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A B S T R A C T

In the paper Torrealba et al. (2021) an augmented Lagrangian algorithm was proposed for resource allocation
problems with the intriguing characteristic that instead of solving the box-constrained augmented Lagrangian
subproblem, they propose projecting the solution of the unconstrained subproblem onto such box. A global
convergence result for the quadratic case was provided, however, this is somewhat counterintuitive, as in usual
augmented Lagrangian theory, this strategy can fail in solving the augmented Lagrangian subproblems. In this
note we investigate further this algorithm and we show that the proposed method may indeed fail when the
Hessian of the quadratic is not a multiple of the identity. In the paper, it is not clear enough that two different
projections are being used: one for obtaining their convergence results and other in their implementation.
However, despite the lack of theoretical convergence, their strategy works remarkably well in some classes of
problems; thus, we propose a hybrid method which uses their idea as a starting point heuristics, switching to
a standard augmented Lagrangian method under certain conditions. Our contribution consists in presenting
an efficient way of determining when the heuristics is failing to improve the KKT residual of the problem,
suggesting that the heuristic procedure should be abandoned. Numerical results are provided showing that this
strategy is successful in accelerating the standard method.
1. Introduction

The classical knapsack problem can be formulated as

Minimize ∑

𝑥𝑇 𝑦,
s.t. 𝑏𝑇 𝑥 = 𝑐,

𝑥 ∈ {0, 1}𝑛,
(1)

which models the situation of best fitting several items of size 𝑏𝑖 on
a 1-dimensional knapsack while attaining its maximum capacity 𝑐.
Throughout the years this problem has been well studied with appli-
cations in several fields such as economics, engineering and computer
sciences. It also appears as subproblems in several applications, such
as in equilibrium procedures for traffic flows (see Lotito, 2006) and
many others. The knapsack problem has been extended to broader
classes of functions, including separable or convex functions, as seen
in Hochbaum (1995), or substituting the integer constraints by other
discrete or continuous sets. Whenever the integrality constraints is
substituted by a continuous box, the problem is referred as ‘‘continuous
knapsack problem’’. For a survey on the matter see Patriksson (2008).

There are several methods tailored to this class of problems, and
due to its particular structure, a solution can be found very quickly in
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comparison to using a general purpose algorithm. Continuous knapsack
problems may be classified in several different subclasses, with different
algorithms and applications, as exploited in Bretthauer and Shetty
(2002). In this paper we address the continuous quadratic resource
allocation problem.

When the problem is separable, one may consider the pegging
method, see for instance (Bretthauer & Shetty, 2002), branch and
bound methods as in Li and Sun (2006), or Newton type methods
such as (Cominetti et al., 2014). Lagrange multiplier methods for non-
separable problems can be found in Bretthauer and Shetty (2002), or
in Patriksson and Strömberg (2015). A complete open source library for
the general case is available in Frangioni and Gorgone (2013). In Torre-
alba et al. (2021) an augmented Lagrangian method for non-separable
problems was proposed. Namely, they considered the problem

Minimize 𝑓 (𝑥),
s.t. 𝑏𝑇 𝑥 = 𝑐,

𝓁 ≤ 𝑥 ≤ 𝑢,
(2)

where 𝑓 ∶ R𝑛 → R is a continuously differentiable convex func-
tion and 𝑏,𝓁, and 𝑢 are vectors in R𝑛 with 𝑐 ∈ R. Considering the
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Powell–Hestenes–Rockafellar augmented Lagrangian function 𝐿(𝑥, 𝜆, 𝑟)
𝑓 (𝑥) + 𝜆(𝑏𝑇 𝑥 − 𝑐) + 𝑟

2 (𝑏
𝑇 𝑥 − 𝑐)2 corresponding to penalization of

the equality constraints, a standard augmented Lagrangian method
would define a sequence of penalty parameters {𝑟𝑘} and a sequence
of approximate Lagrange multipliers {𝜆𝑘} in order to define a sequence
of approximate solutions {𝑥𝑘} by means of approximately solving the
sequence of subproblems

Minimize 𝐿(𝑥, 𝜆𝑘, 𝑟𝑘),
s.t. 𝓁 ≤ 𝑥 ≤ 𝑢.

(3)

In Torrealba et al. (2021), the authors propose defining the sequence
{𝑥𝑘} alternatively by

𝑥𝑘 = 𝛱[𝓁,𝑢](argmin
𝑥∈R𝑛

𝐿(𝑥, 𝜆𝑘, 𝑟𝑘)), (4)

owever, the projection operator 𝛱[𝓁,𝑢](⋅) onto the box [𝓁, 𝑢] is used in
he paper somewhat loosely, as in their experiments they considered it
o mean the Euclidean projection, whereas in their convergence results,
ore specifically on the quadratic case, they considered the functions

(𝑥) ∶= 1
2
𝑥𝑇 𝑃𝑥 − 𝑎𝑇 𝑥, (5)

with 𝑎 ∈ R𝑛 and 𝑃 a positive definite matrix, and the projection is
taken with respect to the so-called 𝑃 -norm, which is defined by ‖𝑢‖𝑃 ∶=
√

𝑢𝑇 𝑃𝑢 for all 𝑢 ∈ R𝑛. When considering the Euclidean projection, the
authors were able to present a somewhat simple formula for comput-
ing (4), which makes the strategy appealing, whereas computing the
projection with respect to the 𝑃 -norm may be as hard as solving the
standard subproblem (3). Unfortunately, when 𝑥𝑘 is computed with
the Euclidean projection, this strategy may fail, as shown in the next
example.

Example 1.1. Consider the problem

Minimize 𝑓 (𝑥, 𝑦, 𝑧) ∶= 𝑥2 − 2𝑥𝑦 + 2𝑦2 + 𝑧2,
s.t. 𝑧 = 0,

(1, 0,−1) ≤ (𝑥, 𝑦, 𝑧) ≤ (5, 1, 1).
(6)

The augmented Lagrangian function for this problem is given by

𝐿(𝑥, 𝑦, 𝑧, 𝜆, 𝑟) ∶= 𝑥2 − 2𝑥𝑦 + 2𝑦2 + 𝑧2 + 𝜆𝑧 + 𝑟
2
𝑧2,

whose gradient with respect to (𝑥, 𝑦, 𝑧) is given by

∇𝐿 (𝑥, 𝑦, 𝑧, 𝜆, 𝑟) =
⎡

⎢

⎢

⎣

2𝑥 − 2𝑦
−2𝑥 + 4𝑦

(2 + 𝑟)𝑧 + 𝜆

⎤

⎥

⎥

⎦

.

n order to compute (4), one must first solve the system ∇𝐿(𝑥, 𝑦, 𝑧, 𝜆, 𝑟)
= 0, which clearly gives 𝑥 = 𝑦 = 0 and 𝑧 = − 𝜆

2+𝑟 . Thus, when using
he Euclidean projection in (4), one arrives at the point (1, 0,max{−1,
in{1, 𝑧}})𝑇 . Assuming that the algorithm converges to a feasible point,

t can only converge to (1, 0, 0)𝑇 , which is not a solution of the prob-
em (notice that 𝑓 (1, 12 , 0) < 𝑓 (1, 0, 0), with (1, 12 , 0) being the actual

solution).

In fact, the direction 𝑥𝑘+1 − 𝑥𝑘 found by the algorithm in Torrealba
et al. (2021) using the Euclidean projection may not even be a descent
direction, as is shown in the extreme example below, where we start at
the solution of the problem (minimizer) and converge to a maximizer
instead.

Example 1.2. Consider the problem

Minimize 𝑓 (𝑥, 𝑦) ∶= 45𝑥2∕2 − 20𝑥𝑦 + 5𝑦2 + 30𝑥 − 20𝑦,
s.t. 𝑦 = 1,

(0, 0) ≤ (𝑥, 𝑦) ≤ (1, 1).

ne can check that the minimizer for this problem is (0, 1)𝑇 while
1, 1)𝑇 is the maximizer. Starting the algorithm at the minimizer with
= 0 and 𝑟 = 1, and iterating as (4) with the Euclidean projection

he method converges to the maximizer point (1, 1)𝑇 satisfying both
2

topping criteria in Torrealba et al. (2021) already in the first iteration.
It is important to emphasize that the convergence theory for the
uadratic case in Section 2 of Torrealba et al. (2021) is not wrong, it
s in fact correct if one uses (4) with projection with respect to the 𝑃 -
orm, however it is not clear how one would be able to compute this
rojection efficiently. Examples 1.1 and 1.2 illustrate that defining an
ugmented Lagrangian iteration with the iterate 𝑥𝑘 given by (4) may
ot work in general using the Euclidean projection. In the examples
resented in Section 4.3 of Torrealba et al. (2021) they considered
uadratic functions (5) with 𝑃 being a multiple of the identity ma-
rix, which implies that the Euclidean projection coincides with the
rojection with respect to the 𝑃 -norm. Thus those numerical results
re consistent with their theory. However, for the problems in Section
.2 of Torrealba et al. (2021), a full matrix 𝑃 is taken from the litera-
ure, which does not imply equality of the aforementioned projections.
espite that, surprisingly, numerical convergence to a solution is still
chieved. In fact, even though the augmented Lagrangian subproblems
re not being solved, the method somehow is able to converge to a
olution. We show a particular example of this behavior in the next
xample:

xample 1.3. Consider the problem

min 1
2𝑥

𝑇 𝑃𝑥 − 𝑎𝑇 𝑥,
𝑠.𝑡 𝑥 + 𝑦 = 0,

(0,−1) ≤ (𝑥, 𝑦) ≤ (5, 1),

with 𝑃 =
[

3 1
1 3

]

, 𝑎 = (4,−4)𝑇 .

Applying the algorithm from Torrealba et al. (2021) using the
Euclidean projection to this problem with 𝑥0 = (0, 1)𝑇 and 𝜆 = 1, the
sequence {𝑥𝑘} generated converges to the actual solution (1,−1)𝑇 , yet
‖𝑃[𝓁,𝑢](𝑥𝑘 − ∇𝐿(𝑥𝑘, 𝜆𝑘, 𝑟𝑘))‖ = 1 for every 𝑘, which means that the aug-
mented Lagrangian subproblems (3) are not being solved. This behavior
is possible due to the fact that the generated sequence of approximate
Lagrange multipliers {𝜆𝑘} does not approximate the correct value 𝜆 = 2.
The behavior is the same even if one starts the algorithm at the true
Lagrange multiplier at the solution.

In the next section we propose a hybrid algorithm which uses the
algorithm from Torrealba et al. (2021) unless it starts to fail in solving
the original problem. That is, we compute 𝑥𝑘 by (4) using the Euclidean
projection, benefiting from the efficiency of the proposal in Torrealba
et al. (2021), and then we monitor the progress in solving the original
problem in terms of its KKT residual. This can be done by finding
suitable approximate Lagrange multipliers associated with 𝑥𝑘 by means
of a least squares procedure, which we show that has a closed form
solution. Once it is detected that an iterate 𝑥𝑘 fails in reducing the KKT
residual, the method may switch to any other strategy with guaranteed
convergence. We show that this hybrid strategy when combined with a
standard augmented Lagrangian or with the multiplier search method
as in Bretthauer and Shetty (2002) outperforms the corresponding
standard method and is more robust than the algorithm introduced
in Torrealba et al. (2021).

2. A hybrid general framework

As previously mentioned, one should compute an iterate 𝑥𝑘 by
means of (4) using the projection with respect to the 𝑃 -norm in order
for the algorithm in Torrealba et al. (2021) to enjoy global convergence.
However, in most cases, computing this projection is intractable. It
turns out that by using the Euclidean projection instead, this com-
putation is straightforward. Thus, we will investigate the use of the
Euclidean projection in (4) as an heuristic for speeding up the standard
augmented Lagrangian method.

Since we do not expect 𝑥𝑘 as computed in (4) to solve the corre-
sponding subproblem of the augmented Lagrangian (3), even when the

method performs well, we must devise a way of checking whether the
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iterates computed in this way are successful or not. If not, one should
abandon the heuristic and solve (3) with a standard method, such as
in Birgin and Martínez (2014). We do so by measuring the progress of
𝑥 ∶= 𝑥𝑘 in satisfying the Karush–Kuhn–Tucker (KKT) conditions of the
original problem (2), when the objective function is the quadratic (5),
which states that 𝑥 is feasible for (2) and there must exist Lagrange

ultipliers 𝜆 ∈ R and 𝜇 ∈ R𝑛 such that

𝑥 − 𝑎 + 𝜆𝑏 + 𝜇 = 0, (7)

𝜇𝑖 ≤ 0 if 𝑥𝑖 = 𝓁𝑖, 𝜇𝑖 ≥ 0 if 𝑥𝑖 = 𝑢𝑖, and 𝜇𝑖 = 0 otherwise, 𝑖 = 1,… , 𝑛. (8)

ere, 𝜆 is the Lagrange multiplier with respect to the equality constraint
hile 𝜇 is the Lagrange multiplier with respect to the box constraints
≤ 𝑥 ≤ 𝑢. Since feasibility is already being controlled by the

ugmented Lagrangian, we shall monitor the KKT-residual of an iterate
𝑘 by means of how well Eqs. (7) and (8) are being satisfied at 𝑥 ∶= 𝑥𝑘

or a suitable choice of 𝜆 and 𝜇.
As the multiplier generated by the algorithm presented in Torrealba

t al. (2021) may not converge to the correct multiplier, we developed
n efficient way to check the KKT residual in 𝑥𝑘. More precisely, for
∶= 𝑥𝑘, we shall compute a least squares solution (𝜆, 𝜇) of (7)–(8)

nd measure the corresponding residual. The sign constraints on 𝜇
re ignored in computing the least squares solution, which is then
rojected onto the appropriate orthant, while for inactive constraints
he multiplier is forced to be zero.

In order to do so, we deal first with (8) by considering the set
⊆ {1,… , 𝑛} of active constraints at 𝑥𝑘, that is, the set of indexes 𝑖

uch that (𝑥𝑘)𝑖 = 𝓁𝑖 or (𝑥𝑘)𝑖 = 𝑢𝑖 and we define 𝜇𝑖 = 0 for all 𝑖 ∉ 𝐼 .
or simplicity of notation, let us assume that 𝐼 = {1,… , 𝑞} ⊆ {1,… , 𝑛}.
enoting 𝑣 = 𝑎 − 𝑃𝑥𝑘, we may write (7) as the linear system

[

𝐼𝑞 𝑏
0 𝑏̃

] [

𝜇
𝜆

]

=
[

𝑣
𝑣̃

]

, (9)

here 𝐼𝑞 is the identity matrix of size 𝑞 × 𝑞 and we consider the
artition of the vectors 𝑏𝑇 = [𝑏

𝑇
𝑏̃𝑇 ] and 𝑣𝑇 = [𝑣𝑇 𝑣̃𝑇 ] in their first 𝑞

omponents and the remaining ones. The vector 𝜇 represents the first
components of 𝜇, being the remaining ones equal to zero.

Since (9) is not expected to have a solution, we compute its least
quares solution, whose corresponding normal equation reads as fol-
ows:
[

𝐼𝑞 𝑏
𝑏
𝑇

‖𝑏‖2

]

[

𝜇
𝜆

]

=
[

𝑣
𝑏𝑇 𝑣

]

. (10)

We can now solve the system by performing an elementary row
operation on (10), arriving at the equivalent system
[

𝐼 𝑏
0𝑇 ‖𝑏‖2 − ‖𝑏‖2

]

[

𝜇
𝜆

]

=

[

𝑣
𝑏𝑇 𝑣 − 𝑏

𝑇
𝑣

]

, (11)

which gives

= 𝑏̃𝑇 𝑣̃
‖𝑏‖2 − ‖𝑏‖2

(12)

nd

𝜇 = 𝑣 − 𝜆𝑏. (13)

In order to address the sign constraint in (8), we project 𝜇 onto the
ppropriate orthant. That is, we redefine 𝜇 as 𝜇𝑖 ∶= max{0, 𝜇𝑖} when
𝑥𝑘)𝑖 = 𝑢𝑖, and 𝜇𝑖 ∶= min{0, 𝜇𝑖} when (𝑥𝑘)𝑖 = 𝓁𝑖 for all 𝑖 ∈ 𝐼 . Notice

that when 𝑥𝑘 is a minimizer of (2) with a unique Lagrange multiplier
associated, this procedure is capable of computing the multiplier with
the correct sign.

Then, after computing 𝜆 and 𝜇 in this way, we define the KKT-
residual 𝜖𝑘+1 at each iterate 𝑥𝑘 by

𝜀𝑘+1 ∶=
‖

‖

‖

(

𝑃𝑥𝑘 − 𝑎 + 𝜆𝑏 + 𝜇
𝑇 𝑘

)

‖

‖

‖ . (14)
3

‖

‖

𝑏 𝑥 − 𝑐 ‖

‖

a

Notice that when ‖𝑏‖ = ‖𝑏‖ this process fails and we simply set
𝜀𝑘+1 ∶= +∞. Note that this is a rather peculiar pathological situation,
as it could only happen if all variables have values equal to one of their
bounds, which would imply that we have 𝑛+1 active constraints at 𝑥𝑘.
Now, to state our hybrid strategy, we evaluate whether the heuristic
in computing 𝑥𝑘 by (4) using the Euclidean projection is efficient in
reducing the KKT-residual at each iteration, that is, if 𝜀𝑘+1 ≤ 𝛾𝜀𝑘 where
𝛾 < 1 is predefined. If so, we continue with the heuristic, otherwise we
switch to solving the augmented Lagrangian subproblem (3). The full
algorithm with this modification is stated below.

Algorithm 1 Hybrid augmented Lagrangian algorithm for the
resource allocation problem

Step 0. Choose 𝜆𝑚𝑖𝑛 ∈ R, 𝜆𝑚𝑎𝑥 ∈ R, 𝜆0 ∈ [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥], 𝛾 < 1, 𝑟0 > 0,
𝜃 ∈ (0, 1), 𝛽 > 1, 𝑘0 ≥ 0, and 𝜀 ≥ 0, and set 𝑘 ∶= 0.

Step 1. If 𝑘 ≤ 1 or 𝜀𝑘 ≤ 𝛾𝜀𝑘−1, compute the iterate 𝑥𝑘 according to the
following procedure:

1.1) Find 𝑥̄𝑘 as a solution of min{𝐿(𝑥, 𝜆𝑘, 𝑟𝑘) ∶ 𝑥 ∈ R𝑛}.
1.2) Compute using the Euclidean projection:

𝑥𝑘 = 𝛱[𝓁,𝑢](𝑥̄𝑘 − ∇𝑥𝐿(𝑥̄𝑘, 𝜆𝑘, 𝑟𝑘)).

Otherwise, switch to a standard augmented Lagrangian method,
that is, from this point onwards, this step consists of finding 𝑥𝑘

by solving subproblem (3) by any method of choice.

Step 2. Compute a new approximation of the Lagrange multiplier,
according to:

𝜆𝑘+1 = max{𝜆𝑚𝑖𝑛,min{𝜆𝑚𝑎𝑥, 𝜆𝑘 + 𝑟𝑘(𝑏𝑇 𝑥𝑘 − 𝑐)}}.

Step 3. Update the penalty parameter:

𝑟𝑘+1 =

{

𝑟𝑘, if 𝑘 ≤ 𝑘0 or |ℎ(𝑥𝑘)| ≤ 𝜃|ℎ(𝑥𝑘−1)|
𝛽𝑟𝑘, otherwise

where ℎ(𝑥) = 𝑏𝑇 𝑥 − 𝑐.

Step 4. Compute the KKT residual: Use the least squares procedure
described to compute 𝜆 and 𝜇 (formulas (12) and (13)), and
compute 𝜀𝑘+1 by (14).

Step 5. Test the stopping criterion: If |𝑏𝑇 𝑥𝑘−𝑐| < 𝜀 and ‖𝑥𝑘−𝑥𝑘−1‖ < 𝜀,
then stop. Otherwise set 𝑘 ∶= 𝑘 + 1 and return to Step 1.

The next result states that the hybrid procedure given by Algorithm
1 converges to a solution of problem (2).

Theorem 2.1. If the feasible set of Problem (2) is non-empty and Algorithm
1 is executed without employing a stopping criteria, that is 𝜀 = 0, then the
sequence {𝑥𝑘} generated by Algorithm 1 converges to the solution of (2).

Proof. First notice that, as we assume that the feasible set is non-
empty, the linearity of the constraints together with the strong convex-
ity of the objective function guarantee that (2) has a unique solution.
If 𝜀𝑘 > 𝛾𝜀𝑘−1 on an iteration, then Algorithm 1 becomes a special case
of the standard augmented Lagrangian method, such as Algorithm 2.1
in Birgin et al. (2010). In this way, Theorem 2 in Birgin et al. (2010)
guarantees that every limit point of the sequence generated by the
algorithm is a solution of (2). The convergence of the whole sequence
is a consequence of the fact that it lies in a compact set and uniqueness
of the solution.

Let us assume now that 𝜀𝑘 → 0, meaning that 𝑃𝑥𝑘 − 𝑎 + 𝜆𝑏 + 𝜇 → 0
𝑇 𝑘
nd 𝑏 𝑥 − 𝑐 → 0. Feasibility with respect to the box constraints is



European Journal of Operational Research xxx (xxxx) xxxL.F. Bueno et al.

p
4

p

a
s
w
g
r
s
s
i

p
L
w
t
T
a
t
t
0
(
h
o
(
t
m
t

t
f
h
w
a
a

(
a
p
t
d
w
a
d

a
i
p
𝑃
T
d
a
L
F
e
h
a

4

t
s
f
o
s
t
t

guaranteed by the way 𝑥𝑘 is obtained, as well as complementarity
associated with these constraints, by the construction of 𝜇. This implies
that the so-called Approximate-KKT (AKKT) condition from Andreani
et al. (2011) is satisfied at all limit points of the sequence {𝑥𝑘} and, due
to the linearity of the constraints, we have that the limit points satisfy
the KKT conditions. The convexity of (2) implies that such points are
indeed solutions of the problem. Once again, the fact that the sequence
lies in a compact set together with the uniqueness of the solution
guarantee convergence to the solution. □

3. Numerical experiments

In this section we perform some numerical experiments illustrating
the robustness and effectiveness of Algorithm 1 and a variation of it
which we describe later. All the experiments were ran with Matlab on
an Intel Core i7-8565U 1.99 GHz. The objective of this experiments
is showing both that the original algorithm of Torrealba et al. (2021)
may fail on the general quadratic when using the Euclidean projection
as well as illustrating that the hybrid approach performs well on all
cases. In all tests the original algorithm of Torrealba et al. (2021) was
ran with the Euclidean projection.

In our first test, we illustrate that the original method in Torrealba
et al. (2021) may either perform well or very poorly depending on
the structure of the problem. We select two sets of problems and run
the algorithm proposed in Torrealba et al. (2021) (abbreviated Alg),
which corresponds to Algorithm 1 but where Step 1 is always computed
using the heuristic approach (4), never switching to solving subproblem
(3). We compare it with a standard augmented Lagrangian approach
(abbreviated AL), where Step 1 of Algorithm 1 is replaced by directly
solving subproblem (3) at every iteration, using Matlab’s optimization
toolbox with standard settings.

In each set of problems, we chose 100 randomly generated convex
quadratic objective functions with structure defined as in (5). For each
problem, entries of vector 𝑎 were randomly generated in the interval
[0, 1], while constraint vector 𝑏 and the initial point to run each method
were taken as 𝑒, the vector of ones in R𝑛, with 𝑛 = 500. Entries of
matrix 𝑃 were randomly generated on [0, 0.1], with 𝑃 being redefined
as 𝑃 𝑇 𝑃 + 𝐼 in order to ensure positive definiteness. For both methods
we used 𝜀 = 10−4, 𝛾 = 0.9, and 𝑘0 was chosen large enough so that
𝑟 = 1 was maintained constant, as in the implementation in Torrealba
et al. (2021). This also dismisses the choice of the parameters 𝜃 and 𝛽.
Finally, for the first set of 100 problems we considered the constraints
defined by the box [𝓁, 𝑢] = [− 𝑛

2 𝑒,
𝑛
2 𝑒] with 𝑐 = 0, while for the second

set of 100 problems we considered a displacement of this constraint by
considering [𝓁, 𝑢] = [0, 𝑛𝑒] and 𝑐 = 𝑛. Finally, in Step 5, we considered
an additional stopping criterion of a maximum of 1000 iterations for
both methods.

In Fig. 1(a) we show the performance profile of the results on the
first set of problems while Fig. 1(b) shows the correspondent results on
the second set of problem. We can see that Alg is able to compete
with AL in the first set of problems, being slightly more efficient
and solving almost all problems. However, in the second test, Alg
erformed considerably poorer than AL, being able to solve only circa
0% of the problems in less than 50 times the time taken by AL.

Fig. 1 illustrates that the performance of the algorithm in Torrealba
et al. (2021) may drastically depend on the structure of the problem,
which emphasizes the need of considering the hybrid approach of
Algorithm 1 instead. It also suggests that the convergence theory of this
method with the Euclidean projection should be further investigated in
the sense of detecting larger classes of problems where the algorithm
is able to perform well. Notice that in the test set depicted in Fig. 1(a),
the method is still able to perform quite well despite the fact that the
euclidean projection does not coincide with the projection with respect
to the 𝑃 -norm.

In our second test, we considered the behavior of the hybrid ap-
4

roach we presented in Algorithm 1 (which we abbreviate as Hyb-AL)
in comparison with the standard augmented Lagrangian approach (AL)
nd the original algorithm in Torrealba et al. (2021) (Alg). The test
et is chosen similarly as before but with a mixture of constraints
here Alg behaves well or poorly, that is, we considered 50 randomly
enerated problems with the structure described in Fig. 1(a) and 50
andomly generated problems as described in Fig. 1(b). The results are
hown in Fig. 2(a) where we can see that Hyb-AL is able to quickly
witch to the standard augmented Lagrangian whenever the heuristic
s failing without hindering its performance.

Finally, in Fig. 2(b), we present the results on this same test of
roblems but considering a different method instead of the augmented
agrangian approach. That is, we considered Algorithm 1 but in Step 1,
hen the heuristic approach fails in reducing the KKT-residual, we stop

he execution and resort to a different method from this point onwards.
he method we considered is a version of the multiplier search method
s described in Bretthauer and Shetty (2002), where the idea is solving
he equation 𝑏𝑇 𝑥(𝜆) = 𝑐 using a root finding algorithm, where 𝑥(𝜆) is
he projection onto the box constraint of the solution 𝑥 of 𝑃𝑥−𝑎+𝜆𝑏 =
. We used the Regula Falsi method as the root finding algorithm
see Bretthauer & Shetty, 2002 for details). We then compare the
ybrid algorithm built in this way (Hyb-Reg), the original algorithm
f Torrealba et al. (2021) (Alg), and the pure multiplier search method
Reg), where the results are shown in Fig. 2(b). There, we can see
hat the proposed heuristic is able to accelerate the multiplier search
ethod considerably, being the most efficient method for circa 80% of

he problems.
In Fig. 2 we can see that the hybrid approach is able to accelerate

he method of choice, switching to the original method once it detects
ailure of the heuristic. This is done in such a way that, even when the
euristic fails, the extra work at each step is negligible in comparison
ith the computation done by the original method. Thus our heuristic
pproach is able to preserve robustness of the original method while
lso carrying out the efficiency of the heuristic approach.

In the last experiment, we illustrate that the original algorithm
and by extension, the hybrid algorithm) may perform better than the
ugmented Lagrangian in some cases. This happens for instance on
roblems where the 𝑃 -norm coincides with the Euclidean norm such as
he ones in Section 4.1 of Torrealba et al. (2021). However, for random
iagonal matrices, which not necessarily have the 𝑃 -norm coinciding
ith the Euclidean norm, our experiments showed that the original
lgorithm may also outperform the classical augmented Lagrangian
espite not having theoretical support.

We run the original algorithm of Torrealba et al. (2021) (Alg), the
ugmented Lagrangian (AL), and the hybrid method (Hyb-AL) such as
n the experiments reported in Fig. 2(a). However, we generated 100
roblems of dimension 𝑛 = 1000 with box [𝓁, 𝑢] = [0, 𝑒], 𝑐 = 0, and
a random matrix with entries generated in the same way as before.

he difference is that with a probability of 50%, we replace 𝑃 by its
iagonal. The expectation is that on a mixed profile like that, the hybrid
lgorithm would make the most of the original and the augmented
agrangian counterparts for each type of problem (full or diagonal).
or the rest of the parameters we used the same as in the previous
xperiments. We report the results in Fig. 3. We see that indeed the
ybrid algorithm greatly outperforms both the augmented Lagrangian
nd the heuristic approach in this profile.

. Conclusions

In this note we highlight that in the paper (Torrealba et al., 2021),
wo different projections are being used somewhat loosely, where they
uggest, instead of solving an augmented Lagrangian subproblem, to
irst solve an unconstrained version of it and then project its solution
nto its corresponding feasible set. In the quadratic case, the paper
hows convergence by means of using the projection with respect to
he 𝑃 -norm, where 𝑃 is the Hessian of the objective function, however
here is no easy way to compute this. In their numerical experiments,



European Journal of Operational Research xxx (xxxx) xxxL.F. Bueno et al.

p

t
m
o

t
a
t
w

t
L

Fig. 1. Comparison of the standard augmented Lagrangian (AL) and the heuristic approach proposed in Torrealba et al. (2021) (Alg) on two sets of constraints and 100 randomly
generated convex problems.
Fig. 2. Comparison of the heuristic approach proposed in Torrealba et al. (2021) (Alg), the hybrid strategy (Hyb-AL or Hyb-Reg) based on Algorithm 1, and the respective
ure solver (AL or Reg) on a collection of 100 randomly generated problems from a mixture of constraints from both sets of problems described in Fig. 1.
Fig. 3. Comparison of the heuristic approach proposed in Torrealba et al. (2021) (Alg),
he hybrid strategy (Hyb-AL) described in Algorithm 1, and the augmented Lagrangian
ethod (AL) on a collection of 100 randomly generated problems with a 50% chance

f having a diagonal structure.

he Euclidean projection is used without much explanation, where the
lgorithm behaves well. We can explain their results by noticing that
hey considered mostly the case where 𝑃 is a multiple of the identity,
hich guarantees that both projections are the same.

Thus we suggested a hybrid strategy combining computation of
he iterate using the Euclidean projection and a standard augmented
agrangian method. A new efficient procedure to measure the success
5

of the computation of the iterate taking the KKT conditions of the
problem into consideration is devised, which gives a cheap criterion for
switching to the standard augmented Lagrangian or any other method
of choice whenever the heuristic approach is failing. In our numerical
experiments we show that this strategy was successful in accelerating
the standard augmented Lagrangian method and the multiplier search
method.

In the case that 𝑃 is not diagonal, our tests show that for certain
positions of the box (Fig. 1(a)), the procedure works well despite
the inconsistency on the projections. Nevertheless, it is still not clear
whether one can find a full class of problems where the Euclidean
projection is different from the projection with respect to the 𝑃 -norm,
yet the approach of Torrealba et al. (2021) may be proved to work
without using a safeguarding procedure. This is an interesting topic for
further investigation.
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