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Abstract
We construct all self-adjoint Schrödinger and Dirac operators (Hamiltonians) with both the
pure Aharonov–Bohm (AB) field and the so-called magnetic-solenoid field (a collinear
superposition of the AB field and a constant magnetic field). We perform a spectral analysis
for these operators, which includes finding spectra and spectral decompositions, or inversion
formulae. In constructing the Hamiltonians and performing their spectral analysis, we follow,
respectively, the von Neumann theory of self-adjoint extensions of symmetric operators and
the Krein method of guiding functionals.

PACS numbers: 03.65.Ge, 45.20.Jj, 47.10.Df

1. Introduction

The Aharonov–Bohm (AB) effect [1] plays an important
role in quantum theory refining the status of electromagnetic
potentials in this theory. First, this effect was discussed in
relation to a study of the interaction between a non-relativistic
charged particle and an infinitely long and infinitesimally
thin magnetic field of a solenoid (further AB field) which
yields a magnetic flux 8 (a similar effect has been discussed
earlier by Ehrenberg and Siday [2]). It was discovered that
particle wave functions vanish at the solenoid line. In spite
of the fact that the magnetic field vanishes out of the solenoid,
the phase shift in the wave functions is proportional to
the corresponding magnetic flux [3]. A nontrivial particle
scattering by the solenoid is interpreted as a possibility for
quantum particles to ‘feel’ potentials of the corresponding
electromagnetic field. Indeed, potentials of the AB field do not
vanish out of the solenoid. For the first time, a construction
of self-adjoint (s.a. in what follows) Schrödinger operators
with the AB field was given in [4]. The need for s.a.
extensions of the Dirac Hamiltonian with the AB field in
2 + 1 dimensions was recognized in [5–7]. s.a. extensions of
the Dirac Hamiltonian with the AB field in 3 + 1 dimensions
were found in [8]; see also [9, 10]. The physically motivated
boundary conditions for particle scattering by the AB field
and a Coulomb center were studied in [11, 12]. A splitting

of Landau levels in a superposition of a parallel uniform
magnetic field and the AB field (further magnetic-solenoid
field (MSF)) gives an example of the AB effect for bound
states. First exact solutions of the Schrödinger equation with
the MSF (non-relativistic case) were studied in [13]. Exact
solutions of the relativistic wave equations (Klein–Gorgon
and Dirac) with the MSF were obtained in [14–16] and
were used later to study the AB effect in cyclotron and
synchrotron radiations; see [15–17]. Later on, the problem of
self-adjointness of the Dirac Hamiltonian with the MSF was
studied in [18, 19].

In this work, we construct systematically all the s.a.
Schrödinger and Dirac operators with both the pure AB
field and the MSF. Then, we perform a spectral analysis
for these Hamiltonians, which includes finding spectra
and spectral decompositions, or inversion formulae. In
constructing the Hamiltonians and performing their spectral
analysis, we follow, respectively, the theory of s.a. extensions
of symmetric differential operators [20, 21, 25] and the Krein
method of guiding functionals [20, 21]. Examples of similar
consideration are given in [22], where a nonrelativistic particle
in the Calogero and Krazter potential fields is considered,
and in [23], where a Dirac particle in the Coulomb field
of arbitrary charge is considered. However, due to the
peculiarities of the three-dimensional (3D) problem under
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consideration, we use a necessary generalization of the
approach [23].

Recall that the AB field of an infinitely thin solenoid
(with constant flux 8) along the axis z = x3 can be described
by electromagnetic potentials AµAB(x), µ= 0, 1, 2, 3, x =

(x0, r), r = (xk, k = 1, 2, 3), x0
= ct ,

AµAB = (0,AAB), AAB = (Ak
AB, k = 1, 2, 3), A3

AB = 0,

A1
AB = −

8 sinϕ

2πρ
, A2

AB =
8 cosϕ

2πρ
,

where ρ, ϕ are cylindrical coordinates, x1
= ρ cosϕ and x2

=

ρ sinϕ. The magnetic field of an AB solenoid has the form
BAB = (0, 0, BAB). It is easy to see that outside the z-axis the
magnetic field BAB = rot AAB is equal to zero. Nevertheless,
for any surface 6 with a boundary L being any contour (even
an infinitely small one) around the z-axis, the circulation
of the vector potential along L does not vanish and reads∮

L AAB dl =8. If one interprets this circulation as the flux of
the magnetic field BAB through the surface 6,∫

6

BAB dσ =

∮
L

AAB dl =8,

then we obtain an expression for the magnetic field,

BAB =8δ(x1)δ(x2),

where the term ‘infinitely thin solenoid’ comes from.
One can see that AAB = −rot9, 9 = (0, 0, 82π ln ρ),

such that div AAB = 0, and again

BAB = rot AAB = (0, 0, BAB),

BAB =
8

2π
1 ln ρ =8δ(x1)δ(x2).

In cylindrical coordinates, we have

e

ch̄
A1

AB = −φρ−1 sinϕ,
e

ch̄
A2

AB = φρ−1 cosϕ, φ =8/80,

where 80 is a fundamental unit of magnetic flux,

80 = 2πch̄/e = 4135 × 10−7 G cm2

(recall that e > 0 is the absolute value of the electron charge).
The MSF is defined as a superposition of a constant

uniform magnetic field of strength B directed along the axis
z and the AB field with flux 8 in the same direction. The
MSF is given by electromagnetic potentials of the form Aµ =

(0,A), A =
(

Ak, k = 1, 2, 3
)
,

A1
= A1

AB −
Bx2

2
, A2

= A2
AB +

Bx1

2
, A3

= 0. (1)

The potentials (1) define the magnetic field B of the form

B = (0, 0, B + BAB).

In cylindrical coordinates, the potentials of the MSF have the
form

e

ch̄
A1

= −φ̃ρ−1 sinϕ,
e

ch̄
A2

= φ̃ρ−1 cosϕ, A3
= 0,

φ̃ = φ +
εBγρ

2

2
, γ =

e|B|

ch̄
> 0, εB = sgn B.

(2)

For further consideration, it is convenient to introduce the
following representation:

φ = εB(φ0 +µ), φ0 = [εBφ] ∈ Z, µ= εBφ−φ0,

06 µ < 1. (3)

The quantity µ is called the mantissa of the magnetic flux and,
in fact, determines all the physical effects in the AB field; see,
e.g., [16].

2. s.a. Schrödinger Hamiltonians

In this section, we consider 2D and 3D nonrelativistic motions
of a particle of mass me and charge q = εqe, εq = sgn q = ±1
(positron or electron) in the MSF. The canonical formulation
of the problem is the following. The starting point is the
‘formal Schrödinger Hamiltonian’ Ȟ with the MSF that is,
respectively, a 2D or 3D s.a. differential operation well-known
from physics textbooks. In three dimensions, it is given by

Ȟ =
1

2me

(
p̌ −

q

c
A
)2
, p̌ = −ih̄∇, ∇ =

(
∂x , ∂y, ∂z

)
.

(4)
It is convenient to represent Ȟ as a sum of two terms, Ȟ⊥

and Ȟ ‖,

Ȟ = Ȟ⊥ + Ȟ ‖,

where the 2D s.a. differential operation Ȟ⊥, the ‘formal 2D
Schrödinger Hamiltonian’ with the MSF,

Ȟ⊥
= M−1Ȟ⊥, Ȟ⊥

=

(
−i∇⊥

−
q
ch̄ A⊥

)2
,

M = 2meh̄−2, ∇
⊥

=
(
∂x , ∂y

)
, A⊥

=
(

A1, A2
)
,

(5)

where A1 and A2 are given by (2), corresponds to a 2D motion
in the xy-plane perpendicular to the z-axis, while the 1D
differential operation Ȟ ‖,

Ȟ ‖
= Ȟ=

p̌2
z

2me
, p̌z = −ih̄∂z,

corresponds to a 1D free motion along the z-axis.
The problem to be solved is to construct s.a.

nonrelativistic 2D and 3D Hamiltonians Ĥ⊥ and Ĥ associated
with the respective s.a. differential operations Ȟ⊥ and Ȟ and
to perform a spectral analysis for these operators.

We begin with the 2D problem. We successively consider
the case of the pure AB field, with B = 0, and then the case
of the MSF, with B 6= 0. In the following subsection, we
generalize the obtained results to three dimensions.

2.1. The 2D case

2.1.1. Reduction to the radial problem. In the case of
two dimensions, the space of the particle quantum states is
the Hilbert space H= L2(R2) of square-integrable functions
ψ(ρ), ρ= (x, y), with the scalar product

(ψ1, ψ2)=

∫
ψ1(ρ)ψ2(ρ) dρ, dρ= dx dy = ρ dρ dϕ.

2
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A quantum Hamiltonian should be defined as an s.a.
operator in this Hilbert space. It is more convenient to
deal with s.a. operators associated with the s.a. differential
operation Ȟ⊥

= M Ȟ⊥ defined in (5).
The construction is essentially based on the requirement

for rotation symmetry, which certainly holds in a classical
description of the system. This requirement is formulated as
the requirement of the invariance of an s.a. Hamiltonian under
rotations around the solenoid line, the z-axis. As in classical
mechanics, the rotation symmetry allows separating the polar
coordinates ρ and ϕ and reducing the 2D problem to a 1D
radial problem.

The group of rotations SO(2) in R2 naturally acts in
the Hilbert space H by unitary operators: if S ∈ SO(2), then
the corresponding operator Û S is defined by the relation
(Û Sψ)(ρ)= ψ(S−1ρ), ψ ∈ H.

The Hilbert space H is a direct orthogonal sum of
subspacesHm , which are the eigenspaces of the representation
Û S ,

H=

∑
⊕

m∈Z

Hm, Û SHm = e−imθHm,

where θ is the rotation angle corresponding to S.
It should be noted that Hm consists of eigenfunctions

ψm(ρ) for the angular momentum operator L̂ z = −ih̄∂/∂ϕ,

L̂ zψm(ρ)= h̄mψm(ρ), ψm(ρ)=
1

√
2πρ

eimϕ fm(ρ),

∀ψm ∈ Hm .

It is convenient to change the indexing, m → l,Hm → Hl ,
ψm(ρ)→ ψl(ρ) as follows m = ε(φ0 − l), such that

L̂ zψl(ρ)= h̄ε(φ0 − l)ψl(ρ), ∀ψl ∈ Hl .

We define a rotationally invariant initial symmetric

operator Ĥ⊥ associated with Ȟ⊥ as follows:

Ĥ⊥ :

{
DH⊥ = {ψ(ρ) : ψ ∈ D(R2

\{0})},

Ĥ⊥ψ = Ȟ⊥ψ, ∀ψ ∈ DH⊥ ,

where D(R2
\{0}) is the space of smooth and compactly

supported functions vanishing in the neighborhood of the
point ρ= 0. The domain DH⊥ is dense in H and the
symmetricity of Ĥ⊥ is obvious.

In polar coordinates ρ and ϕ, the operation Ȟ⊥ becomes

Ȟ⊥
= −∂2

ρ − ρ−1∂ρ + ρ−2(i∂ϕ + εq φ̃)
2, (6)

where φ̃ is given by (2).
For every l, the relation

(Sl f )(ρ)= ψl(ρ)=
1

√
2πρ

eiε(φ0−l)ϕ fl(ρ), (7)

where f = f (ρ) ∈ L2(R+) and fl(ρ)= f (ρ), determines
a unitary operator Sl : L2(R+) 7−→ Hl , where L2(R+) is
the Hilbert space of square-integrable functions on the

semi-axis R+ with scalar product

( f, g)=

∫
R+

f (ρ)g(ρ)dρ.

For every l, we define a linear operator Vl from H to
L2(R+) by setting

(Vlψ)(ρ)=

√
ρ

2π

∫ 2π

0
ψ(ρ, ϕ) e−iε(φ0−l)ϕ dϕ. (8)

If ψ ∈ H=
∑

l∈Z ψl , ψl ∈ Hl , then we have ψl = Sl Vlψ for
all l. In other words, Vl = S−1

l Pl , where Pl is the orthogonal
projector onto the subspace Hl . However, we prefer to work
with Vl rather than Pl because the latter cannot be reasonably
defined in the 3D case, where the Hilbert state space should
be decomposed into a direct integral instead of a direct sum.

Clearly, Vlψ ∈ D(R+) for any ψ ∈ D(R2
\ {0}), and it

follows from (6) and (8) that

VlĤ⊥ψ = ĥ(l)Vlψ, ψ ∈ D(R2
\ {0}), (9)

where the initial symmetric operators ĥ(l) are defined on
Dh(l) = D(R+)⊂ L2(R+), where they act as

ȟ(l)= −∂2
ρ + ρ−2

[(
l +µ+ γρ2/2

)2
− 1/4

]
. (10)

In view of (9), for any ψ ∈ D(R2
\ {0}), the Hl-

component (Ĥ⊥ψ)l of Ĥ⊥ψ can be written as

(Ĥ⊥ψ)l = Sl VlĤ⊥ψ = Sl ĥ(l)S
−1
l Sl Vlψ = Sl ĥ(l)S

−1
l ψl .

(11)
Suppose we have an (not necessarily closed) operator f̂ l

in Hl for each l. We define the operator

f̂ =

∑
⊕

l∈Z

f̂l (12)

in H by setting

f̂ψ =

∑
l∈Z

f̂ lψl , ψ =

∑
l∈Z

ψl .

The domain D f of f̂ consists of all ψ =
∑

l∈Z ψl ∈ H such
that ψl ∈ D fl for all l and the series

∑
l∈Z f̂ lψl converges

in H. The operator f̂ is closed (s.a.) iff all f̂ l are closed
(respectively, s.a.). For every l, we have D fl = D f ∩Hl .

We say that a closed operator f̂ in H is rotationally
invariant if it can be represented in the form (12) for some
family of operators f̂ l in Hl .

By (11), the direct sum of the operators Sl ĥ(l)S
−1
l is an

extension of Ĥ⊥:

Ĥ⊥
⊆

∑
⊕

l∈Z

Sl ĥ(l)S
−1
l . (13)

Let ĥe(l) be s.a. extensions of the symmetric operators
ĥ(l). Then the operators

Ĥ⊥

e (l)= Sl ĥe(l)S
−1
l (14)

3



Phys. Scr. 85 (2012) 045003 D M Gitman et al

are s.a. extensions of Sl ĥ(l)S
−1
l , and it follows from (13) that

the orthogonal direct sum

Ĥ⊥

e =

∑
⊕

l∈Z

Ĥ⊥

e (l) (15)

represents rotationally invariant s.a. extensions of the initial
operator Ĥ⊥.

Conversely, let Ĥ⊥
e be a rotationally invariant s.a.

extension of Ĥ⊥. Then it has the form (15), where Ĥ⊥
e (l)

are s.a. operators in Hl . Let us set ĥe(l)= S−1
l Ĥ⊥

e (l)Sl . For
all l, ĥe(l) are s.a. operators in L2(R+). If f ∈ D(R+), then
Sl f ∈ D(R2

\ {0})∩Hl , and (13) and (15) imply that

Sl ĥ(l) f = Sl ĥ(l)S
−1
l Sl f = Ĥ⊥Sl f = Ĥ⊥

e Sl f = Ĥ⊥

e (l)Sl f

= Sl ĥe(l) f.

Hence, ĥ(l) f = ĥe(l) f , i.e. ĥe(l) is an s.a. extension of ĥ(l).
We thus conclude that Ĥ⊥

e can be represented in the form (15),
where Ĥ⊥

e (l) are given by (14) and ĥe(l) are s.a. extensions of
ĥ(l).

The problem of constructing a rotationally invariant s.a.
Hamiltonian Ĥ⊥

e is thus reduced to constructing s.a. radial
Hamiltonians ĥe(l).

We first consider the case of a pure AB field where B = 0.
In such a case, we set εB = 1 and ε = εq .

2.1.2. s.a. radial Hamiltonians with the AB field. In this
case, we have γ = 0, and s.a. radial differential operations
ȟ(l) (10) become

ȟ(l)= −∂2
ρ +αρ−2, α = ~2

l − 1/4, ~l = |l +µ|, l ∈ Z.

It is easy to see that this differential operation and the
corresponding initial symmetric operator ĥ(l) are actually
identical to the respective operation and operator encountered
in studying the Calogero problem; see [22]. We can therefore
directly carry over the previously obtained results to s.a.
extensions of ĥ(l).

First region: α > 3/4. In this region, we have (l +µ)2 > 1,
which is equivalent to

l > 1 −µ or l 6−1 −µ.

Because l ∈ Z and 06 µ < 1, we have to distinguish the cases
of µ= 0 and µ > 0:

µ= 0 : l 6−1 or l > 1, i.e. l 6= 0,

µ > 0 : l 6−2 or l > 1, i.e. l 6= 0,−1.

For such l, the initial symmetric operator ĥ(l) has zero
deficiency indices, is essentially s.a. and its unique s.a.
extension is ĥe(l)= ĥ(1)(l)= ĥ+(l) with the domain3

D∗

ĥ(l)
(R+)= {ψ∗ : ψ∗, ψ

′

∗
are a.c. in R+, ψ∗,

ȟ(l)ψ∗ ∈ L2(R+)}.

3 Here and in what follows, we use a.c. for absolutely continuous.

The spectrum of ĥ(1)(l) is simple and continuous and
coincides with the positive semiaxis, spec ĥ(1)(l)= R+.

The generalized eigenfunctions UE ,

UE(ρ)= (ρ/2)1/2 J~l (
√
Eρ), ĥ(1)(l)UE = EUE , E ∈ R+,

of ĥ(1)(l) form a complete orthonormalized system in L2(R+).

Second region: −1/4< α < 3/4. In this region, we have
0< (l +µ)2 < 1, which is equivalent to

−µ < l < 1 −µ or − 1 −µ < l <−µ. (16)

If µ= 0, inequalities (16) have no solutions for l ∈ Z. If
µ > 0, these inequalities have two solutions l = la , where, for
brevity, we introduce the notation

la = a, a = 0,−1.

So, in the second region, we remain with the case of µ > 0.
For each l = la(a = 0,−1) there exists a one-parameter

U (1)-family of s.a. Hamiltonians ĥλa (la) parameterized by the
real parameter λa ∈ S (−π/2, π/2), where S (a, b)= [a, b],
a ∼ b. These Hamiltonians are specified by the asymptotic s.a.
boundary conditions at the origin,

ψλa (ρ)= C
[
(κ0ρ)

1/2+~a cos λa + (κ0ρ)
1/2−~a sin λa

]
+ O(ρ3/2), (17)

Dhλa (la) = {ψ ∈ D∗

ȟ(la)
(R+), ψ satisfy (17)}, (18)

where ~a ≡ ~la = |µ+ a|, 0< ~a < 1 and C is an arbitrary
constant, whereas k0 is a constant of dimension of inverse
length.

For λa 6= (−π/2, 0), the spectrum of each of ĥλa (la) is
simple and continuous and spec ĥλa (la)= R+.

The generalized eigenfunctions UE ,

UE(ρ)=

√
ρ

2Qa

[
J~a

(√
Eρ
)

+ λ̃a

(√
E/2κ0

)2~a

J−~a

(√
Eρ
)]
,

Qa = 1 + 2λ̃a(E/4)~a cos(π~a)+ (λ̃a)
2(E/4)2~a > 0,

λ̃a = 0(1 − ~a)0
−1(1 + ~a) tan λa,

ȟλa (la)UE = EUE , E ∈ R+, (19)

of the Hamiltonian ĥλa (la) form a complete orthonormalized
set in the Hilbert space L2(R+).

For λa ∈ (−π/2, 0), the spectrum of each of ĥλa (la) is
simple, but in addition to the continuous part of the spectrum,
there exists one negative level E (−)λa

= −4k2
0 |λ̃a|

−~−1
a , such that

spec ĥλa (la)= R+ ∪ {E (−)λa
}.

In this case, the generalized eigenfunctions UE of the
continuous spectrum, E > 0, are given by the same (19), while
the eigenfunction U (−) corresponding to the discrete level
E (−)λa

is

U (−)(ρ)=

√
2ρ|E (−)λa

| sin(π~a)

π~a
K~a

(√
|E (−)λa

|ρ

)
,

4
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and they together form a complete orthonormalized system in
each Hilbert space L2(R+).

Third region: α = −1/4. In this region, we have l +µ= 0.
If µ= 0, this equation has a unique solution l = l0 = 0, while
if µ > 0, there are no solutions, and we remain with only the
case of µ= 0.

For l = l0, there exists a one-parameter U (1)-family
of s.a. Hamiltonians ĥe(l0)= ĥλ(l0) parameterized by the
real parameter λ ∈ S(−π/2, π/2). These Hamiltonians are
specified by the asymptotic s.a. boundary conditions at the
origin

ψλ(ρ)= c
[
ρ1/2 ln (κ0ρ) cos λ+ ρ1/2 sin λ

]
+ O(ρ3/2 ln ρ),

(20)
(the constants C and k0 are of the same meaning as in (17)),
and their domains are given by

Dhλ(l0) = {ψ ∈ D∗

ȟ(l0)
(R+), ψ satisfy (20)}. (21)

The spectrum of ĥλ(l0) is simple. For |λ| = π/2, the
spectrum is continuous and nonnegative, spec ĥ±π/2(l0)=

R+. For |λ|< π/2, in addition to the continuous part of
the spectrum, E > 0, there exists one negative level E (−)λ =

−4κ2
0 exp[2(tan λ− C)], where C is the Euler constant, such

that

spec ĥλ(l0)=

{
E (−)λ

}
∪R+, |λ|< π/2.

The generalized and normalized eigenfunctions UE of the
continuous spectrum are

UE(ρ)=

√
ρ

2(λ̃2 +π2/4)

[
λ̃J0

(√
Eρ
)

+
π

2
N0

(√
Eρ
)]
,

λ̃= tan λ− C − ln
(√
E/2κ0

)
, ĥλ(l0)UE = EUE ,

E ∈ R+, |λ|6 π/2,

while the normalized eigenfunction U (−) corresponding to the
discrete level is

U (−)(ρ)=

√
2ρ|E (−)λ |K0

(√
|E (−)λ |ρ

)
,

ĥλ(l0)U
(−)

= E (−)λ U (−), |λ|< π/2,

and they together form a complete orthonormalized system in
the Hilbert space L2(R+).

Complete spectrum and inversion formulae. In the
previous subsubsections, we have constructed all s.a. radial
Hamiltonians associated with the s.a. differential operations
ȟ(l) as s.a. extensions of the symmetric operators ĥ(l) for any
l ∈ Z and for any φ0 and µ. We assemble our previous results
into two groups.

For µ= 0, we have the following s.a. radial
Hamiltonians:

ĥ1(l), l 6= l0, Dh1(l) = D∗

ȟ(l)
(R+),

ĥλ(l0), λ ∈ S (−π/2, π/2) , Dhλ(l0) is given by (29).

For µ > 0, they are

ĥ1(l), l 6= la = a = 0,−1, Dh1(l) = D∗

ȟ(l)
(R+),

ĥλa (la), λa ∈ S (−π/2, π/2) , Dhλa (la) is given by (25).

Each set of possible s.a. radial Hamiltonians ĥe(l)
generates s.a. Hamiltonians in accordance with the
relations (14) and (15). As a final result, we have a
family of s.a. rotationally invariant 2D Schrödinger operators
Ĥ⊥
e = M−1Ĥ⊥

e associated with the s.a. differential operation
Ȟ⊥ (5) with B = 0.

When presenting the spectrum and inversion formulae
for Ĥ⊥

e , we also consider the case of µ= 0 and the case
of µ > 0 separately. We let E denote the spectrum points
of Ĥ⊥

e and let 9E denote the corresponding (generalized)
eigenfunctions. The spectrum points of the operators ĥe(l)
and Ĥ⊥

e are evidently related by E = ME . In addition, when
writing formulae for eigenfunctions 9E of the operator Ĥ⊥

e

in terms of eigenfunctions UE of the operators ĥe(l), we
have to introduce the factor (2πρ)−1/2eiεq (φ0−l)ϕ in accordance
with equation (7) with ε = εq (because εB = 1), to make the
substitutions E = ME and E (−)λa

= M E (−)
λa

, E (−)λ = ME (−)
λ for

the respective points of the continuous spectrum and discrete
spectrum and, in addition, to multiply eigenfunctions of the
continuous spectrum of the operators ĥe(l) by the factor

√
M

because of the change of the spectral measure dE to the
corresponding spectral measure4 dE .

For µ= 0, there is a family of s.a. 2D Schrödinger
operators Ĥ⊥

e = Ĥ⊥

λ parameterized by a real parameter λ ∈

S (−π/2, π/2),

Ĥ⊥

λ =

∑
⊕

l∈Z,l 6=l0

Ĥ⊥(l)⊕ Ĥ⊥

λ (l0),

Ĥ⊥(l)= M−1Sl ĥ(1)(l)S
−1
l , l 6= l0,

Ĥ⊥

λ (l0)= M−1Sl0 ĥλ(l0)S
−1
l0
.

The spectrum of Ĥ⊥

λ is given by

spec Ĥ⊥

λ

= R+ ∪

{
E (−)
λ = −4M−1κ2

0 exp[2(tan λ− C)], |λ|< π/2

∅, λ= ±π/2

}
.

The complete system of orthonormalized (generalized)
eigenfunctions of Ĥ⊥

λ consists of the generalized
eigenfunctions 9l,E (ρ) of the continuous spectrum,

9l,E (ρ)= (M/4π)1/2 eiεq (φ0−l)ϕ J~l

(√
MEρ

)
, l 6= l0,

E > 0,

9λ
l0,E (ρ)=

√
M

4π(λ̃2 +π2/4)
eiεqφ0ϕ

[
λ̃J0

(√
MEρ

)
+
π

2
N0

(√
MEρ

)]
,

λ̃= tan λ− C − ln
(√

ME/2κ0

)
,

4 From a physical standpoint, the latter is related to the change of the
‘normalization of the eigenfunctions of the continuous spectrum to δ

function’ from δ(E − E ′) to δ(E − E ′).

5
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and (in the case of |λ|< π/2) the eigenfunction 9λ
l0
(ρ)

corresponding to the discrete level E (−)
λ ,

9λ
l0
(ρ)= M

√
|E (−)

λ |/π eiεqφ0ϕK0

(√
M |E (−)

λ |ρ

)
,

such that

Ȟ⊥9l,E (ρ)= E9l,E (ρ),

Ȟ⊥9λ
l0,E (ρ)= E9λ

l0,E (ρ), E > 0,

Ĥ⊥

λ9
λ
l0
(ρ)= E (−)

λ 9λ
l0
(ρ), |λ|< π/2.

The corresponding inversion formulae have the form

9(ρ)=

∑
l∈Z,l 6=l0

∫
∞

0
8l(E)9l,E (ρ)dE

+
∫

∞

0
8l0(E)9

λ
l0,E (ρ)dE +8l09

λ
l0
(ρ),

8l(E)=

∫
dρ9l,E (ρ)9(ρ),

8l0(E)=

∫
dρ9λ

l0,E
(ρ)9(ρ),

8l0 =

∫
dρ9λ

l0
(ρ)9(ρ), ∀9 ∈ L2(R2);∫

dρ |9(ρ)|2 =

∑
l∈Z

∫
∞

0
|8l(E)|

2 dE +
∣∣8l0

∣∣2 ,
and the terms with 8l0 and 9λ

l0
(ρ) are absent in the case of

|λ| = π/2.
For µ > 0, there is a family of s.a. 2D Schrödinger

operators Ĥ⊥
e = Ĥ⊥

{λa}
, a = 0,−1, parameterized by two real

parameters λa ∈ S (−π/2, π/2),

Ĥ⊥

{λa}
=

∑
⊕

l∈Z,l 6=la

Ĥ⊥(l)⊕
∑

⊕

a

Ĥ⊥

λa
(la),

Ĥ⊥(l)= M−1Sl ĥ(1)(l)S
−1
l , 6= la,

Ĥ⊥

λa
(la)= M−1Sla ĥλa (la)S

−1
la
.

The spectrum of Ĥ⊥

{λa}
is given by

spec Ĥ⊥

{λa}

= R+ ∪

{
E (−)
λa

= −4M−1k2
0 |λ̃a|

−~−1
a , λa ∈ (−π/2, 0)

∅, λa /∈ (−π/2, 0)

}
,

where ~a = |µ+ a|, λ̃a = 0(1 − ~a)0
−1(1 + ~a) tan λa .

A complete system of orthonormalized (generalized)
eigenfunctions of Ĥ⊥

{λa}
consists of the generalized

eigenfunctions9l,E (ρ), l 6= la , and9λa
la ,E
(ρ) of the continuous

spectrum,

9l,E (ρ)= (M/4π)1/2 eεq (φ0−l)ϕ J~l

(√
MEρ

)
,

~l = |l +µ|, l 6= la,

9
λa
la ,E
(ρ)=

√
1

4πQa
eiεq (φ0−la)ϕ

[
J~a

(√
MEρ

)
+ λ̃a

(√
ME/2κ0

)2~a

J−~a

(√
MEρ

) ]
,

Qa = 1 + 2λ̃a (ME/4)~a cos(π~a)+ (λ̃a)
2 (ME/4)2~a ,

E > 0,

and (in the case of λa ∈ (−π/2, 0)) the eigenfunctions9λa
la
(ρ)

corresponding to the discrete levels E (−)
λa

,

9
λa
la
(ρ)=

√
M2|E (−)

λa
| sin(π~a)

π2~a
eiεq (φ0−la)ϕK~a

(√
|ME (−)

λa
|ρ

)
,

such that

Ȟ⊥9l,E (ρ)= E9l,E (ρ), l 6= la,

Ȟ⊥9
λa
la ,E
(ρ)= E9λa

la ,E
(ρ), E > 0,

Ĥ⊥

{λa}
9
λb
lb
(ρ)= E (−)

λb
9
λb
lb
(ρ), b = 0,−1.

The corresponding inversion formulae have the form

9(ρ)=

∑
l∈Z, l 6=la

∫
∞

0
8l(E)9l,E (ρ)dE

+
∑

a

[∫
∞

0
8la (E)9

λa
la ,E
(ρ)dE +8la9

λa
la
(ρ)

]
,

∀9 ∈ L2(R2),

8l(E)=

∫
dρ9l,E (ρ)9(ρ), l 6= la,

8la (E)=

∫
dρ9λa

la ,E
(ρ)9(ρ),

8la =

∫
dρ9λa

la
(ρ)9(ρ),∫

dρ |9(ρ)|2 =

∑
l∈Z

∫
∞

0
|8l(E)|

2 dE +
∑

a

∣∣8la

∣∣2 ,
and the terms with 8la and 9λa

la
(ρ) are absent in the case of

λa 6∈ (−π/2, 0).
We now consider the case of the MSF where B 6= 0.

2.1.3. s.a. radial Hamiltonians with MSF. In this case, the
radial differential operation ȟ(l) is given by (10) with γ =
e|B|

ch̄ 6∈ 0, or

ȟ(l)= − ∂2
ρ + g1ρ

−2 + g2ρ
2 + E (0)l ,

g1 = ~2
l − 1/4, ~l = |l +µ|, g2 = γ 2/4,

E (0)l = γ (l +µ).

Up to the constant term E (0)l , this s.a. differential
operation is identical to the 1D Schrödinger operation −d2

x +
g1x−2 + g2x2. Its singular part was studied by us recently
in [22]. We note that as in the case of the pure AB field, the
division to different regions of g1 is actually determined by
the same term g1ρ

−2 singular at the origin and independent of
the value of B.

The first region: g1 > 3/4. In this region, we have
(l +µ)2 > 1, such that

µ= 0 : l 6−1 or l > 1 i.e. l 6= l0,

µ > 0 : l 6−2 or l > 1 i.e. l 6= la .

6
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For such l, the initial symmetric operator ĥ(l) has
zero-deficiency indices. It is essentially s.a. and its unique
s.a. extension is ĥ1(l)= ĥ+(l)with the domain D∗

ȟ(l)
(R+). The

spectrum of ĥ1(l) is simple, discrete and given by

spec ĥ1(l)=
{
El,m = γ (1 + |l +µ| + (l +µ)+ 2m) , m ∈ Z+

}
.

(22)
The eigenfunctions U (1)

l,m ,

U (1)
l,m(ρ)

= Ql,m (γ /2)
1/4+~l/2 ρ1/2+~l e−γρ2/48(−m, 1 + ~l; γρ

2/2),

Ql,m =

(√
2γ0(1 + ~l + m)

m!02(1 + ~l)

)1/2

, (23)

of the Hamiltonian ĥ1(l) form a complete orthonormalized
system in the Hilbert space L2(R+).

The second region: −1/4< g1 < 3/4. In this region, we
have 0< (l +µ)2 < 1, or equivalently (16). We know that if
µ= 0, these inequalities have no solutions for l ∈ Z, while
if µ > 0 there are the two solutions, l = la = a, a = 0,−1.
Therefore, we again remain with the case of µ > 0.

For each l = la , there exists a one-parameter U (1)-family
of s.a. radial Hamiltonians ĥλa (la) parameterized by a
real parameter λa ∈ S (−π/2, π/2). These Hamiltonians are
specified by the asymptotic s.a. boundary conditions at
ρ → 0,

ψλa (ρ)= C

[(√
γ /2ρ

)1/2+~a

sin λa +
(√
γ /2ρ

)1/2−~a

cos λa

]
+ O(ρ3/2), (24)

where κa = |µ+ a|, 0< κa < 1 and C is an arbitrary
constant5, and their domains are given by

Dhλa (la) = {ψ : ψ ∈ D∗

ȟ(la)
(R+), ψ satisfy (24)}. (25)

The spectrum of ĥλa (la) is simple, discrete and is bounded
from below,

spec ĥλa (la)=

{
Ea,m = τa,m + E (0)la

, m ∈ Z+

}
,

where τa,m are solutions of the equation ωλa (τa,m)= 0,

ωλa (W )= ω+(W ) sin λa +ω−(W ) cos λa,

ω±(W )= 0(1 ± ~a)/0(1/2 ± ~a/2 − W/2γ ).
(26)

The eigenfunctions U (2)
λa ,m ,

U (2)
λa ,m(ρ)= Qa,m

[
u+(ρ; τa,m) sin λa + u−(ρ; τa,m) cos λa

]
,

Qa,m =

(
ω̃
λa
(τa,m)

√
2γ ~aω

′

λa
(τa,m)

)1/2

,

ω̃λa (W )= ω+(W ) cos λa −ω−(W ) sin λa,

u±(ρ; W )= (γ /2)1/4±~a/2 ρ1/2±~a e−γρ2/48(1/2 ± ~a/2

− W/2γ, 1 ± ~a; γρ
2/2), (27)

5 In comparison with (17), we fix the dimensional parameter k0 by k0 =
√
γ /2.

of the Hamiltonian ĥλa (la) form a complete orthonormalized
system in the Hilbert space L2(R+).

For λa = ±π/2 and λa = 0, one can easily obtain explicit
expressions for the spectrum and eigenfunctions. For λa =

±π/2, they are given by the respective formulae (22) and (23)
with the substitutions l → la and ~l → ~a . For λa = 0,
these formulae are modified by the additional substitution
~a → −~a . In addition, one can see that in each interval
(τ
(±π/2)
a,m , τ

(±π/2)
a,m+1 ), m ∈ {−1} ∪Z+, where τ (±π/2)a,m , m ∈ Z+, are

solutions of the equation ω±π/2(τa,m)= 0 and we set formally
τ
(±π/2)
a,−1 = −∞, there is one solution τa,m of the equation
ωλa (τa,m)= 0 for a fixed λa ∈ (−π/2, π/2); the solution τa,m

increases monotonically from τ
(±π/2)
a,m + 0 to τ (±π/2)a,m+1 − 0 when

λa changes from −π/2 + 0 to π/2 − 0.

The third region: g1 = −1/4. In this region, we have l +
µ= 0. Thus, we remain with only the case of µ= 0 with
l = l0 = 0.

For l = l0, there exists a one-parameter U (1)-family
of s.a. radial Hamiltonians ĥλ(l0), parameterized by the
real parameter λ ∈ S (−π/2, π/2). These Hamiltonians are
specified by the asymptotic s.a. boundary conditions at
ρ → 0,

ψλ(ρ)= C
[
ρ1/2 ln

(√
γ /2ρ

)
cos λ+ρ1/2 sin λ

]
+O(ρ3/2 ln ρ),

(28)
where C is an arbitrary constant and their domains are
given by

Dhλ(l0) = {ψ : ψ ∈ D∗

ȟ(l0)
(R+), ψ satisfy (28)}. (29)

The spectrum of ĥλ(l0) is simple, discrete and is bounded
from below, and

spec ĥλ(l0)=

{
Em, m ∈

{
Z+, λ= ±π/2

{−1} ∪Z+, |λ|< π/2

}
,

where Em are solutions of the equation ωλ(Em)= 0,

ωλ(W )= cos λ[ψ(α0)− 2ψ(1)] − sin λ, α0 = 1/2 − W/2γ.
(30)

The limit λ→ ±π/2 in this equation and its solutions
are described by the equation ψ−1(α0)= 0 or 1/2 −

E (±π/2)m /2γ = −m, m ∈ Z+, and by the solution E (±π/2)m =

γ (1 + 2m).
A qualitative description of the spectrum is given

above. One can see that in each interval (E (±π/2)m , E (±π/2)m+1 ),
m ∈ {−1} ∪Z+, there is one solution Em (for a fixed λ ∈

(−π/2, π/2)) of equation (30) (we set formally E (±π/2)
−1 =

−∞); the solution Em increases monotonically from E (±π/2)m +
0 to E (±π/2)m+1 − 0 when λ changes from π/2 − 0 to −π/2 + 0.

The eigenfunctions U (3)
λ,m ,

U (3)
λ,m = Qλ,m [u1(ρ; Em) sin λ+ u3(ρ; Em) cos λ] ,

u1(ρ; W )= (γ /2)1/4 ρ1/2e−γρ2/48(α0, 1; γρ2/2),

u3(ρ; W )= u1(ρ; W ) ln
(√
γ /2ρ

)
+ (γ /2)1/4ρ1/2e−γρ2/4

×∂µ8(1/2 +µ− W/2γ, 1 + 2µ; γρ2/2)
∣∣
µ=0 ,

7
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Qλ,m =

[
−

ω̃λ(Em)
√

2γω′

λ(Em)

]1/2

,

ω̃λ(W )= sin λ[ψ(α0)− 2ψ(1)] + cos λ, (31)

of the Hamiltonians ĥλ(l0) form a complete orthonormalized
system in the Hilbert space L2(R+).

We note that the spectrum and eigenfunctions in the case
of λ= ±π/2 can be obtained from the respective formulae for
the first region in the formal limit l → 0.

Complete spectrum and inversion formulae. In previous
subsubsections, we constructed all the s.a. radial Hamiltonians
associated with the s.a. differential operation ȟ(l) as s.a.
extensions of the symmetric operator ĥ(l) for any l ∈ Z and
for any φ0, µ and B. We assemble our previous results into
two groups.

For µ= 0, we have

ĥ1(l), l 6= l0 = 0, Dh1(l) = D∗

ȟ(l)
(R+),

ĥλ(l0), λ ∈ S (−π/2, π/2) ,

and the domain Dhλ(l0) is given by equation (29).
For µ > 0, we have

ĥ1(l), l 6= la = a = 0,−1, Dh1(l) = D∗

ȟ(l)
(R+),

ĥλa (la), λa ∈ S (−π/2, π/2) ,

and the domain Dhλa (la) is given by equation (25).
As a result, each set of possible s.a. radial Hamiltonians

ĥe(l) generates s.a. rotationally invariant Schrödinger
operators Ĥ⊥

e = M−1Ĥ⊥
e in accordance with relations (14)

and (15). As in the case of the pure AB field where B = 0,
we let E denote the spectrum points of Ĥ⊥

e .
It is convenient to change the indexing l, m of the

spectrum points and eigenfunctions to l, n, as follows:

n = n(l,m)=

{
m, l 6−1,
m + l, l > 0,

m ∈ Z+, l ∈ Z,

m = m(n, l)=

{
n, l 6−1,
n − l, 06 l 6 n,

n ∈ Z+, l ∈ Z,
(32)

and then interchange their position, such that, finally, the
indices l, m are replaced by indices n, l.

When writing formulae for eigenfunctions 9n,l of an
operator Ĥ⊥

e in terms of eigenfunctions Ul,m of the operators
ĥe(l), we have to introduce the factor (2πρ)−1/2 eiε(φ0−l)ϕ

in accordance with equation (7) and make the substitution
El,m = MEn,l for the corresponding spectrum points.

The final result is the following. There is a family of
s.a. 2D Schrödinger operators Ĥ⊥

e parameterized by real
parameters λ∗, such that Ĥ⊥

e = Ĥ⊥

λ∗
,

Ĥ⊥

λ∗
=

∑
⊕

l∈Z,l 6=l∗

Ĥ⊥(l)⊕
∑

⊕

l∗

Ĥ⊥

λ∗
(l∗) ,

Ĥ⊥(l)= M−1Sl ĥ1(l)S
−1
l , l 6= l∗,

Ĥ⊥

λ∗
(l∗) = M−1Sl∗ ĥλ∗

(l∗) S−1
l∗
,

l∗ =

{
l0, µ= 0
la, µ > 0

,

λ∗ =

{
λ ∈ S (−π/2, π/2) , µ= 0,
λa ∈ S (−π/2, π/2) , µ > 0.

(33)

The spectrum of Ĥ⊥

λ∗
is given by

spec Ĥ⊥

λ∗
= {∪l∈Z,l 6=l∗(En,l , n ∈ Z+)} ∪ {∪l=l∗(E

(λ∗)
n , n ∈ Z+)},

En,l = γM−1[1 + 2n + 2θ(l)µ], l 6 n, l 6= l∗,

θ(l)=

{
1, l > 0,
0, l < 0,

(34)

E (λ)
n :

{
ωλ(ME (λ)

n )= 0, |λ|< π/2,

E (±π/2)
n = γM−1(1 + 2n),

µ= 0,

{
E (λa)

n = M−1
[
τa,n + γ (a +µ)

]
, ωλa (τa,n)= 0,

E (±π/2)
n = γM−1[1 + 2n + 2θ(a)µ],

n ∈ Z+, µ > 0, (35)

where ωλ(W ) and ωλa (W ) are given by respective
equations (30) and (26).

A complete set of orthonormalized eigenfunctions of Ĥ⊥

λ∗

consists of the functions 9n,l(ρ), l 6= l∗, and 9λ∗

n,l∗
(ρ),

9n,l(ρ)=
1

√
2πρ

eiε(φ0−l)ϕU (1)
l,m(n,l)(ρ), (36)

where U (1)
l,m(ρ) are given by equations (23) and (we note that

m(n, l∗)= n)

9λ
n,l0
(ρ)=

1
√

2πρ
eiεφ0ϕU (3)

λ,n(ρ), µ= 0,

9
λa
n,la
(ρ)=

1
√

2πρ
eiε(φ0−la)ϕU (2)

λa ,n(ρ), µ > 0,

where U (3)
λ,n(ρ) and U (2)

λa ,n(ρ) are given by respective
equations (31) and (27), such that

Ĥ⊥

λ∗
9n,l(ρ)= En,l9n,l(ρ), l 6= l∗,

Ĥ⊥

λ∗
(ρ)9λ∗

n,l∗
= E (λ∗)

n 9
λ∗

n,l∗
(ρ).

We note that for the case of λ= ±π/2, l = l0 = 0,
and for the case of λa = ±π/2, l = la = a = 0,−1, the
energy eigenvalues E (λ)

n and E (λa)
n and the corresponding

eigenfunctions 9λ
n and 9λa

n are given by respective
equations (34) and (36) extended to all values of l.

The corresponding inversion formulae have the form

9(ρ)=

∑
l∈Z, l 6=l∗

∑
n∈Z+

8n,l9n,l(ρ)+
∑

l∗,n∈Z+

8n,l∗9
λ∗

n,l∗
(ρ),

8n,l =

∫
dρ9n,l(ρ)9(ρ), l 6= l∗,

8n,l∗ =

∫
dρ9λ∗

n,l∗
(ρ)9(ρ),∫

dρ |9(ρ)|2 =

∑
l∈Z

∑
n∈Z+

∣∣8n,l

∣∣2 , ∀9 ∈ L2(R2).

8
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2.2. The 3D case

In three dimensions, we start with the differential operation
Ȟ (4). The initial symmetric operator Ĥ associated with
Ȟ is defined on the domain DH = D(R3

\Rz) ∈ H= L2(R3),
where D(R3

\Rz) is the space of smooth and compactly
supported functions vanishing in the neighborhood of the
z-axis. The domain DH is dense in H, and the symmetricity of
Ĥ is obvious. An s.a. Schrödinger operator must be defined as
an s.a. extension of Ĥ .

There is an evident space symmetry in the classical
description of the system, the symmetry with respect to
rotations around the z-axis and translations along this axis,
which is manifested as the invariance of the classical
Hamiltonian under these space transformations. The key point
in constructing a quantum description of the system is the
requirement of the invariance of the Schrödinger operator
under the same transformations. Namely, let G be the group
of the above space transformations S: r 7→ Sr. This group is
unitarily represented in H: if S ∈G, then the corresponding
operator US is defined by

(USψ)(r)= ψ(S−1r), ∀ψ ∈ H.

The operator Ĥ evidently commutes6 with US for any S.

We search only for s.a. extensions Ĥ e of Ĥ that also
commute with US for any S. This condition is the explicit
form of the invariance, or symmetry, of a Schrödinger
operator under the space transformations. As in classical
mechanics, this symmetry allows separating the cylindrical
coordinates ρ, ϕ and z and reducing the 3D problem to
a 1D radial problem. Let L2(R×R+) denote the space of
square-integrable functions with respect to the Lebesgue
measure dpzdρ onR×R+, and let V :

∑
⊕

l∈Z L2(R×R+) 7−→

H be the unitary operator defined by the relationship

(V f )(ρ, ϕ, z)=
1

2π
√
ρ

∫
Rz

dpz

∑
l∈Z

ei(ε(φ0−l)ϕ+pz z) f (l, pz, ρ).

Similarly to the preceding subsection, it is natural to expect
that any s.a. Schrödinger operator Ĥ e can be represented in
the form

Ĥ e=V
∫
Rz

dpz

∑
l∈Z

ĥe(l, pz)V
−1,

where ĥe(l, pz) for fixed l and pz is an s.a. extension of
the symmetric operator ĥ(l, pz)= ĥ(l)+ p2

z /2me in L2(R+)

and the operator ĥ(l) in L2(R+) is defined on the domain
Dh(l) = D(R+), where it acts as

ȟ(l)= −∂2
ρ + ρ−2

[(
l +µ+ γρ2/2

)2
− 1/4

]
.

6 We remind the reader of the notion of commutativity in this case (where
one of the operators, US , is bounded and defined everywhere): we say that
the operators Ĥ and US commute if US Ĥ ⊆ ĤUS ; that is, if ψ ∈ DH , then
also USψ ∈ DH and US Ĥψ = ĤUSψ .

The correct expression for Ĥ e can be written in terms of a
suitable direct integral,

Ĥ e = V
∫

⊕

Rz

dpz

∑
⊕

l∈Z

ĥe(l, pz)V
−1.

Its rigorous justification will be discussed in a publication of
A Smirnov.

The inversion formulae in three dimensions are obtained
by the following modifications to the 2D inversion formulae:

(1)
∑

l∈Z
∫

dE →
∫

dpz
∑

l∈Z
∫

dE⊥, where E⊥ are
spectrum points of 2D s.a. Schrödinger operators Ĥ⊥

e ,
whereas the eigenvalues (spectrum points) E of the 3D
s.a. Schrödinger operators Ĥ e are E = E⊥ + p2

z /2m,
pz ∈ R.

(2) The contribution of discrete spectrum points of the 2D s.a.
Schrödinger operator Ĥ⊥

e has to be multiplied by
∫

dpz .
(3) Eigenfunctions of 2D s.a. Schrödinger operators Ĥ⊥

e have
to be multiplied by (2π h̄)−1/2 eipz z/h̄ in order to obtain
eigenfunctions of the 3D s.a. Schrödinger operators Ĥ e.

(4) The extension parameters λa and λ have to be replaced
by the functions λa(pz) and λ(pz).

2.2.1. s.a. Schrödinger operators with the AB field. For
the case of µ= 0, there is a family of s.a. 3D Schrödinger
operators parameterized by a real-valued function λ(pz) ∈

S (−π/2, π/2), pz ∈ R.
The spectrum of Ĥλ(pz) is given by

spec Ĥ {λ(pz)}

= R+ ∪


p2

z /2me − 4M−1κ2
0 exp

[
2(tan λ(pz)− C)

]
,

|λ(pz)|< π/2

∅, λ(pz)= ±π/2

 .
A complete system of orthonormalized genera-

lized eigenfunctions of Ĥλ(pz) consists of functions
9l,pz ,E⊥(r), l 6= l0, and 9λ(pz)

l0,pz ,E⊥(r),

9l,pz ,E⊥(r)=
(
8π2h̄/M

)−1/2
eipz z/h̄+iεq (φ0−l)ϕ J~l (

√
ME⊥ρ),

9
λ(pz)

l0,pz ,E⊥(r)= (8π2h̄(λ̃2 +π2/4)/M)−1/2eipz z/h̄+iεqφ0ϕ

×

[
λ̃J0

(√
ME⊥ρ

)
+
π

2
N0(

√
ME⊥ρ)

]
,

λ̃= tan λ(pz)− C − ln
(√

ME⊥/2κ0

)
,

and functions 9λ(pz)

l0,pz
(r),

9
λ(pz)

l0,pz
(r)=

1

2π
√

h̄
eipz z/h̄+iεqφ0ϕ

×


√

2M2|E⊥(−)

λ(pz)
|K0

(√
M |E⊥(−)

λ(pz)
|ρ

)
,

|λ(pz)|< π/2

0, λ(pz)= ±π/2

,

E⊥(−)

λ(pz)
= − 4M−1κ2

0 exp 2(tan λ(pz)− C),

9
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such that

Ȟ9l,pz ,E⊥(r)=
(

p2
z /2me + E⊥

)
9l,pz ,E⊥(r), E⊥ > 0,

Ȟ9λ(pz)

l0,pz ,E⊥(r)=
(

p2
z /2me + E⊥

)
9
λ(pz)

l0,pz ,E⊥(r), E⊥ > 0,

Ȟ9λ(pz)

l0,pz
(r)=

(
p2

z /2me + E⊥(−)

λ(pz)

)
9
λ(pz)

l0,pz
(r).

The corresponding inversion formulae have the form

9(r)=

∫
dpz

 ∑
l∈Z, l 6=0

∫
∞

0
8l,pz (E

⊥)9l,pz ,E⊥(r)dE⊥

+
∫

∞

0
8l0,pz (E

⊥)9
λ(pz)

l0,pz ,E⊥(r)dE⊥

+8l0,pz9
λ(pz)

l0,pz
(r)
]
, ∀9 ∈ L2(R3),

8l,pz (E
⊥)=

∫
9l,pz ,E⊥(r)9(r)dr, l 6= l0,

8l,pz (E
⊥)=

∫
9
λ(pz)

l0,pz ,E⊥(r)9(r)dr,

8l0,pz =

∫
9
λ(pz)

l0,pz
(r)9(r) dr,∫

|9(r)|2 dr =

∫
dpz

[∑
l∈Z

∫
∞

0

∣∣8l,pz (E
⊥)
∣∣2 dE⊥ +

∣∣8l0,pz

∣∣2].
For the case µ > 0, there is a family of s.a. 3D

Hamiltonians Ĥ {λa(pz)} parameterized by two real-valued
functions λa(pz) ∈ S (−π/2, π/2), a = 0,−1, pz ∈ R.

The spectrum of Ĥ {λa(pz)} is given by

spec Ĥ {λa(pz)} =


p2

z /2me − 4M−1k2
0 |λ̃a|

−~−1
a ,

λa(pz) ∈ (−π/2, 0)

∅, λa(pz) /∈ (−π/2, 0)

∪R+,

~a = |µ+ a|, λ̃a = 0(1 − ~a)0
−1(1 + ~a) tan λa(pz),

~a = |µ+ a|.

A complete orthonormalized system in L2(R3) consists
of both generalized eigenfunctions 9l,pz ,E⊥(r), l 6= la ,

and 9λa(pz)

la ,pz ,E⊥(r),

9l,pz ,E⊥(r)=
(
8π2h̄/M

)−1/2
eipz z/h̄+iεq (φ0−l)ϕ J~l (

√
ME⊥ρ),

9
λa(pz)

la ,pz ,E⊥(r)=
(
8π2h̄Qa

)−1/2
eipz z/h̄+iεq (φ0−la)ϕ

×

[
J~a

(√
ME⊥ρ

)
+
(√

ME⊥/2κ0

)2~a

× λ̃a J−~a

(√
ME⊥ρ

) ]
,

Qa = 1 + 2
(
ME⊥/4

)~a
λ̃a cos(π~a)+ (ME/4)2~a λ̃2

a,

and eigenfunctions 9λa(pz)

la ,pz
(r),

9
λa(pz)

la ,pz
(r)=

(
2π2h̄

)−1
eipz z/h̄+i(la+εqφ0)ϕ

×


√

M2|E⊥(−)

λa (pz )
| sin(π~a)

2π~a
K~a

(√
M |E⊥(−)

λa(pz)
|ρ

)
,

λa(pz) ∈ (−π/2, 0),

0, λa(pz) /∈ (−π/2, 0),

E⊥(−)

λa(pz)
= − 4M−1κ2

0 exp 2(tan λa(pz)− C),

such that

Ȟ9l,pz ,E⊥(r)=
(

p2
z /2me + E⊥

)
9l,pz ,E⊥(r), E⊥ > 0,

Ȟ9λa(pz)

la ,pz ,E⊥(r)=
(

p2
z /2me + E⊥

)
9
λa(pz)

la ,pz ,E⊥(r), E⊥ > 0,

Ȟ9λa(pz)

la ,pz
(r)=

(
p2

z /2me + E⊥(−)

λa(pz)

)
9
λa(pz)

la ,pz
(r).

The corresponding inversion formulae have the form

9(r)=

∫
dpz

 ∑
l∈Z, l 6=la

∫
∞

0
8l,pz (E

⊥)9l,pz ,E⊥(r)dE⊥

+
∑

a

∫
∞

0
8la ,pz (E

⊥)9
λa(pz)

la ,pz ,E⊥(r)dE⊥

+ 8la ,pz9
λa(pz)

la ,pz
(r)

 , ∀9 ∈ L2(R3),

8l,pz (E
⊥)=

∫
dr9l,pz ,E⊥(r)9(r), E⊥ > 0, l 6= la,

8la ,pz (E
⊥)=

∫
dr9λa(pz)

la ,pz ,E⊥(r)9(r), E⊥ > 0,

8la ,pz =

∫
dr9λa(pz)

la ,pz
(r)9(r),∫

dr |9(r)|2 =

∫
dpz

[∑
l∈Z

∫
∞

0

∣∣8l,pz (E
⊥)
∣∣2 dE⊥

+
∑

a

∣∣8la ,pz

∣∣2] .
2.2.2. s.a. Schrödinger operators with MSF. There is a
family of s.a. 3D Schrödinger operators Ĥλ∗(pz) parameterized
by real-valued functions λ∗(pz) ∈ S (−π/2, π/2), pz ∈ R ),
where λ∗ are defined by equation (33).

The spectrum of Ĥλ∗(pz) is given by

spec Ĥλ∗(pz) =
{

p2
z /2me + E⊥λ∗(pz)

n , n ∈ Z+
}
∪ [γM−1,∞),

where E⊥λ∗(pz)
n are defined by equations (34) and (35) with the

substitution λ∗ → λ∗(pz).
A complete system of generalized orthonormalized

eigenfunctions of Ĥλ∗(pz) consists of functions 9pz ,l,n(r), l 6=

l∗, and 9λ∗(pz)

pz ,l∗,,n
(r), n ∈ Z+,

9pz ,l,n(r)=
1

2π
√

h̄ρ
eipz z/h̄+ε(φ0−l)ϕU (1)

l,m(n,l)(ρ), l 6= l∗,

(37)

10
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where l∗ are defined by equation (33), m(n, l) is given by (32)
and U (1)

l,m(ρ) are given by equations (23),

9
λ(pz)

pz ,l0,n
(r)=

1

2π
√

h̄ρ
eipz z/h̄+iεφ0ϕU (3)

λ(pz),n
(ρ), µ= 0,

9
λa(pz)

pz ,la ,n
(ρ)=

1

2π
√

h̄ρ
eipz z/h̄+iε(φ0−la)ϕU (2)

λa(pz),n
(ρ), µ > 0,

where U (3)
λ(pz),n

(ρ) and U (2)
λa(pz),n

(ρ) are given by the respective
equations (31) and (27) with the substitution λ∗ → λ∗(pz),
such that

Ȟ9pz ,l,n(r)=
(

p2
z /2me + E⊥

n,l

)
9pz ,l,n(r), l 6= l∗,

Ȟ9λ∗(pz)

pz ,l∗,,n
(r)=

(
p2

z /2me + E⊥λ∗(pz)
n

)
9
λ∗(pz)

pz ,l∗,,n
(r), (38)

where

E⊥

n,l = γM−1[1 + 2n + 2θ(l)µ], l 6 n, l 6= l∗, n ∈ Z+.

(39)
We note that for λ(pz)= λa(pz)= ±π/2, the energy

eigenvalues and corresponding eigenfunctions 9pz ,l,n(r) are
given by equations (38), (39) and (37) extended to all values
of l.

The corresponding inversion formulae have the form

9(r)=

∫
dpz

∑
n∈Z+

 ∑
l∈Z, l 6=l∗

8pz ,l,n9pz l,m(n,l)(r)

+
∑
l=l∗

8pz ,l∗,n9
λ∗(pz)

pz ,l∗,n
(r)

]
,

8pz ,l,n =

∫
dr9pz ,l,n(r)9(r), l 6= l∗,

8pz ,l∗,n =

∫
dr9λ(pz)

pz ,l∗,n
(r)9(r),∫

dr |9(r)|2 =

∫
dpz

∑
l∈Z

∑
n∈Z+

∣∣8pz ,l,n

∣∣2 , ∀9 ∈ L2(R3).

3. S.a. Dirac Hamiltonians with MSF

3.1. Generalities

In this section, we set c = h̄ = 1. Written in the form of the
Schrödinger equation, the Dirac equation with the MSF reads

i
∂9 (x)

∂t
= Ȟ9 (x) , x =

(
x0, r

)
,

r =
(
xk, k = 1, 2, 3

)
, x0

= t,

where 9 (x)= {ψα(x), α = 1, . . . , 4} is a four-spinor and
Ȟ is the s.a. Dirac differential operation, the ‘formal Dirac
Hamiltonian’,

Ȟ =α
(

ˇp−εqeA
)

+ meβ,

where the vector potential A is given by (2),
α=

(
γ 0γ k, k = 1, 2, 3

)
, β = γ 0 and γ µ, µ= 0, 1, 2, 3, are

Dirac γ matrices.

The space of quantum states for a particle is the Hilbert
space H=L2 (R3

)
of square-integrable bispinors 9(r) with

the scalar product

(91, 92)=

∫
dr9+

1 (r)92(r), dr = dx1 dx2 dx3
= ρd ρdϕ dz,

where ρ, ϕ and z are the cylindric coordinates. The Hilbert
space H can be presented as

H=

4∑
⊕

α=1

Hα, Hα = L2(R3).

Our first aim is to construct all s.a. Dirac operators (Dirac
Hamiltonians) associated with the s.a. differential operation
Ȟ using the general approach presented in [25]. In particular,
the construction is based on the known spatial symmetry in the
problem7 , which allows separating the cylindric coordinates
ρ, ϕ and z.

It is convenient to choose the following representation for
γ matrices:

γ 0
=

(
σ 3 0
0 −σ 3

)
, γ 1

=

(
iσ 2 0
0 −iσ 2

)
,

γ 2
=

(
−iσ 1 0

0 iσ 1

)
, γ 3

=

(
0 I

−I 0

)
,

γ 5
= − iγ 0γ 1γ 2γ 3

= −

(
0 I
I 0

)
, 63

=

(
σ 3 0
0 σ 3

)
.

Written in cylindric coordinates, the differential operation Ȟ
then becomes

Ȟ = diag
(
Y + meσ

3, Y − meσ
3
)

+ p̌z antidiag(σ 3, σ 3),

where

Y = Q[σ 3∂ρ + ρ−1(i∂ϕ + εq φ̃)],

Q = σ 1 sinϕ− σ 2 cosϕ, Q2
= 1,

and

εq φ̃ = ε(φ0 +µ+ γρ2/2), φ0 = [εBφ] = εBφ−µ,

06 µ < 1, γ = e|B|> 0.

This operation commutes with the s.a. differential
operations

p̌z = − i∂z, Šz = γ 5
(
γ 3

− m−1
e p̌z

)
,

J̌ z = − i∂ϕ + 1
26

3
= diag

(
̌ z, ̌ z

)
, ̌ z = −i∂ϕ + σ 3/2,

where 63
= diag(σ 3, σ 3).

We pass to the pz representation for bispinors, 9(r)→

9̃(pz,ρ),

9(r)=
1

√
2π

∫
eipz z9̃(pz,ρ)dpz,

9̃(pz,ρ)=
1

√
2π

∫
e−ipz z9(x)dz.

7 By the spatial symmetry, we mean the invariance under rotations around
the solenoid axis and under the translations along this axis.

11
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In this representation, the operation J̌ z is the same, while Ȟ
and Šz , respectively, become

Ȟ → Ȟ (pz) = Ȟ = diag
(
Y + meσ

3, Y − meσ
3
)

+ pz antidiag
(
σ 3, σ 3

)
,

Šz → Šz (pz) = m−1
e pz antidiag (I, I )+ diag(I,−I ).

We decompose the bispinor 9̃(pz,ρ) for a fixed pz into
two orthogonal components that are the eigenvectors for the
spin matrix Ŝz(pz):

The space of four-spinors 9̃(pz,ρ) with a fixed pz is the
direct orthogonal sum of two eigenspaces of Ŝz(pz),

9̃(pz,ρ)= 9̃1(pz,ρ)+ 9̃−1(pz,ρ),

where

9̃1(pz,ρ)=

(
M + me

2M

)1/2 (
χ1

pz (M + me)
−1 χ1

)
= χ1(pz,ρ)⊗ e1(pz),

9̃−1(pz,ρ)=

(
M + me

2M

)1/2 (
−pz (M + me)

−1 χ−1

χ−1

)
= χ−1(pz,ρ)⊗ e−1(pz),

e1(pz)=

(
M + me

2M

)1/2 ( 1

pz (M + me)
−1

)
,

e−1(pz)= − iσ 2e1(pz), (40)

and es(pz), s = ±1, are two orthonormalized bispinors,
e+

r (pz)e+
s (pz)= δrs , and χs(pz,ρ) are some doublets. The

space of bispinors 9̃(pz,ρ) with a fixed pz is the direct
orthogonal sum of two eigenspaces of Ŝz(pz),

Ŝz (pz) 9̃s(pz,ρ)= s
M

me
9̃s(pz,ρ),

M =

√
m2

e + p2
z , s = ±1.

We thus obtain a one-to-one correspondence between
bispinors 9(r) and pairs of doublets χs(pz,ρ),

9(r)⇐⇒ 9̃s(pz,ρ)⇐⇒ χs(pz,ρ),

such that ‖9 ‖
2
=
∑

s ‖ χs ‖
2
=
∑

s

∫
dpz dρχ+

s (pz,ρ)χs

(pz,ρ).
The differential operations Ȟ and J̌ z induce the

differential operations ȟ and ̌ z in the space of doublets
χs(pz,ρ):

Ȟ (pz) 9̃s = ȟ (s, pz) χs ⊗ es, J̌ z (pz) 9̃s = ̌ zχs ⊗ es,

ȟ (s, pz) = Q
[
σ 3∂ρ + ρ−1

(
i∂ϕ + εq φ̃

)]
+ s Mσ 3.

The s.a. operator ̂ z associated with ̌ z has a discrete
spectrum, its eigenvalues are all half-integers labeled here by
integers l as ε(φ0 − l + 1/2),

̂ zξl(ϕ)= [ε(φ0 − l + 1/2)]ξl(ϕ), l ∈ Z.

It is convenient to represent vectors ξl(ϕ)≡ ξl(pz, ρ, ϕ) of the
corresponding eigenspaces, as

ξl(ϕ)= (2π)−1/2 ei[ε(φ0−l+1/2)−σ 3/2]ϕϑl

= Sl(ϕ)
1

√
2πρ

F(l, pz, ρ),

Sl(ϕ)= eiε(φ0−l+1/2)ϕ antidiag
(
i eiϕ/2,−e−iϕ/2

)
,

S+
l (ϕ) Sl(ϕ)= I, (41)

where ϑl = ϑl(pz, ρ) and F(l, pz, ρ) are arbitrary doublets
independent of ϕ.

The space of doublets χs(pz,ρ) is a direct orthogonal
sum of the eigenspaces of the operator ̂ z , which means that
the doublets allow the representations

χs(pz,ρ)=

∑
l∈Z

1
√

2πρ
Sl(ϕ)F(s, l, pz, ρ),

and the factor 1/
√

2πρ is introduced for further convenience.
The operation ȟ (s, pz) induces an operation ȟ(s, l)

(‘radial Hamiltonian’ depending on the parameter pz as well)
in the space of doublets F ,

ȟ (s, pz) χs =

∑
l∈Z

1
√

2πρ
Sl(ϕ)ȟ(s, l)F(s, l, pz; ρ),

ȟ(s, l)= iσ 2∂ρ + ε(γρ/2 + ρ−1~l)σ
1
− s Mσ 3, (42)

where κl = l +µ− 1/2.
In the Hilbert space L2 (R+)= L2(R+)⊕ L2(R+) of

doublets F(ρ) (with pz fixed), we define the initial symmetric
radial Hamiltonian ĥ(s, l) associated with the s.a. differential
operation ȟ(s, l) and acting on the domain Dh(s,l),

Dh(s,l) =D(R+)= D(R+)⊕D(R+). (43)

3.2. Solutions of radial equations

I. We first consider the homogeneous equation

[ȟ(s, l)− W ]F(ρ)= 0 (44)

and some of its useful solutions.
We let f and g denote the respective upper and lower

components of doublets F , F = ( f/g) . Then equation (44)
is equivalent to the set of radial equations for the doublet
components

f ′
− ε(γρ/2 + ρ−1~l) f + (W − s M)g = 0,

g′ + ε(γρ/2 + ρ−1~l)g − (W + s M) f = 0, (45)

where the prime denotes derivatives with respect to ρ.
We let ȟ+ = ȟ+(s, l) and ȟ− = ȟ−(s, l) denote the

differential operation ȟ with ε = 1 and ε = −1, respectively.
We then have

ȟ+(s, l)= iσ 2∂ρ +
(
γρ/2 + ρ−1~l

)
σ 1

− s Mσ 3,

ȟ−(s, l)= iσ 2∂ρ −
(
γρ/2 + ρ−1~l

)
σ 1

− s Mσ 3

= iσ 2
[
iσ 2∂ρ + (γρ/2 + ρ−1~)σ 1 + s Mσ 3

] (
iσ 2
)+

= iσ 2ȟ+(−s, l)
(
iσ 2
)+
.

12
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It follows that solutions F− = F−(s, l, E−(s); ρ) of
the equation [ȟ− − E−(s)]F− = 0 are bijectively related to
solutions F+ = F+(s, l, , E+(s); ρ) of the equation [ȟ+ −

E+(s)]F+ = 0 as follows:

F−(s, l, E−(s); ρ)= iσ 2 F+(−s, l, E+(−s); ρ),

E−(s)= E+(−s).

That is why we consider below the case of ε = sgn (q B)= 1
only and omit the subscript ‘+’.

The set (45) can be reduced to second-order differential
equations for both f and g. For example, we have the
following set of equations equivalent to (45):

f ′′
−

[
(γρ/2)2 +

~l(~l − 1)

ρ2
−w + γ

(
~l +

1

2

)]
f = 0,

g = (W − s M)−1
[
− f ′ + (γρ/2 + ρ−1~l) f

]
, w = W 2

− M2.
(46)

By the substitution

f (ρ)= za/2e−z/2 p(z), z = γρ2/2, a = 1/2 ± (~l − 1/2),

we reduce the first equation (46) to the equation for p(z) that
is the equation for confluent hypergeometric functions,

z∂2
z p + (β − z)∂z p −αp = 0, β = a + 1/2,

α = a/2 + ~l/2 + 1/2 −w/2γ. (47)

Known solutions of equation (47) allow solutions of equations
(44) to be obtained.

In what follows, we use the following solutions
F1(ρ; s,W ), F2(ρ; s,W ) and F3(ρ; s,W ) of equation (44):

F1 = ρ1/2−l−µ e−z/2

×

(
− (2β1)

−1 (W − s M)ρ8(α1 + 1, β1 + 1; z)

8(α1, β1; z)

)
,

F2 = ρl+µ−1/2 e−z/2

(
8(α2, β2; z)

(2β2)
−1 (W + s M)ρ8(α2, β2 + 1; z)

)
,

F3 = ρ1/2−l−µ e−z/2

(
2−1(W − s M)ρ9(α1 + 1, β1 + 1; z)

9(α1, β1; z)

)
,

(48)
where

β1 = 1 − l −µ, α1 = −w/2γ, β2 = l +µ,

α2 = l +µ−w/2γ, ω1 = ω1(s,W )=
2 (γ /2)β2 0(β1)

(W + s M)0(α1)
,

ω2 = ω2(W )=
0(β2)

0(α2)
.

All the solutions F1, F2, and F3 are real-entire in W , and
F3 = ω2 F1 −ω1 F2.

The solutions (48) have the following asymptotic
behavior at the origin and at infinity.

As ρ → 0, we have

F1 = ρ1/2−l−µ
(
− (2β1)

−1 (W − s M)ρ/1
)

Õ(ρ2),

F2 = ρl+µ−1/2
(
1/ (2β2)

−1 (W + s M)ρ1
)

Õ(ρ2),

f3 =
(W − s M)0(β1)

2 (γ /2)β1 0(α1 + 1)
ρl+µ−1/2

×


Õ(ρ2), l 6−1,

Õ(ρ2−2µ), l = 0, µ > 0,

Õ(ρ2 ln ρ), l = 0, µ= 0,

g3 =
0(β2)

0(α2)
ρ1/2−l−µ

{
Õ(ρ2), l > 1,

Õ(ρ2µ), l = 0, µ > 0,
(49)

where F3 = ( f3/g3).
As ρ → ∞, we have

F1 =
(γ /2)α1−β1 0(β1)

0(α1)
ρ−~l +2α1−2β1 ez/2

× (γρ(W + s M)−1/1)Õ(ρ−2),

F2 =
(γ /2)α1 0(β2)

0(α2)
ρ~l +2α1 ez/2

×
(
1/ (γρ)−1 (W + s M)

)
Õ(ρ−2),

F3 = (γ /2)−α1 ρ~l−2α1 e−z/2(
(γρ)−1 (W − s M) /1

)
Õ(ρ−2).

We define the Wronskian Wr(F, F̃) of the two doublets
F = ( f/g) and F̃ = ( f̃ /g̃) by

Wr(F, F̃)= f g̃ − g f̃ = iFσ 2 F̃ .

If (ȟ − W )F = (ȟ − W )F̃ = 0, then Wr(F, F̃)= C = const.
Solutions F and F̃ are linearly independent iff C 6= 0. It is
easy to see that Wr(F1, F2)= −1.

If Im W > 0, the solutions F1, F2, and F4 are pairwise
linearly independent,

Wr(F1, F3)= ω1(W ), Wr(F2, F3)= ω2(W ).

Taking the asymptotics of the linearly independent
solutions F1 and F3 into account, we find that there are no
square integrable solutions of equation (44) with Im W 6= 0
and |l|> 1 or l = 0, µ= 0. This implies that in these cases,
the deficiency indices of ĥ(s, l) are zero. In the case of l = 0,
µ > 0, the solution F3 is square integrable, which implies that
the deficiency indices of ĥ(s, 0) are equal to (1, 1).

For any l and µ, the asymptotic behavior of any solution
F of equation (44) at the origin, as ρ → 0, is not more
singular than ρ−|κl |, F(ρ)= O(ρ−|κl |).

II. We now consider the inhomogeneous equation

(ȟ(s, l)− W )F(ρ)=9(ρ), ∀9 ∈ L2(R+).

Its general solution allows the representations

F(ρ)= c1 Fd(ρ; W )+ c2 F3(ρ; W )+ω−1
d

×

[
Fd(ρ; W )

∫
∞

ρ

F3(r; W )9(r)dr + F3(ρ; W )

×

∫ ρ

0
Fd(r; W )9(r)dr

]
,

ωd = Wr(Fd , F3 ), d =

{
d = 1, l 6 0,
d = 2, l > 1.

(50)
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A simple estimate of the integral terms in the right-hand
side (rhs) of (50) using the Cauchy–Bunyakovskii inequality
shows that they are bounded as ρ → ∞. It follows that F ∈

L2(R+) implies c1 = 0.
An evaluation shows that as ρ → 0, the integral terms are

of the order of O(ρ1/2) (up to the factor ln ρ for |κl | = 1/2).
In this case, F ∈ L2(R+) implies c2 = 0, and we find

F(ρ)= ω−1
d

[
Fd(ρ; W )

∫
∞

ρ

F3(r; W )9(r)dr + F3(ρ; W )

×

∫ ρ

0
Fd(r; W )9(r)dr

]
. (51)

For |κl |6 1/2, the doublet F3(ρ; W ) is square-integrable,
and a solution F(ρ) ∈ L2(R+) allows the representation

F(ρ)= bω−1
1 F1(ρ; W )+ c2 F3(ρ; W )

+ω−1
1

[
F3(ρ; W )

∫ ρ

0
F1(r; W )9(r)dr

−F1(ρ; W )

∫ ρ

0
F3(r; W )9(r)dr

]
,

F(ρ)= bω−1
1 F1(ρ; W )+ c2 F3(ρ; W )+ O(ρ1/2), ρ → 0,

(52)
where

b =

∫
∞

0
F3(r; W )9(r)dr.

We use representations (50)–(52) to determine the Green
functions for s.a. radial Hamiltonians.

3.3. s.a. radial Hamiltonians

3.3.1. Generalities. We proceed to construct s.a. radial
Hamiltonians ĥe(s, l) in the Hilbert space L2(R+) as s.a.
extensions of the initial symmetric radial operators ĥ(s, l) (43)
and analyze the corresponding spectral problems.

The action of all of the following operators associated
with the differential operations ȟ(s, l) is given by ȟ(s, l);
therefore we cite only their domains.

We begin with the adjoint ĥ+(s, l) of ĥ(s, l). Its domain
Dh+ is the natural domain for ȟ(s, l),

Dh+ = D∗

ȟ(s,l)
(R+)

=

{
F∗(ρ) : F∗ a.c. in R+, F∗, ȟ (s, l) F∗ ∈ L2(R+)

}
.

The quadratic asymmetry form 1h+(F∗) of ĥ+(s, l) is
expressed in terms of the local quadratic form

[F∗, F∗] (ρ)= g(ρ) f (ρ)− f (ρ)g(ρ), F∗ = ( f/g)

as follows:

1h+(F∗)= (F∗, ĥ+ F∗)− (ĥ
+ F∗, F∗)= −[F∗, F∗](ρ)|∞0 .

We can prove that limρ→∞F∗(ρ)= 0 for any
F∗ ∈ D∗

ȟ
(R+). Indeed, because F∗ and ȟ(s, l)F∗ are

square-integrable at infinity, the combination

F ′

∗
−(γρ/2)σ 3 F∗ = −iσ 2[ȟ(s, l)F∗−(~l/ρ)σ

1 F∗+s Mσ 3 F∗]

is also square-integrable at infinity. This implies that f
and f ′

− (γρ/2) f, together with g and g′ + (γρ/2) g, are
square-integrable at infinity. We consider the identity

| f (ρ)|2 =

∫ ρ

a
[∂ f (r) f (r)+ f (r)∂ f (r)]dr

+ γ
∫ ρ

a
r | f (r)|2dr + | f (a)|2, ∂ = ∂ρ − γρ/2.

The rhs of this identity has a limit (finite or infinite) as
ρ → ∞. Therefore, | f (ρ)| also has a limit as ρ → ∞. This
limit has to be zero because f (ρ) is square-integrable at
infinity. In the same way, we can verify that g(ρ)→ 0 as
ρ → ∞.

To analyze the behavior of F∗ at the origin, we consider
the relationship

9 = ȟ(s, l)F∗, 9, F∗ ∈ L2(R+), (53)

or

f ′
−
(
γρ/2 + ρ−1~l

)
f = −χ2, g′ +

(
γρ/2 + ρ−1~l

)
g = χ1,

χ = (χ1/χ2)=9 + s Mσ 3 F∗ ∈ L2(R+),

as an equation for F∗ at a given χ . The general solution of
these equations allows the representation

f (ρ)= ρ~l eγρ
2/4

[
c1 +

∫
∞

ρ

r−~l e−γ r2/4χ2(r)dr

]
,

g(ρ)= ρ−~l e−γρ2/4

[
c2 +

∫ ρ

ρ0

r~l eγ r2/4χ1(r)dr

]
.

(54)

It turns out that the asymptotic behavior of the functions
f and g at the origin crucially depends on the value of l.
Therefore, our exposition is naturally divided into subsections
related to the corresponding regions. We distinguish three
regions of l.

3.3.2. The first region: κl 6−1/2. In this region, we have

l 6

{
−1, µ > 0,
0, µ= 0.

The representation (54) allows the estimation of an
asymptotic behavior of doublets F∗ ∈ D∗

ȟ(s,l)
(R+) at the origin

for the first region:

f (ρ)= ρ−|~l | eγρ
2/4

[
c̃1 −

∫ ρ

0
r |~l | e−γ r2/4χ2(r)dr

]
= c̃1ρ

−|~l | + O(ρ1/2),

c̃1 = c1 +
∫

∞

0
r |~l | e−γ r2/4χ2(r) dr.

The condition f ∈ L2 (R+) implies c̃1 = 0, and therefore,
f (ρ)= O(ρ1/2) as ρ → 0. As to g(ρ), we find that

g(ρ)=

{
O(ρ1/2), ~l <−1/2,

O(ρ1/2 ln ρ), ~l = −1/2 (l = 0, µ= 0),
ρ → 0.

We thus find that F∗ (ρ)→ 0 as ρ → 0, which implies
that 1h+(F∗)= 0, ∀F∗ ∈ D∗

ȟ(s,l)
(R+). This means that the
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deficiency indices of each of the symmetric operators
ĥ(s, l) in the first region are zero. Therefore, there exists
only one s.a. extension ĥe (s, l, pz)= ĥ(1)(s, l)= ĥ+(s, l) of
ĥ(s, l), i.e. a unique s.a. radial Hamiltonian with given s and l,
its domain is the natural domain, Dĥ(1)(s,l)

= D∗

ȟ(s,l)
(R+) .

The representation (51) with d = 1 implies that the Green
function for the s.a. Hamiltonian ĥ(1)(s, l) is given by

G(ρ, ρ ′
; W )=

1

ω1(W )

{
F3(ρ; W )⊗ F1(ρ

′
; W ), ρ > ρ ′,

F1(ρ; W )⊗ F3(ρ
′
; W ), ρ < ρ ′.

(55)
Unfortunately, we cannot use representation (48) for F3 as a
sum of two terms directly for all values of µ because both are
singular at µ= 0 (although the sum is not). To cover the total
range of µ, we use another representation for F3.

We let Fdl(ρ; W ) denote the functions Fd(ρ; W ),
d = 1, 2, 3, with a fixed l and represent F3l as

F3l = ω1[A1l F1l + F4l], A1l = A1l(W )

=�1(W )−0(β2)P1l(W ),

F4l = F4l(ρ; W )= 0(β2)P1l(W )F1l(ρ; W )− F2l(ρ; W ),

�1(W )=
ω2(W )

ω1(W )
,

P1l(W )=
(W + s M)(γ /2)|l|0(α1)

2|l|!0(α1 − |l|)
.

Using the relation (see [24])

lim
β→−n

1

0(β)
8(α, β; x)=

xn+10(α + n + 1)

(n + 1)!0(α)

×8(α + n + 1, n + 2; x), (56)

we can verify that

0−1(β2)F2l(ρ; W )
∣∣
µ→0 = P1l(W )F1l(ρ; W )|µ=0 .

Taking the latter relation into account, it is easy to see that in
the first region, A1l and F4l are finite for µ> 0, as well as ω1

and F1l , and also that P1l(E) and F4l(ρ; E) are real.
The Green function is then represented as

G(ρ, ρ ′
; W )= A1l(W )F1l(ρ; W )⊗ F1l(ρ

′
; W )

+

{
F4l(ρ; W )⊗ F1l(ρ

′
; W ), ρ > ρ ′,

F1l(ρ; W )⊗ F4l(ρ
′
; W ), ρ < ρ ′

(57)

for all µ> 0.
We choose the guiding functional 81(F; W ) for the s.a.

operator ĥ(1)(s, l) in the form

81(F; W )=

∫
∞

0
F1(ρ; W )F(ρ),

F(ρ) ∈ D= Dr (R+)∩ Dĥ(1)(s,l)
.

It is easy to prove that the guiding functional is simple. It
follows that the spectrum of ĥ(1)(s, l) is simple.

Using representation (57) for the Green
function, we find that the derivative σ ′(E)= [πF2

1
(ρ; W )]−1Im G(ρ, ρ; E + i0) of the spectral function is

given by
σ ′(E)= π−1Im A1l(E + i0). (58)

It is easy to prove that Im A1l(E + i0) is continuous in µ for
µ> 0, such that it is sufficient to find σ ′(E) only for the case
of µ > 0, where equation (58) is more simple,

σ ′(E)=
(W + s M) (γ /2)−β2 0(β2)

2π0(β1)0(α2)

∣∣∣∣
W=E

Im0 (α1)|W=E+i0 .

(59)
It is easy to see that σ ′(E) may differ from zero only at

the points Ek defined by the relation α1 = −k (0(α1)= ∞),
or M2

− E2
k = −2γ k, which yields

Ek = ±Mk, Mk =

√
M2 + 2γ k, M0 = M, k ∈ Z+.

The presence of the factor (E + s M) in the rhs of (59)
implies that the points E = −s M = −s M0 do not belong to
the spectrum of ĥ(1)(s, l). In what follows it is convenient to
change the numeration of the spectrum points. We introduce
an index n(s):

n(s) ∈ Z(s)=
{
nζ (s)

}
, ζ = ±,

n+(s) ∈

{
Z+, s = 1,

N, s = −1,
n−(s) ∈

{
−N, s = 1,

Z−, s = −1.
(60)

Then we can write

Ek = ±Mk H⇒ En(s) = ζM|n(s)|, n(s) ∈ Z(s).

Finally, we obtain

σ ′(E)=

∑
n(s)∈Z(s)

Q2
n(s)δ(E − En(s)),

Qn(s) =

√
(γ /2)β1 0 (β1 + |n(s)|)

(
1 + s ME−1

k

)
|n(s)|!02(β1)

,

β1 = 1 + |l| −µ.

Thus, the simple spectrum of ĥ(1)(s, l) is given by
spec ĥ(1)(s, l)=

{
En(s), n(s) ∈ Z(s)

}
. The eigenvectors

I
Un(s) =

I
Un(s) (s, l, pz; ρ)= Qn(s)F1(ρ; En(s)), n(s) ∈ Z(s),

(61)
of ĥ(1)(s, l) form a complete orthonormalized system in the
space L2(R+) of doublets F (ρ).

3.3.3. The second region: κl > 1/2. In this region, we have
l > 1.

The representation (54) yields the following estimates for
an asymptotic behavior of doublets F∗ ∈ D∗

ȟ(s,l)
(R+) at the

origin for the second region: f (ρ)=

{
O(ρ1/2), ~l > 1/2,

O(ρ1/2 ln ρ), ~l = 1/2,
g(ρ)= O(ρ1/2),

ρ → 0.

It follows that F∗ (ρ)→ 0 as ρ → 0, which implies that
1h+(F∗)= 0, ∀F∗ ∈ D∗

ȟ(s,l)
(R+) . This means that the

deficiency indices of each of the symmetric operators ĥ(s, l)
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in the second region are also zero. Therefore, there exists
only one s.a. extension ĥe (s, l, pz)= ĥ(2)(s, l)= ĥ+(s, l) of
ĥ(s, l), i.e. a unique s.a. radial Hamiltonian with given s and l,
its domain is the natural domain, Dĥ(2)(s,l)

= D∗

ȟ(s,l)
(R+) .

The representation (51) with d = 2 implies that the Green
function for the s.a. Hamiltonian ĥ(2)(s, l) is given by

G(ρ, ρ ′
; W )= ω−1

2 (W )

{
F3l(ρ; W )⊗ F2l(ρ

′
; W ), ρ > ρ ′,

F2l(ρ; W )⊗ F3l(ρ
′
; W ), ρ < ρ ′.

Again, the representation (48) for F3 as a sum of two terms
is not applicable directly for µ= 0. We therefore use the
following representation for F3:

F3l = ω2 (F5l − A2l F2l) ,

A2l = A2l(W )=�2(W )+0(β1)P2l(W ),

F5l = F5l(ρ; W )= F1l(ρ; W )+0(β1)P2l(W )F2l(ρ; W ),

�2(W )=
ω1(W )

ω2(W )
, P2l(W )=

(W − s M)(γ /2)l−10(α1 + l)

2(l − 1)!̇0(α1 + 1)
.

Using relation (56), we can verify that

0−1(β1)F1l(ρ; W )
∣∣
µ→0 = − P2l(W )F2l(ρ; W )|µ=0 .

Taking the latter relation into account, it is easy to see that
A2l and F5l are finite for µ> 0, as well as ω2 and F2l , in the
second region, and P2l(E) and F5l(ρ; E) are real.

The Green function is then represented as

G(ρ, ρ ′
; W )= − A2l(W )F2l(ρ; W )⊗ F2l(ρ

′
; W )

+

{
F5l(ρ; W )⊗ F2l(ρ

′
; W ), ρ > ρ ′,

F2l(ρ; W )⊗ F5l(ρ
′
; W ), ρ < ρ ′.

(62)

for all µ> 0.
We choose the guiding functional 82(F; W ) for the s.a.

operator ĥ(2)(s, l) in the form

82(F; W )=

∫
∞

0
F2(ρ; W )F(ρ),

F(ρ) ∈ D= Dr (R+)∩ Dĥ(2)(s,l)
.

It is easy to prove that the guiding functional is simple. It
follows that the spectrum of ĥ(2)(s, l) is simple.

Using representation (62) for the Green function, we find
that the derivative σ ′(E) of the spectral function is given by

σ ′(E)= −π−1 Im A2l(E + i0). (63)

It is easy to prove that Im A2l(E + i0) is continuous in µ for
µ> 0, such that it is sufficient to find σ ′(E) only for the case
of µ > 0 where equation (63) is more simple,

σ ′(E)=
(W − s M) (γ /2)β2 0(β1)

πγ0(β2)0(1 +α1)

∣∣∣∣
W=E

Im0(α2)|W=E+i0 .

It is easy to see that σ ′(E) may differ from zero only at
the points Ek defined by the relation α2 = −k (0(α2)= ∞)
or

M2
− E2

k + 2γ (l +µ)= −2γ k, k ∈ Z+,

which yields

Ek = ±

√
M2 + 2γ (k + l +µ)= ±Mk+l+µ, k ∈ Z+.

All the points Ek are the spectrum points.
It is convenient to change indexing k for n(s),

Ek H⇒ En(s) = σM|n(s)|+µ, {n(s) ∈ Z(s), |n(s)|> l}

× (nσ (s)= σ(k + l), k ∈ Z+).

Thus, we finally obtain

σ ′(E)=

∑
n∈Z,|n|>l

Q2
n(s)δ(E − En),

Qn(s) =

√
(γ /2)l+µ 0(|n(s)| +µ)(1 − s ME−1

n(s))

(|n(s)| − l)!02(l +µ)
.

The simple spectrum of ĥ(2)(s, l) is given by

spec ĥ(2)(s, l)=
{

En(s), n(s) ∈ Z, |n(s)|> l
}
.

The eigenvectors

II
Un(s)=

II
Un(s) (s, l, pz; ρ)= Qn(s)F2(ρ; En(s)), n(s) ∈ Z(s),

(64)
of the Hamiltonian ĥ(2)(s, l) form a complete orthonormalized
set in the space L2(R+) of doublets F(ρ).

3.3.4. The third region: |~l |< 1/2. In this region, we have
l = l0 = 0, and ~l is reduced to ~0 = µ− 1/2, µ > 0.

Representation (54) yields the following asymptotic
behavior of doublets F∗ ∈ D∗

ȟ(s,l0)
(R+) as ρ → 0:

F∗(ρ)=

{
f (ρ)= c1(meρ)

~0

g(ρ)= c2(meρ)
−~0

+ O(ρ1/2).

It follows that 1h+(F∗)= c2c1 − c1c2. Such a representation
for the quadratic form 1h+(F∗) implies that the deficiency
indices of the initial symmetric operator ĥ(s, l0) are
m± = 1. The condition 1h+(F∗)= 0 yields asymptotic
boundary conditions as ρ → 0,

F(ρ)= c

(
(meρ)

~0 cos λ

(meρ)
−~0 sin λ

)
+ O(ρ1/2), (65)

with a fixed λ ∈ S (−π/2, π/2) (note that λ depend on s and
pz , λ= λ(s, pz)) define a maximum subspace in D∗

ȟ(s,l0)
(R+)

where 1h+ = 0. This subspace is the domain of an s.a.
operator that is an s.a. extension of ĥ(s, l0).

We thus find that there exists a one-parameter U (1)
family of s.a. radial Hamiltonians ĥλ(s, l0) parameterized by
the real parameter λ ∈ S (−π/2, π/2). These Hamiltonians
are specified by the domains

Dhλ(s,l0) =

{
F(ρ) : F(ρ) ∈ D∗

ȟλ(s,l0)
(R+) , F satisfy (65)

}
.

(66)
According to representation (52), which certainly holds

for the doublets F belonging to Dhλ(s,l0), and (49), the
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asymptotic behavior of F as ρ → 0 reads

F =

(
−c2ω1ρ

~0

(bω−1
1 + c2ω2)ρ

−~0

)
+ O(ρ1/2).

On the other hand, F satisfies boundary conditions (65),
whence it follows that there must be

c2 = −
b cos λ

ω1ω(λ)
, ω(λ) = ω2 cos λ+ m−2~0

e ω1 sin λ. (67)

Then representation (52) for F with c2 given by (67) implies
that the Green function for the s.a. Hamiltonian ĥλ(s, l0) is
given by

G(ρ, ρ ′
; W )=�−1(W )F(λ)(ρ; W )⊗ F(λ)(ρ

′
; W )

+

{
F̃ (λ)(ρ; W )⊗ F(λ)(ρ ′

; W ), ρ > ρ ′,

F(λ)(ρ; W )⊗ F̃ (λ)(ρ
′
; W ), ρ < ρ ′,

(68)

where

F(λ)(ρ; W )= m−~0
e F1(ρ; W ) sin λ+ m~0

e F2(ρ; W ) cos λ,

F̃ (λ)(ρ; W )= m−~0
e F1(ρ; W ) cos λ− m~0

e F2(ρ; W ) sin λ,

�(W )=
ω(λ)(W )

ω̃(λ)(W )
, m~0

e F3 = ω̃(λ)F(λ) +ω(λ) F̃ (λ),

ω̃(λ)(W )= ω2 sin λ− m−2~0
e ω1 cos λ.

We note that the doublets F(λ)(ρ; W ) and F̃ (λ)(ρ; W )

are real-entire in W, and the doublet F(λ)(ρ; W ) satisfies
asymptotic s.a. boundary conditions (65).

We choose the guiding functional 8λ(F; W ) for the s.a.
operator ĥλ(s, l0) in the form

8(λ)(F; W )=

∫
∞

0
F(λ)(ρ; W )F(ρ),

F(ρ) ∈ D= Dr (R+)∩ Dĥλ(s,l0)
.

It is easy to prove that the guiding functional is simple. It
follows that the spectrum of ĥλ(s, l) is simple.

Using the representation (68) for the Green function,
we find that the derivative σ ′(E) of the spectral function is
given by

σ ′(E)= π−1 Im�−1(E + i0).

Because�(E) is real, σ ′(E) differs from zero only at the zero
points Ek of the function �(E), �(Ek)= 0, and we find that

σ ′(E)=

∑
k

Q2
kδ(E − Ek), Qk =

[
−�′(E)

]−1/2
,

�′(Ek) < 0.

Thus, the simple spectrum of ĥλ(s, l0) is given by
spec ĥλ(s, l0)= {Ek, k ∈ Z}. The eigenvectors

III
Uk =

III
Uk (λ, s, pz; ρ)= Qk F(λ)(ρ; Ek), k ∈ Z, (69)

of ĥλ(s, l0) form a complete orthonormalized system in the
space L2(R+).

For λ= 0 and λ= ±π/2, we can evaluate the spectrum
explicitly.

I. First, we consider the case λ= π/2. In this case,
we have

F(π/2)(ρ; W )= m−~0
e F1(ρ; W ),

�(W )= m−2~0
e ω1(W )ω−1

2 (W ),

and

σ ′(E)=
m2~0

e 0(β2)(W + s M)

2π (γ /2)β2 0(β1)0(α2)

∣∣∣∣
W=E

Im0 (α1)|W=E+i0 .

(70)
As in the first region, σ ′(E) differs from zero only at the
points (for which we will use the notation Ek) defined by the
relationship α1 = −k (0(α1)= ∞), or by

M2
− E2

k

2γ
= −k, Ek = ±Mk, k ∈ Z+.

The presence of the factor (E + s M) in the rhs of (70) implies
that the points E = −s M = −s M0 do not belong to the
spectrum of ĥπ/2(s, l0). Thus,

Ek = (sgn k)M|k|, |k|> 1, E0 = s M; k ∈ Z.

Using (60), we change the indexing of the spectrum points,

Ek H⇒ En(s) = ζM|n(s)|, n= n(s) ∈ Z(s).

Then, we finally obtain

σ ′(E)=

∑
n(s)∈Z(s)

m2~0
e Q2

π/2|n(s)δ(E − En(s)),

Qπ/2|n(s) =

√
0(|n(s)| + 1 −µ)(1 + s ME−1

n(s))

(γ /2)β2 |n|!02(1 −µ)
.

Thus, the simple spectrum of ĥπ/2(s, l0) is given by
spec ĥπ/2(s, l0)= {En(s), n(s) ∈ Z(s)}. The eigenvectors

III
Uπ/2|n(s) =

III
Uπ/2|n(s) (π/2, s, l0, pz; ρ)

= Qπ/2|n(s)F1(ρ; En(s)), n(s) ∈ Z(s),

of ĥπ/2(s, l0) form a complete orthonormalized system in the
space L2(R+) of doublets F(ρ).

We note that the spectrum, spectral function and
eigenfunctions of ĥπ/2(s, l0) can be obtained from the
respective expressions from the first region, ~l 6−1/2, by the
substitution l = 0. We also note that for µ < 1/2, the function
F(π/2)(ρ; W )= m−~0

e F1(ρ; W ) has minimal singularity in the
family of functions F(λ)(ρ; W ); in fact, it is nonsingular;
for µ > 1/2, the function F(0)(ρ; W )= m~0

e F2(ρ; W ) has a
minimal singularity in the family of F(λ)(ρ; W ); in fact,
F(0)(ρ; W ) is not singular at all; for µ= 1/2, all functions
of the family F(λ)(ρ; W ) have the same type of asymptotics:
F(λ)(ρ; W )= O(1) as ρ → 0.

We obtain the same results for the spectrum and complete
orthonormalized set of the eigenvectors for the case λ=

−π/2.
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II. In the same manner, for the case λ= 0, we obtain
F(0)(ρ; W )= m~0

e F2(ρ; W ); the simple spectrum of ĥ0(s, l0)

is given by

spec ĥ0(s, l0)= {En(0), n ∈ Z} , Z =
{
nζ ∈ ζZ+, ζ = ±

}
,

and

σ ′(E)=

∑
n∈Z

m−2~0
e Q2

0|nδ(E − En(0)),

Q0|n =

√
(γ /2)µ 0(|n| +µ)(1 − s ME−1

n (0))

|n|!02(µ)
,

where E0|n are solutions of the equation

α2 = µ− (E2
n(0)− M2)/2γ = −|n|, En(0)= ζM|n|+µ,

and n+ = 0 and n− = 0 are considered different elements ofZ .

The eigenvectors
III
U 0|n =

III
U 0|n (0, s, l0, pz; ρ)= Q0|nF2

(ρ; En(0)), n ∈ Z , of the Hamiltonian ĥ0(s, l0) form a
complete orthonormalized system in the space L2(R+) of
doublets F(ρ).

We note that the spectrum, spectral function and
eigenfunctions of ĥ0(s, l0) can be obtained from the
respective expressions for the second region, ~l > 1/2, by
the substitution l = 0. We also recall that for µ > 1/2, the
function F(0)(ρ; W )= m~0

e F2(ρ; W ) has minimal singularity
at the origin in the family of functions F(λ)(ρ; W ); in fact,
F(0)(ρ; W ) is completely nonsingular.

III. Now, we consider the general case |λ|< π/2. In this
case we can equivalently write

σ ′(E)= −
(
π cos2 λ

)−1
Imω−1(E + i0)

=

∑
k∈Z

Q2
kδ(E − Ek(λ)),

ω(W )= t (W )+ tan λ, ω′(Ek(λ)) > 0,

Qk =

[√
ω′(Ek(λ)) cos λ

]−1
,

t (W )= κ
(W + s M)0(−w/2γ )

me0(µ−w/2γ )
,

κ =
(2m2

e/γ )
µ0(µ)

20(1 −µ)
> 0,

t (Ek(λ))= − tan λ, t ′(Ek(λ)) > 0,

∂λEk(λ)= −
[
t ′(Ek(λ)) cos2 λ

]−1
< 0.

The function

t (E)= κm−1
e 0−1(µ−w/2γ )(E + s M)0(−w/2γ )

has the properties t (En(s) ± 0)= ∓∞; t (En(0))= 0. Thus, we
obtain:

(a) s = 1.
In each interval (En−−1, En−

), n− 6−1, for a fixed λ ∈

(−π/2, π/2), there exists an eigenvalue En−
(λ) which

increases monotonically from En−−1 + 0 (passing En−
(0))

to En−
− 0 as λ changes from π/2 − 0 (passing 0)

to −π/2 + 0; in the interval (E−1, En+=0), for a fixed

λ ∈ (−π/2, π/2), there exists an eigenvalue En−=0(λ),
which increases monotonically from E−1 + 0 (passing
En−=0(0)) to En+=0 − 0 as λ changes from π/2 − 0
(passing 0) to −π/2 + 0; in each interval (En+ , En++1),
n+ > 0, for a fixed λ ∈ (−π/2, π/2), there exists an
eigenvalue En+(λ) which increases monotonically from
En+ + 0 (passing En+(0)) to En++1 − 0 as λ changes from
π/2 − 0 (passing 0) to −π/2 + 0.

(b) s = −1.
In each interval (En−−1, En−

), n− 6 0, for a fixed λ ∈

(−π/2, π/2), there exists an eigenvalue En−
(λ) which

increases monotonically from En−−1 + 0 (passing En−
(0))

to En−
− 0 as λ changes from π/2 − 0 (passing 0) to

−π/2 + 0; in the interval (En−=0, En+=1), for a fixed
λ ∈ (−π/2, π/2), there exists an eigenvalue En+=0(λ)

which increases monotonically from En−=0 + 0 (passing
En−=0(0)) to En+=1 − 0 as λ changes from π/2 − 0
(passing 0) to −π/2 + 0; in each interval (En+ , En++1),
n+ > 1, for a fixed λ ∈ (−π/2, π/2), there exists an
eigenvalue En+ which increases monotonically from En+ +
0 (passing En+(0)) to En++1 − 0 as λ changes from π/2 − 0
(passing 0) to −π/2 + 0.

4. Summary

We have constructed all s.a. radial Hamiltonians ĥe (s, l, pz)

as s.a. extensions of the symmetric operators ĥ (s, l, pz) for
any s, l and pz and for any values of φ0, µ and γ . The
complete s.a. Dirac operators Ĥ e associated with the Dirac
differential operation Ȟ are constructed from the sets of
ĥe (s, l, pz) by means of a procedure of ‘a direct summation
over s and l and a direct integration over pz’. Each set
of possible s.a. radial Hamiltonians ĥe (s, l, pz) generates
a translationary-rotationally-invariant s.a. Hamiltonian Ĥ e.
Namely, letG be the group of the above space transformations
S: r 7→ Sr. This group is unitarily represented in H: if S ∈G,
then the corresponding operator US is defined by

(US ψ) (r)= e−iθ63/2ψ(S−1r), ∀ψ ∈ H,

where θ is the rotation angle of the vector ρ around the z-axis.
The operator Ĥ evidently commutes with US for any S. We
consider only such s.a. extensions Ĥ e of Ĥ that also commute
with US for any S. This condition is the explicit form of the
invariance, or symmetry, of a quantum Hamiltonian under
the space transformations. As in classical mechanics, this
symmetry allows the seperation of the cylindrical coordinates
ρ, ϕ and z and the reduction of the 3D problem to a 1D
radial problem. Let V be a unitary operator defined by the
relationship

(V f )(ρ, ϕ, z)

=
1

2π
√
ρ

∫
Rz

dpz

∑
l∈Z

eipz z
[
Sl(ϕ)F(s, l, pz, ρ)

]
⊗ es(pz),

where Sl(ϕ) and es(pz) are given by, respectively, (41)
and (40). It is natural to expect that any s.a. Hamiltonian Ĥ e
can be represented in the form

Ĥ e = V
∫
Rz

dpz

∑
s=±1

∑
l∈Z

ĥe(s, l, pz)V
−1,
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where ĥe(s, l, pz) for fixed s, l and pz is an s.a. extension
of the symmetric operator ĥ(s, l, pz) associated with the
differential operation ȟ(s, l, pz) given by equation (43). The
operator ĥ(s, l, pz) is defined on the domain Dh(s,l,pz) =

D(R+)⊂ L2(R+, dρ) in the Hilbert space L2(R+, dρ) of
functions F(ρ, l, pz) with the scalar product

(F1(s, l, pz), F2(s, l, pz))=

∫
R+

F1(s, l, pz, ρ)F2(s, l, pz, ρ)dρ.

An exact expression for Ĥ e is

Ĥ e = V
∫

⊕

Rz

dpz

∑
⊕

s=±1

∑
⊕

l∈Z

ĥe(s, l, pz)V
−1.

Its rigorous justification will be discussed in a work by
A Smirnov.

The inversion formulae in Hilbert space H are
correspondingly obtained from the known radial inversion
formulae by a procedure of summation over s, l and
integration over pz . It should be noted that here we must
consider the extension parameter λ as a function of s and pz ,
λ= λ(s, pz). In what follows,

∫
dpz means

∫
∞

−∞
dpz . Thus,

we can summarize as follows:
For µ= 0, there is a unique s.a. Dirac operator Ĥ e. Its

spectrum is simple and given by

spec Ĥ e = (−∞,−me] ∪ [me,∞).

The generalized eigenfunctions 9s,pz ,n(s),l(r) of Ĥ e,

9s,pz ,n(s),l(r)=
1

2π
√
ρ

eipz z Sl(ϕ)Fn(s)(s, l, pz; ρ)⊗ es(pz),

Fn(s)(s, l, pz; ρ)=


I

Un(s) (s, l, pz; ρ) , l 6 0,

II
Un(s) (s, l, pz; ρ) , 16 l 6 |n(s)|,

Ȟ9s,pz ,n(s),l(r)= Es,pz ,n(s),l9s,pz ,n(s),l(r),

Es,pz ,n(s),l = ζ

√
m2

e + p2
z + 2γ |n(s)|, n(s) ∈ Z(s),

l 6 |n(s)|,

where Z(s) is defined by equation (60), and the doublets
I

Un(s)(s, l, pz; ρ) and
II
Un(s)(s, l, pz; ρ) are given by the

respective equations (61) and (64), form a complete
orthonormalized system in the Hilbert space L2 (R3

)
of the

Dirac bispinors. The latter means that the following inversion
formulae exist:

9(r)=

∫
dpz

∑
s=±1

∑
n(s)∈Z(s)

∑
l6|n(s)|

8s,pz ,n(s),l9s,pz ,n(s),l(r),

8s,pz ,n(s),l =

∫
9s,pz ,n(s),l(r)9(r)dr,∫

|9(r)|2dr =

∫
dpz

∑
s=±1

∑
n(s)∈Z(s)

∑
l6|n(s)|

|8s,l,pz ,n|
2,

∀9 ∈L2 (R3
)
.

We note that for λ= 0 and ±π/2, the spectrum at l = 0 can
be found explicitly, see the third region.

For µ > 0, there is a family of s.a. Dirac operators
Ĥ {λ(s,pz)} parameterized by two real-valued functions λ(s, pz),
λ ∈ S (−π/2, π/2), s = ±1. Their spectra are degenerated
and continuous.

A complete set of generalized eigenfunctions of Ĥ {λ(s,pz)}

consists of 9s,pz ,n(s),l(r) and 9
λ(s,pz)

s,pz ,k,l0
(r). These bispinors

have the form

9s,pz ,n(s),l(r)=
1

2π
√
ρ

eipz z Sl(ϕ)Fn(s)(s, l, pz; ρ)⊗ es(pz),

Fn(s, l, pz; ρ)=


I

Un (s, l, pz; ρ) , l 6−1,

II
Un (s, l, pz; ρ) , 16 l 6 |n(s)|,

n(s) ∈ Z(s), l 6 |n(s)|, l 6= 0,

and

9
λ(s,pz)

s,pz ,k,l0
(r)=

1

2π
√
ρ

eipz z Sl0(ϕ)
III
Uk (λ(s, pz), s, pz; ρ)⊗ es(pz),

k ∈ Z,

where
III
Un (λ(s, pz), s, pz; ρ) are given by (69) with the

substitution λ(s)→ λ(s, pz), such that

Ȟ9s,pz ,n(s),l(r)= Es,pz ,n(s),l9s,pz ,n(s),l(r),

l 6 |n(s)|, l 6= 0,

Es,pz ,n(s),l = σ

√
m2

e + p2
z + 2γ [|n(s)| + θ(l)],

θ(l)=

{
0, l 6 0
1, l > 1

,

Ȟ9λ(s,pz)

s,pz ,k,l0
(r)= Eλ(s,pz)

s,pz ,k,l0
9
λ(s,pz)

s,pz ,k,l0
(r),

Eλ(s,pz)

s,pz ,k,l0
: �

(
λ, Eλ

s,pz ,k,l0

)
= 0,

�(λ,W )=
cos λ+ a (W ) sin λ

sin λ− a (W ) cos λ
,

a (W )=
2m2µ−1

e (γ /2)1−µ 0 (µ)0 (1 −µ−w/2γ )

(W + s M) 0 (1 −µ)0 (−w/2γ )
.

In the case under consideration, the corresponding
inversion formulae have the form

9(r)=

∫
dpz

∑
s=±1

 ∑
n(s)∈Z(s)

∑
l6|n(s)|,l 6=0

8s,pz ,n(s),l9s,pz ,n(s),l(r)

+
∑

k

8s,pz ,k,l09
λ(s,pz)

s,pz ,k,l0
(r)

]
, ∀9 ∈L2 (R3

)
,

8s,pz ,n(s),l =

∫
9s,pz ,n(s),l(r)9(r)dr, l 6= 0,

8s,pz ,k,l0 =

∫
9
λ(s,pz)

s,pz ,k,l0
(r)9(r)dr,

∫
|9(r)|2 dr =

∫
dpz

∑
s=±1

 ∑
n(s)∈Z(s)

∑
l6|n(s)|,l 6=0

∣∣8s,pz ,n(s),l

∣∣2

+
∑

k

∣∣8s,pz ,k,l0

∣∣2 .
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