For
completeness, we also investigate sinusoidal drivings at each
stage, as can be seen in Appendix D.
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FIG. 1. For the underdamped case, the depiction of the power
output P (left) and efficiency η (right) as functions of f2 for constant
(top) and linear (bottom) drivings and different periods τ . Black and
red dots represent PMP and ηMP, respectively. Parameters: f1 = T =
1, γ = 1, and κ = 1.

A. Dynamics comparison: Performance contrast

In order to obtain a first insight into the similarities and dif-
ferences between underdamped and overdamped collisional
Brownian engines, Figs. 1 and 2 depict, for distinct periods
τ ′s, the power and efficiency versus the force X2 = T f2 for
constant and linear drivings for the underdamped and over-
damped regimes, respectively. To simplify matters, this first
analysis will be carried out for γ = κ = 1. In both cases, the
system can operate as a work-to-work converter by choosing
f2 constrained between 0 and | fm|. We point out some re-
markable differences between them, which can be understood
from the relationship among quantities and Onsager coeffi-
cients. For the (underdamped) constant protocol, expressions
for Onsager coefficients (listed in Appendix B) obey a spe-
cial symmetry L11 = L22 = −L12 = −L21. As a consequence,
the engine regime is delimited by 0 � f2 � fm = f1 (for all
values of τ ), and both P and η acquire simple forms, given
by P = L22 f2( f2 − f1) and η = f2/ f1, respectively. As a re-
sult η solely depends on the ratio between forces, followed
by maximum efficiency and maximum power occuring at
f ME
2 = f1 and f MP

2 = f1/2, respectively, irrespective the val-
ues of κ, ω, and τ . Maximum values are promptly obtained
from Eqs. (19)–(21) and read ηMP = 1/2, ηME = 1,PMP =
T L22 f 2

1 /4. While the former two are independent on the pe-
riod, there is an optimal period τo providing maximum PMP

because L′
i js exhibit a nonmonotonic behavior as τ increases.

In particular, for the sort of parameters PMP is peaked at,
τo = 6.311..., with a maximum given by PMP = 0.05148 for
f1 = 1. All such features are quite different from the over-
damped case where the engine regime is strongly dependent
on τ . In particular, both power and efficiencies decrease as τ

FIG. 2. For the overdamped case, the depiction of the power
output P (left) and efficiency η (right) as functions of f2 for constant
(top) and linear (bottom) drivings and different periods τ . Again,
black and red dots represent PMP and ηMP, respectively. Parameters:
f1 = T = 1 and γ = 1.

is increased (see, e.g., left panels). Conversely, PMP decreases
as τ is increased for the overdamped case.

The linear case is more revealing. Although Onsager coef-
ficients also satisfy the relations L11 = L22 and L12 = L21, one
has L11 �= −L12, and the ratio L11/L22 increases “faster” than
L12/L21 as τ is increased. As a first consequence, fm behaves
differently from the constant case and smoothly decreases as τ

is increased. Also, optimized quantities PMP, ηMP,PME , and
ηME behave differently from the constant case and depend
on the interplay between κ and τ . For κ = f1 = 1, PMP is
maximum for τo = 7.345..., whose associate power and ef-
ficiency are given by PMP = 0.170... and ηMP = 0.2765...,
respectively. The overdamped case also presents an optimal
τo ensuring maximum PMP. In particular, for f1 = γ = 1, it
occurs at τo = 4.695... with a substantially lower maximum
power PMP = 0.0224....

The differences between underdamped and overdamped
cases can be understood in terms of some heuristic (non
rigorous) arguments. We first note that, for a given protocol,
strength driving forces in overdamped and underdamped cases
operate in opposite and same directions in the work-to-work
regime, respectively. This is because there is no need for an
extra force to bring the system back to its initial position in the
latter case, while in the former (overdamped) case, due to the
absence of a restoring potential, it is essential for the system
to have both drivings acting in different directions in order
to generate useful power. Such findings seem to be general
and have also been verified for periodic protocols. However,
there are some subtleties for sinusoidal drivings, partly due
to the phase difference between drivings (see Appendix D).
Another difference between underdamped and overdamped
lies in the interplay between fm and τ . Although it can be
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understood directly from Onsager coefficients, our heuristic
argument suggests that the mean velocity aligns with the
external force in both stages (for the overdamped case) for
sufficiently long periods and hence no useful power output is
generated. This is quite different from the underdamped case,
where the influence of the restoring force and its interplay
with period and driving lead to different behaviors.

B. Deterministic resonant phenomena
in underdamped dynamics

The presence of a restoring potential in the underdamped
case results in a resonant phenomena when an external force
drives on the system and can significantly influence its per-
formance and the behavior of thermodynamic quantities.
Such phenomena shares some similarities with the so-called
stochastic resonance (SR), recently verified in an experimen-
tal study involving interacting resonant Brownian [37]. In the
present case, our goal is to study the effects of deterministic
resonance due to external driving at each stroke.

We start this section by deriving the resonant κres in terms
of the system’s parameters. The external driving is also a
periodic force with total period τ and frequency ω = 2π/τ .
The kth contribution to the Fourier series of the mean velocity
(14) is expressed as

〈v(t )〉k−th = (X1 · a1vk + X2 · a2vk ) cos

(
2π k t

τ

)

+ (X1 · b1vk + X2 · b2vk ) sin

(
2π k t

τ

)
. (23)

The resonant phenomena is characterized by a maximum of
amplitude of 〈v(t )〉k−th with respect to the time t and κ ,
described by the following relation:

κres =
(

2 π k

τ

)2

, k integer. (24)

Such a result is protocol independent, solely depending on
the natural frequency ω0 = 2π/τ , and hence valid for any
generic external driving. The relationship between resonance
and system performance is depicted in Fig. 3 for constant and
linear drivings. We first note that it can remarkably influence
the system performance, not only as forces f1/ f2 are varied
(not shown), but also for their optimized values PMP/ηMP

and PME/ηME evaluated at f2 = f MP
2 and f2 = f ME

2 , respec-
tively. In both cases, resonance lines (continuous lines in heat
maps) obey Eq. (24) and are followed by increases of power
and efficiency for constant and linear drivings for odd and
any integer k, respectively. A direct inspection of Eq. (24)
for constant drivings reveals that 〈v(t )〉k−th << 1 for even k,
leading to very small performances in such cases. The bottom
left panels reinforce these findings for κ = 4π2 in which
τres = k. Also, in accordance with what was stated in the
previous section, ηMP and ηME are always constant in such a
case for constant protocols. As a complementary analysis, we
also compare numerically the performances at the resonance
and out of the resonance. For example, for τ = 5, κres =
4π2/25, and κ = 1, both constant (linear) drivings show
that the system operates with higher performances at reso-
nance PMP = 5, 12.10−2(9, 91.10−2) than out of resonance

(a) (b)

(c) (d)

FIG. 3. Top panels: (a) depicts the maximum power PMP and
(b) depicts the efficiency at maximum power ηMP heat maps for linear
drivings. (c) shows the same, but for constant drivings. Continuous
lines show the resonance lines according to Eq. (24). All maximiza-
tions have been carried out with respect to f2. Since ηMP = 1/2 for
constant drivings, heat maps in such a case have not been shown.
In (d), there is a plot of PMP for constant (dashed) and linear (con-
tinuous) drivings for κ = 4π 2. Inset: the same but for ηME (linear).
Parameters: f1 = T = 1 and γ = 1.

PMP = 4, 23.10−2(8, 12.10−2), respectively, but in both
cases, efficiencies are close to each other, with ηMP =
1/2(0.38). Hence, the existence of resonance in the un-
derdamped case can provide a remarkable advantage over
the overdamped dynamics, not only because it is protocol
independent but also because it can enhance power without
sacrificing efficiency. However, a common trait of all res-
onance patterns is that they are associated with increasing
dissipation (see, e.g., right panels in Fig. 5). Similar find-
ings are also observed for harmonic drivings, as depicted in
Appendix D for drivings dephased of π at each stroke. As
a consequence, resonance lines, maximum PMP and ηME are
also half period translated (see, e.g., Fig. 8). As a final com-
ment, although resonance points are very close to the peaks of
PMP and ηME (inset), they do not precisely coincide (although
differences typically yield at the third decimal level).

FIG. 4. The power output for the linear (left) and constant (right)
protocols in log base ten scale considering some experimental quan-
tities. Here, we use m ≈ 10−18 kg and γ ≈ 10−20s−1.

054125-5



FORÃO, FILHO, AKASAKI, AND FIORE PHYSICAL REVIEW E 110, 054125 (2024)

FIG. 5. Left and center panels depict the mean entropy production σ̄ for the overdamped [(a) and (d)] and underdamped [(b) and (e)] versus
f2 for the same range, resonant lines, and parameters as in Fig. (7). Black dots represent attempts to the maximum power. Panels (c) and (f)
show entropy production heat maps for the same parameters from Fig. (3). Top and bottom panels attempt to the constant and linear drivings,
respectively. Parameters: f1 = 1, γ = 1, and T = 1 in all plots and κ = 1 for the 2D plots.

We close this section by estimating how resonant phenom-
ena can be feasible from an experimental point of view. In
principle, our framework could be tested using optical tweezer
systems, in which the harmonic potential and the external
drives can be generated via controlled electric fields [38–41].
For that, we take some values for laboratory quantities: m ≈
10−18 kg, γ ≈ 10−20s−1 by imposing the thermodynamics
force X1 ≈ 0.003 fN/kg in the underdamped case (m/γ 
 1),
and in room temperature with κ ≈ 1 µN/m. For such values,
the resonant regime peaks at X2 ≈ 0.5 fN/kg with a period
τ ≈ 6 µs in the constant case. Figure 4 depicts the maximum
power heat maps (J/s) for constant and linear protocols for
parameters described above. As in Fig. 3, resonance positions
coincide in both constant and linear drivings, consistent to be
protocol independent. Also in accordance to previous results,
linear drivings present more resonance lines. Although heat
maps suggest that resonances can be experimentally verified,
it requires a fine tuning of model parameters, indicating that a
small perturbation of parameters (e.g., the time cycle and/or
in the harmonic potential) can shift the particle from the
resonance region.

C. Entropy production

Dynamics comparison and dissipation at resonant regimes

The entropy production has been recognized as a
key indicator of system dissipation, being investigated in

distinct contexts, such as in the existence of different trade-
offs between dissipation and fluctuation, expressed via TURs
[42–45], its interplay or compromise with power and effi-
ciency in the context of thermal engines [7–9,46,47], or even
its usage for the characterization of phase transition regimes
[48–50]. Despite the fact that it is commonly desired to mini-
mize entropy production and simultaneously maximize power
and/or efficiency, the second law of thermodynamics pre-
cludes all of these goals from being simultaneously satisfied.
With this in mind, this section aims to depict the entropy pro-
duction behavior of our collisional (underdamped Brownian)
engine regimes, above all at the resonance regimes, as well as
drawing a comparison with overdamped dynamics. In terms of
Onsager coefficients, Eq. (11) acquires the form σ̄ = L11 f 2

1 +
L22 f 2

2 + (L12 + L21) f1 f2. In order to obtain insight, Fig. 9 de-
picts, for the same parameters as in Figs. 1–3, the behavior of
entropy production σ̄ versus f2 and σ̄MP heat maps, evaluated
at f2 = f MP

2 , respectively. Starting with constant protocol,
it takes a simple form σ̄ = L22( f2 − f1)2, meaning that its
minimum value σ̄mS = 0 coincides with the maximum effi-
ciency point f ME

2 = f1, irrespective of the period and model
parameters. This differs from the overdamped case, not only
because σ̄mS increases as τ is increased (overdamped) but also
the underdamped case is characterized by 0 = σ̄mS �= σ̄m > 0
(for the overdamped case one has σ̄m = σ̄mS > 0). Another
important comparison involves the behavior of σ̄MP and σ̄ME

(not shown). Both of them increase as τ is increased. However
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the underdamped case permits κ to be adjusted to control
the dissipation rather than the overdamped case, or even to
ensure the desirable compromise between power, efficiency,
and dissipation (e.g., for the parameters in Fig. 5, τ and κ can
be adjusted for ensuring larger P′s and lower σ̄ ′s).

Lastly, we address the consequences for the dissipation
in the resonant regime, as depicted by the right panels of
Fig. 5 for the same parameters as in Fig. 3. Resonance pat-
terns are also manifested in the entropy production behavior.
Apart from the explanation in terms of Onsager coefficients,
we present an alternative argument for the constant protocol.
Since ηMP = 1/2 implies that Ẇ 1 = −2Ẇ 2, the entropy pro-
duction acquires the simple form σ̄MP = Ẇ 2/T , meaning that
dissipation heat maps behave similarly to the power heat map,
albeit by a factor T . Although the above similar relation is
not presented for the linear protocol, resonant patterns are still
visible, but less pronounced than power output and efficiency
heat maps. This is because entropy production in such cases
assumes values close to those outside the resonance lines.

IV. CONCLUSIONS

In this paper, we introduced a sequential engine description
for underdamped Brownian engines in which the particle is
subjected to distinct worksources at each stage. Exact ther-
modynamic quantities were obtained from the framework of
stochastic thermodynamics. The influence of distinct driving
protocols and a detailed comparison with its overdamped
dynamics were undertaken. Our findings highlighted the re-
markable advantages of the underdamped dynamics when
compared with its overdamped counterpart, particularly in
scenarios where minimizing dissipation while maximizing
power is crucial. Despite the overdamped dynamics exhibiting
superior performance in some specific cases, it is typically
more dissipative, less efficient, and presents inferior power
outputs. Furthermore, the second main feature of the under-
damped case is the existence of resonance lines, which can
significantly enhance the system’s performance. The reso-
nance regime not only increases the power but also enables
such enhancements without compromising efficiency. This
underscores the role of such phenomena as a mechanism
for optimizing engine operation and opens possibilities for
the development of efficient and versatile Brownian engines.
Overall, our comparative analysis emphasizes the importance
of carefully selecting dynamics and driving protocols to opti-
mize engine performance.
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APPENDIX A: GENERAL FEATURES ABOUT
OVERDAMPED BROWNIAN ENGINES

Here we briefly describe the main features of the over-
damped version, in conformity with Refs. [7–10]. Consider
a Brownian particle of mass m in contact with a thermal bath

at temperature Ti and described by the Langevin equation

dvi

dt
= −αi

m
vi + f i(t ) + ξi(t ), (A1)

where γi = αi/m. The above equation is formally identical
to the overdamped harmonic oscillator subject to the force
f ∗
i (x) = −κxi/m, simply by replacing x → v, κ/α → γi, and

1/α → γi/m. Expressions for work, heat, and entropy produc-
tion are obtained in the same way as in the underdamped case,
by using the associated Fokker-Planck (FP) equation. In this
case, the time evolution of the probability distribution Pi(v, t )
is given by

∂Pi

∂t
= −∂Ji

∂v
− f i(t )

∂Pi

∂v
, (A2)

where Ji denotes the probability current given by

Ji = −γivPi − γikBTi

m

∂Pi

∂v
, (A3)

which is identical to Eq. (3). Applying the usual boundary
conditions, in which both Pi(v, t ) and Ji(v, t ) vanish as |v| →
∞, the time evolution of the system’s energy Ui(t ) = m〈v2

i 〉/2
allows us to obtain the main expressions for the thermody-
namic quantities, identical to those presented in the main text
[see, e.g., Eqs. (4)–(9)]. By averaging Ẇi(t ) over a complete
cycle, we also obtain relations identical to Eqs. (15) and (16),
whose Onsager coefficients read as in [7,8]:

L11 = 1 − 2

γ τ
tanh

(γ τ

4

)
(A4)

and

L12 = 2

γ τ
tanh

(γ τ

4

)
, (A5)

for constant drivings, where L11 = L22 and L12 = L21, and

L11 = 1

12γ τ

{
γ 3τ 3 − 3(γ 2τ 2 − 8) coth

(γ τ

2

)

−24csch
(γ τ

2

)}
(A6)

and

L12 = (−γ τ + 2e
γ τ

2 − 2)(e
γ τ

2 (γ τ − 2) + 2)

2γ τ (eγ τ − 1)
(A7)

for the linear drivings, respectively, where L22 = L11 and
L12 = L21.

As a last comment, it is worth mentioning that a smooth
crossover from the underdamped to the overdamped regime
takes place by increasing γ . By taking the limit γ → ∞ in the
expression for 〈v〉(t ) given by Eq. (14), Fourier components
match those for the overdamped case.

APPENDIX B: GENERAL FOURIER COEFFICIENTS OF
THE MEAN VELOCITY AND GENERAL

ONSAGER COEFFICIENTS

For the underdamped case, Fourier coefficients for the
mean velocity, obtained via the solution of the system
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FIG. 6. Depiction of average powers Ẇ 1,Ẇ 2 (left) and efficiencies (right) for the overdamped (top continuous lines) and for the under-
damped (bottom dashed lines) for f1 = 1. For better visualization, we adopted τ = 1 in the overdamped case and τ = 5 for the underdamped
case. The dashed black lines represent the points where the exchange of fluxes Ẇ out ↔ Ẇ in occurs and the gray region represents a “dud”
regime.

equations, are listed below:

a1kv = 8 πk τ
(
8 πγ k τ an + bn

(
τ 2

(
γ 2 − ω2

D

) − 16 π2 k2
))

(τ 2 (γ − ωD)2 + 16 π2k2)(τ 2 (γ + ωD)2 + 16 π2 k2)
,

a2kv = 8 πk τ
(
8 πγ k τ cn + dn

(
τ 2

(
γ 2 − ω2

D

) − 16 π2 k2
))

(τ 2 (γ − ωD)2 + 16 π2k2) (τ 2 (γ + ωD)2 + 16 π2k2)
,

b1kv = 8 πk τ
(
an

(
τ 2

(
ω2

D − γ 2
) + 16 π2k2

) + 8 πγ k τ bn
)

(τ 2 (γ − ωD)2 + 16 π2k2) (τ 2 (γ + ωD)2 + 16 π2k2)
,

and

b2kv = 8 πk τ
(
cn

(
τ 2

(
ωi

D − γ 2
) + 16 π2k2

) + 8 πγ k τ dn
)

(τ 2 (γ − ωD)2 + 16 π2k2) (τ 2 (γ + ωD)2 + 16 π2k2)
,

expressed in terms of Fourier coefficients an, bn, cn, and dn

for g1(t ) and g2(t ), respectively, and ωD =
√

γ 2 − 4 κ is the
damped oscillation frequency of the system. Onsager coeffi-
cients are related to coefficients aikv and bikv via the following
expressions:

L11 = T
∞∑

n=1

∞∑
k=1

(πk a1kv ak − b1kv (a0 ((−1)k − 1) − πk bk ))

4 π k

+ (1 − δn,k ) ·
(
− ((−1)k+n − 1)(k an b1kv − n a1kv bn)

2 π (k2 − n2)

)
,

L12 = T
∞∑

n=1

∞∑
k=1

(πka2kv ak − b2kv (a0 ((−1)k − 1) − πk bk ))

4 πk

+ (1 − δn,k ) ·
(
− ((−1)k+n − 1)(kan b2kv − n a2kv bn)

2 π (k2 − n2)

)
,

L21 = T
∞∑

n=1

∞∑
k=1

1

4

(
a1kv ck + c0 ((−1)k − 1) b1kv

π k
+ b1kv dk

)

+ (1 − δn,k ) ·
(

((−1)k+n − 1) (k b1kv cn − n a1kv dn)

2 π (k2 − n2)

)
,

FIG. 7. Power output (top) and efficiency (bottom) versus f2 for
sinusoidal protocols and different periods τ . Dashed lines repre-
sent the underdamped regime, while continuous lines represent the
overdamped regime. Black bullets are PMP and red bullets are ηMP.
Parameters: f1 = 1, γ = 1, and κ = 1.
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FIG. 8. Depiction of PMP, ηMP, and σ̄MP heat maps for harmonic drivings. Right bottom panels show PMP and ηME (inset) for κ = 4π 2.
Parameters: f1 and γ = 1 = T = 1.

and

L22 = T
∞∑

n=1

∞∑
k=1

1

4

(
a2kv ck + c0 ((−1)k − 1) b2kv

π k
+ b2kv dk

)

+ (1 − δn,k ) ·
(

((−1)k+n − 1) (k b2kv cn − n a2kv dn)

2 π (k2 − n2)

)
.

For constant and linear drivings, coefficients an, bn, cn, and
d ′

ns are listed below:

a0 = c0 = 1, an = cn = 0, bn = −dn = −1 + (−1)n

πn
(B1)

for constant drivings and

a0 = c0 = τ/4, an = −cn = ((−1)n − 1)τ

2π2n2
,

dn = − τ

2πn
, (B2)

and bn = (−1)ndn for linear drivings, respectively.
For harmonic drivings, Fourier coefficients read
a1 = d1 = 1/2, an = dn = 0 ∀ n �= 1, b1 = c1 = 0,
bn = (1 + (−1n))n/((n2 − 1)π ) = n · cn ∀ n �= 1, and
c0 = −2/π . By inserting them into expressions for
a1kv, a2kv, b1kv , and b2kv , Onsager coefficients can be
promptly evaluated.

APPENDIX C: DISTINCT ENGINE OPERATION REGIMES

As discussed before in the main text, the interplay among
parameters can generate two worksources with opposite sig-

nals, Ẇ in < 0 and Ẇ out > 0, representing the conversion of
one form of energy (per time) into another one, the latter
being identified as the power output. However, an interesting
feature in both overdamped and underdamped cases relies on
the fact that increasing the driving strength f2 while keeping
f1 fixed (and analogously for the reverse situation) can change
the regime operation. This is depicted in Fig. 6 by plotting
Ẇ 1 ↔ Ẇ 2 as f2 is changed. From Eqs. (5) and (15) and
equal L12 = L21 (the all cases here), we see that the change
of regime occurs at f ∗

2 = ±√
L11/L22 f1. The efficiency is

given by η = −Ẇ 1/Ẇ 2 for f2 < f ∗
2 , and 1/η for f2 > f ∗

2 ,
respectively. Since L11 = L22 for constant and linear drivings
and f1 = 1, Ẇ 1 presents a linear behavior, whether operating
as Ẇ in or Ẇ out, whose regime crossover occurrs at f ∗

2 = −1
and f ∗

2 = 1, for the overdamped and underdamped cases,
respectively.

As a last comment, taking into account that the efficiency
is given by the ratio between Ẇ out and Ẇ in, the crossover
between regimes is characterized by infinitely large values of
η (gray lines), in similarity with previous works [51].

APPENDIX D: SINUSOIDAL HARMONIC DRIVINGS

Sinusoidal driving forces appear in several contexts, such
as for modeling Brownian particles under optical beam
traps and optical tweezers [38–41], eletrophoresis process
in colloidal gels [52], or even by measuring heat capacity
experimentally by means of oscilatting temperatures [53,54].
In this appendix we reproduce the aformentioned features for
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harmonic drivings given by

f̃i(t ) =
{

X1 cos
(

2π
τ

t
)
, 0 � t � τ/2

X2 sin
(

2π
τ

t
)
, τ/2 � t � τ.

(D1)

Figure 7 summarizes the main findings for the under-
damped (right) and overdamped (left) panels. While P
increases as τ is increased (overdamped), the opposite
trend is verified for the associated efficiencies and for the

underdamped case. In similarity with constant and linear
drivings, the underdamped case not only presents substantial
larger efficiencies and power outputs than the overdamped
case but also it presents a remarkable larger operation regime.

Figure 8 depicts the resonant heat maps for sinusoidal
drivings. They improves the power and efficiency, but they do
not show remarkable improvements with respect to constant
and linear drivings.
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