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Abstract

We construct all self-adjoint Schrédinger and Dirac operators (Hamiltonians) with both the
pure Aharonov—Bohm (AB) field and the so-called magnetic-solenoid field (a collinear
superposition of the AB field and a constant magnetic field). We perform a spectral analysis
for these operators, which includes finding spectra and spectral decompositions, or inversion
formulae. In constructing the Hamiltonians and performing their spectral analysis, we follow,
respectively, the von Neumann theory of self-adjoint extensions of symmetric operators and

the Krein method of guiding functionals.

PACS numbers: 03.65.Ge, 45.20.Jj, 47.10.Df

1. Introduction

The Aharonov-Bohm (AB) effect [1] plays an important
role in quantum theory refining the status of electromagnetic
potentials in this theory. First, this effect was discussed in
relation to a study of the interaction between a non-relativistic
charged particle and an infinitely long and infinitesimally
thin magnetic field of a solenoid (further AB field) which
yields a magnetic flux & (a similar effect has been discussed
earlier by Ehrenberg and Siday [2]). It was discovered that
particle wave functions vanish at the solenoid line. In spite
of the fact that the magnetic field vanishes out of the solenoid,
the phase shift in the wave functions is proportional to
the corresponding magnetic flux [3]. A nontrivial particle
scattering by the solenoid is interpreted as a possibility for
quantum particles to ‘feel’ potentials of the corresponding
electromagnetic field. Indeed, potentials of the AB field do not
vanish out of the solenoid. For the first time, a construction
of self-adjoint (s.a. in what follows) Schrédinger operators
with the AB field was given in [4]. The need for s.a.
extensions of the Dirac Hamiltonian with the AB field in
2+ 1 dimensions was recognized in [5-7]. s.a. extensions of
the Dirac Hamiltonian with the AB field in 3+ 1 dimensions
were found in [8]; see also [9, 10]. The physically motivated
boundary conditions for particle scattering by the AB field
and a Coulomb center were studied in [11, 12]. A splitting
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of Landau levels in a superposition of a parallel uniform
magnetic field and the AB field (further magnetic-solenoid
field (MSF)) gives an example of the AB effect for bound
states. First exact solutions of the Schrodinger equation with
the MSF (non-relativistic case) were studied in [13]. Exact
solutions of the relativistic wave equations (Klein—Gorgon
and Dirac) with the MSF were obtained in [14-16] and
were used later to study the AB effect in cyclotron and
synchrotron radiations; see [15—17]. Later on, the problem of
self-adjointness of the Dirac Hamiltonian with the MSF was
studied in [18, 19].

In this work, we construct systematically all the s.a.
Schrodinger and Dirac operators with both the pure AB
field and the MSF. Then, we perform a spectral analysis
for these Hamiltonians, which includes finding spectra
and spectral decompositions, or inversion formulae. In
constructing the Hamiltonians and performing their spectral
analysis, we follow, respectively, the theory of s.a. extensions
of symmetric differential operators [20, 21, 25] and the Krein
method of guiding functionals [20, 21]. Examples of similar
consideration are given in [22], where a nonrelativistic particle
in the Calogero and Krazter potential fields is considered,
and in [23], where a Dirac particle in the Coulomb field
of arbitrary charge is considered. However, due to the
peculiarities of the three-dimensional (3D) problem under

© 2012 The Royal Swedish Academy of Sciences
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consideration, we use a necessary generalization of the
approach [23].

Recall that the AB field of an infinitely thin solenoid
(with constant flux @) along the axis z = x3 can be described
by electromagnetic potentials Alg(x), ©=0,1,2,3, x =
@), r=0(xF k=1,2,3), x°=ct,

Alp=(0,Axp), Axp= (AR k=1,2,3), Alz=0,
Al _ dsing » _ Pcose

where p, ¢ are cylindrical coordinates, x' = p cos ¢ and x? =
p sin . The magnetic field of an AB solenoid has the form
Bas = (0,0, Bap). It is easy to see that outside the z-axis the
magnetic field Byg = rot Aap is equal to zero. Nevertheless,
for any surface ¥ with a boundary L being any contour (even
an infinitely small one) around the z-axis, the circulation
of the vector potential along L does not vanish and reads
fL A g dl = ®. If one interprets this circulation as the flux of
the magnetic field Bapg through the surface X,

/BABdU:fAABdl:q);
z L

then we obtain an expression for the magnetic field,
Bap = ®5(x1)3(x?),

where the term ‘infinitely thin solenoid’ comes from.
One can see that Ayg=—rot¥, V¥ =(0,0
such that div Axg = 0, and again

> In p),

’ 2w

Bag =r10tAsp = (0,0, Bap),
P 1 2
Bap=—Alnp=®5(x)5(x7).
2
In cylindrical coordinates, we have

e 1. e _
EA/]\Bz—qbp Usin g, EAiqubp Lcosgp, ¢ =d/d,

where @ is a fundamental unit of magnetic flux,
®y =2mch/e =4135x 107" Gem?

(recall that e > 0 is the absolute value of the electron charge).

The MSF is defined as a superposition of a constant
uniform magnetic field of strength B directed along the axis
z and the AB field with flux ® in the same direction. The
MSF is given by electromagnetic potentials of the form A* =
0,A), A= (AX, k=1,2,3),

Bx? Bx!
2’ 27
The potentials (1) define the magnetic field B of the form

Al=Alg — AT =Ajp+ AP=0. (1)

B= (0, 0, B +BAB)‘

In cylindrical coordinates, the potentials of the MSF have the
form

A= Gplsing, —A’=gp'cosp, A3=0,
ch ch )
- €syp’ e|B|
o=¢+ , y=——>0, ep=sgnB.
2 ch

For further consideration, it is convenient to introduce the
following representation:

¢:63(¢0+M), ¢0:[EB¢]EZ» M:63¢_¢07

o u<l1. 3)

The quantity u is called the mantissa of the magnetic flux and,
in fact, determines all the physical effects in the AB field; see,
e.g., [16].

2. s.a. Schrodinger Hamiltonians

In this section, we consider 2D and 3D nonrelativistic motions
of a particle of mass m, and charge g = ¢,¢, ¢, =sgnqg = %1
(positron or electron) in the MSF. The canonical formulation
of the problem is the following. The starting point is the
‘formal Schrodinger Hamiltonian’ H with the MSF that is,
respectively, a 2D or 3D s.a. differential operation well-known
from physics textbooks. In three dimensions, it is given by

1 (ﬁ—q

H= 1
2m, c

2
A) , P=—inV, V=(3,, 3, ,).
“

It is convenient to represent H as a sum of two terms, H L
and H',

i = i+,

where the 2D s.a. differential operation H L the ‘“formal 2D
Schrodinger Hamiltonian’ with the MSF,

. . . 2
B =M, A= (V- A

&)
M=2mh?, V-=(d,, 3,), Al=(Al A?),
where A! and A? are given by (2), corresponds to a 2D motion
in the xy-plane perpendicular to the z-axis, while the 1D
differential operation H ',

H'=71=-"2, p.=—iho.,

2me
corresponds to a 1D free motion along the z-axis.

The problem to be solved is to construct s.a.
nonrelativistic 2D and 3D Hamiltonians H and H associated
with the respective s.a. differential operations H* and H and
to perform a spectral analysis for these operators.

We begin with the 2D problem. We successively consider
the case of the pure AB field, with B =0, and then the case
of the MSF, with B #0. In the following subsection, we
generalize the obtained results to three dimensions.

2.1. The 2D case

2.1.1. Reduction to the radial problem. 1In the case of
two dimensions, the space of the particle quantum states is
the Hilbert space $) = L?(R?) of square-integrable functions
v(p), p= (x,y), with the scalar product

(wl,wz)szl(p)%(p) dp, dp=dxdy=pdpde.
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A quantum Hamiltonian should be defined as an s.a.
operator in this Hilbert space. It is more convenient to
deal with s.a. operators associated with the s.a. differential
operation H+ = M H' defined in (5).

The construction is essentially based on the requirement
for rotation symmetry, which certainly holds in a classical
description of the system. This requirement is formulated as
the requirement of the invariance of an s.a. Hamiltonian under
rotations around the solenoid line, the z-axis. As in classical
mechanics, the rotation symmetry allows separating the polar
coordinates p and ¢ and reducing the 2D problem to a 1D
radial problem.

The group of rotations SO(2) in R? naturally acts in
the Hilbert space $) by unitary operators: if S € SO(2), then
the corresponding operator Us is defined by the relation
Us¥)(p)=v(S~'p), ¥ € 9.

The Hilbert space ) is a direct orthogonal sum of
subspaces f),,, which are the eigenspaces of the representation
Us,

H= Z@f)m’ 0S~6m =e_im9~6mv
meZz
where 6 is the rotation angle corresponding to S.

It should be noted that §),, consists of eigenfunctions
Y (p) for the angular momentum operator L, = —i%d/d¢,

LYm(p) = hmy,(p),  Ym(p) = e f,.(p),

VY € Him-

2P

It is convenient to change the indexing, m — [, 9,, — $,
Y (p) = Y1 (p) as follows m = €(¢pg — I), such that

Lyn(p) = he(do—DYi(p), Vi € 9.

We define a rotationally invariant initial symmetric
operator #H1L associated with 7+ as follows:

¥ € D(R*\{0})},
Y € Dy,

. Dy ={¥(p):
Ay =ty

A+
where D(R?\{0}) is the space of smooth and compactly
supported functions vanishing in the neighborhood of the
point p=0. The domain Dy. is dense in §) and the
symmetricity of #HL is obvious.

In polar coordinates p and ¢, the operation H* becomes

ot = —85 —p 19, +p (19, +€,0)7, (6)

where ¢ is given by (2).
For every [, the relation

1
J2mp

where f = f(p) e L>(R,) and fi(p) = f(p), determines
a unitary operator S;:L*(R,)+—> §;, where L?(R,) is
the Hilbert space of square-integrable functions on the

S f)p) =vi(p) = e“@D% £,(p), (7)

semi-axis R, with scalar product

(f.9)= /l; f(p)g(p)dp.

For every [, we define a linear operator V; from $) to
L?(R,) by setting

2T
(W)(m:,/% e ®

If v €eH=) ;¥ Vi €%y, then we have ; = S,V for
all /. In other words, V; = Sz_l P;, where P is the orthogonal
projector onto the subspace $);. However, we prefer to work
with V; rather than P; because the latter cannot be reasonably
defined in the 3D case, where the Hilbert state space should
be decomposed into a direct integral instead of a direct sum.

Clearly, Vi € D(R,) for any ¢ € D(R?\ {0}), and it
follows from (6) and (8) that

ViH Y =h(DOViy, ¥ € DR?\ {0)), ©9)

where the initial symmetric operators h(l) are defined on
Dyay = D(R,) C L*(R,), where they act as

hl)y=—82+p2 [(1+M+yp2/2)2 _ 1/4] . (10)

In view of (9), for any ¥ e D[R\ {0}), the -
component (H*1); of H 1 can be written as

(H Y = SVIH Y = ShD) S SiVi = Sk S7 ' .
(11)
Suppose we have an (not necessarily closed) operator f i
in ), for each /. We define the operator

F=3%h

12)

in §) by setting
fo=> Fn. v=>) v

leZ leZ

The domain Dy of f consists of all ¥ =Y",_, ¥; €  such
that y; € Dy, for all [ and the series ), , f 1Y converges
in $. The operator f is closed (s.a.) iff all f ; are closed
(respectively, s.a.). For every [, we have Dy, = D, N §;.

We say that a closed operator f in $ is rotationally
invariant if it can bfi represented in the form (12) for some
family of operators f; in §);.

By (11), the direct sum of the operators S,ﬁ(l)Sf Uis an
extension of H+:

e Y @ shos . (13)

leZ

Let ﬁe(l) be s.a. extensions of the symmetric operators
h(l). Then the operators

HEW) = Sih(1)S;! (14)
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are s.a. extensions of S;ﬁ { )S,*l, and it follows from (13) that
the orthogonal direct sum

=>4t
leZ

s5)

represents rotationally invariant s.a. extensions of the initial
operator L.

Conversely, let 7-Al§‘ be a rotationally invariant s.a.
extension of 7{*. Then it has the form (15), where HX (/)
are s.a. operators in ;. Let us set ﬁe(l) = Sfl’;’:tj(l)Sl. For
all [, ﬁe(l) are s.a. operators in L>(R,). If f € D(R,), then
S;f € D(R?\ {0}) N $;, and (13) and (15) imply that

Sh() f = Sh)S;7' Sif =HES f =HES f =HEDS f
= Sih. () .

Hence, ﬁ(l)f = ﬁe(l)f, ie. l;e(l) is an s.a. extension of ﬁ(l).
We thus conclude that 7-Alel can be represented in the form (15),
where 7-Alel () are given by (14) and h (D) are s.a. extensions of
h).

The problem of constructing a rotationally invariant s.a.
Hamiltonian 7-AL§‘ is thus reduced to constructing s.a. radial
Hamiltonians ﬁe(l ).

‘We first consider the case of a pure AB field where B = 0.
In such a case, we set eg =1 and € = ¢,.

2.1.2. s.a. radial Hamiltonians with the AB field. In this
case, we have y =0, and s.a. radial differential operations
h(l) (10) become

h()=-82+ap™?, a=x}—1/4, xu=|l+ul, e

It is easy to see that this differential operation and the
corresponding initial symmetric operator h(l) are actually
identical to the respective operation and operator encountered
in studying the Calogero problem; see [22]. We can therefore
directly carry over the previously obtained results to s.a.
extensions of /1 ).

First region: o >3/4. In this region, we have (I +u)> > 1,

which is equivalent to
[21—pn or I<—1—pu.

Because! € Z and 0 < pn < 1, we have to distinguish the cases
of u =0and p > 0:

wu=0:1<—-1 or I[>1, ie. [#0,

w>0:1<-2 or [>21, ie. [#0,—1.

For such [, the initial symmetric operator ﬁ(l) has zero
deficiency indices, is essentially s.a. and its unique s.a.
extension is . (/) = h)(l) = h*(I) with the domain?

DZ(/) (Ry) = {Ws : ¥, YL are a.c. in Ry, v,

h(l)y, € LA(R,)).

3 Here and in what follows, we use a.c. for absolutely continuous.

The spectrum of ﬁ(l)(l) is simple and continuous and
coincides with the positive semiaxis, spec i) (/) = R,.
The generalized eigenfunctions Ug,

Us(p) = (p/D'? I,(VEp). hay(DUs =EU:, E Ry,

of h ) (1) form a complete orthonormalized system in L*(R,).

Second region: —1/4 <a <3/4. In this region, we have
0 < (I +p)? <1, which is equivalent to
—u<l<l—p or —1l—p<l<-—pu. (16)

If u =0, inequalities (16) have no solutions for / € Z. If
u > 0, these inequalities have two solutions [ = [,, where, for
brevity, we introduce the notation

l,=a, a=0,-—1.

So, in the second region, we remain with the case of u > 0.

For each I =1,(a =0, —1) tf}ere exists a one-parameter
U (1)-family of s.a. Hamiltonians £, (I,) parameterized by the
real parameter A, € S (—n/2, w/2), where S (a, b) = [a, b],
a ~ b. These Hamiltonians are specified by the asymptotic s.a.
boundary conditions at the origin,

V1, (p) = C [(kop) ' * cos dy + (ikop) 27 sin 1]

+0(p?), (17)

Dy, ap =¥ € D}, (R,), ¥ satisfy (1)}, (18)

where x, =, =|u+al, 0 <x, <1 and C is an arbitrary
constant, whereas ky is a constant of dimension of inverse
length.

For A, # (—m /2, 0), the spectrum of each of ﬁ,\ﬂ (,) is
simple and continuous and spec h 2 Ua) =R,

The generalized eigenfunctions Ug,

oo (VE0) 2 (VE2ee) " (V)|

Us(p) = 20

Q4 = 142,(E/4)* cos(xy) + (hg)*(E/4) ¥ > 0,
ra =T (1 —2)T 7 (1 +2,) tan A,

hy, () Us = EUs, E €R,, (19)
of the Hamiltonian / . (o) form a complete orthonormalized
set in the Hilbert space L?(R,).

For X, € (—m/2,0), the spectrum of each of ﬁ,\u 1) is
simple, but in addition to the continuous part of the spectrum,
there exists one negative level 8,{“_) = —4k§|):a | =% ', such that
spec hy, (1) = Ry U (€L},

In this case, the generalized eigenfunctions Ug of the
continuous spectrum, £ > 0, are given by the same (19), while
th(e )eigenfunction U corresponding to the discrete level
& s

B 2p1E 7| sin(e,) -
U >(p>=/“—1@¢,< £ )

T,
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and they together form a complete orthonormalized system in
each Hilbert space L*(R,).

Third region: o« = —1/4. In this region, we have [ + £ = 0.
If « = 0, this equation has a unique solution [ = /) = 0, while
if u > 0, there are no solutions, and we remain with only the
case of u =0.

For [ =1y, there exists a one-parameter U (1)-family
of s.a. Hamiltonians /A () = h 2(lo) parameterized by the
real parameter A € S(—m/2, w/2). These Hamiltonians are
specified by the asymptotic s.a. boundary conditions at the
origin

V. (p) = ¢ [p"*In (kop) cos A+ p'/* sinA] + O (p** In p),
(20)
(the constants C and k are of the same meaning as in (17)),
and their domains are given by

Dy, ={¥ € D;

0y Re). ¥ satisfy (20)}.

ey

The spectrum of ﬁk(lo) is simple. For |A| =m/2, the
spectrum is continuous and nonnegative, spec ﬁﬂ/z(lo) =
R,. For |A| <m/2, in addition to the continuous part of
the spectrum, £ > 0, there exists one negative level SAH =
—4/<§ exp[2(tan A — C)], where C is the Euler constant, such
that

spec , (lo) = {5@} UR., |Al<m/2.

The generalized and normalized eigenfunctions U of the
continuous spectrum are

Us(p) = | m |70 (VEp) + S Mo (VEp) .

i=tani—C—In («/E/zxo) b Us = EUS,
EeR,, A</,

while the normalized eigenfunction U~ corresponding to the
discrete level is

UO(p) = 2017 1Ko <\/ |8§‘>|p) :

hi (U =70,

Al <7/2,

and they together form a complete orthonormalized system in
the Hilbert space L*(R,).

Complete spectrum and inversion formulae. In the
previous subsubsections, we have constructed all s.a. radial
Hamiltonians associated with the s.a. differential operations
ﬁ(l ) as s.a. extensions of the symmetric operators ﬁ(l ) for any
[ € Z and for any ¢ and . We assemble our previous results
into two groups.

For ©=0, we have the following s.a. radial
Hamiltonians:
@, 1#l. Dip=Dj, R,
hy(lo), A eS(—m/2,m/2), Dp gy is given by (29).

For 1 > 0, they are
hi (D),

hi, (L),

I#l,=a=0,—1, Dy =D}, Ry,

Ao €S(=7m/2,7/2), Dy, q, is given by (25).

Each set of possible s.a. radial Hamiltonians ﬁe(l)
generates s.a. Hamiltonians in accordance with the
relations (14) and (15). As a final result, we have a
family of s.a. rotationally invariant 2D Schrodinger operators
HE = M~'"#H} associated with the s.a. differential operation
H* (5) with B =0.

When presenting the spectrum and inversion formulae
for H ﬁ, we also consider the case of u =0 and the case
of u > 0 separately. We let E denote the spectrum points
of H L and let W denote the corresponding (generalized)
eigenfunctions. The spectrum points of the operators he()
and H + are evidently related by £ = ME. In addition, when
writing formulae for eigenfunctions Wy of the operator H g-
in terms of eigenfunctions Ug of the operators ﬁe(l), we
have to introduce the factor (27 p) ~'/2¢'% @ ~1¢ jn accordance
with equation (7) with € = ¢, (because €z = 1), to make the
substitutions £ = ME and &’ = ME, ", & = ME} " for
the respective points of the continuous spectrum and discrete
spectrum and, in addition, to multiply eigenfunctions of the
continuous spectrum of the operators he(l) by the factor v M
because of the change of the spectral measure d€ to the
corresponding spectral measure* dE.

For u =0, there is a family of s.a. 2D Schrodinger
operators H L= H i parameterized by a real parameter A €
S(—=n/2,7/2),

=Y "®atme i ).
1€Z,1#ly

B =M"'ShayO)S7. 1#1,
H-(lg) = M~ S, (o) S;;
The spectrum of A is given by
spec I:If
E7 = —4M '@ expl2(tan k — C)], |A| < 7/2
=R, U .
@, A=x1/2

The complete system of orthonormalized (generalized)
eigenfunctions of H; consists of the generalized
eigenfunctions W; g (p) of the continuous spectrum,

Ue(p) = (M/4m) 2% @00, (VMEp), 11,

E >0,
A M i€, >
W) = [ e [y (VMED)
0’ dr (A2 +m2/4)
o ).

~=tant—C—1In (@/2/(0),

4 From a physical standpoint, the latter is related to the change of the
‘normalization of the eigenfunctions of the continuous spectrum to §
function’ from § (£ —&') to (E — E').
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and (in the case of |A| <m/2) the eigenfunction W (p)

corresponding to the discrete level E if),

W (p) = My |E{”|/m e4*¥ K, (V M |E§>|p) ,

such that
HW5(p) = EV1.£(p),
H W}, 1 (p) = EV}, (p), E >0,
H W (p) = E;7VW (p), |2 <7/2.

The corresponding inversion formulae have the form

vp= Y / /(E) ¥, £ (p)IE

1€Z,151,

s f 1, ()WL (p)dE + &y, W (p).
0
/(E) = [ AT (DY (p).
@, (E) = / dp‘P £PY(p),

®y, = / dpW} (p)W(p), VYW e L*(RY);

/dp|\IJ(p)| Z/ DB dE +| @, |

leZ

’

and the terms with &;, and \Ill’}) (p) are absent in the case of
Al =m/2.

For u >0, there is a family of s.a. 2D Schrddinger
operators H- = H ti)» @ =0, —1, parameterized by two real
parametersk €S(—n/2,7/2),

=Y ®h0e Z@Hi (o).
1€Z,1#1,
HY () = M~ 'Sihay (DS,
Hi (la) =M™, s, (1L)S;,

# la,

The spectrum of H {LM is given by
spec H{; |

E{7 = —aM~ U277 ha € (—7/2,0)
&, ha ¢ (—7/2,0) ’

where x, = | +al, ke = T(1 —2,)T " (1 +2,) tan A,.
A complete system of orthonormalized (generalized)
eigenfunctions of H i, consists of the generalized

eigenfunctions V; g(p), ! # 1,, and \I/ L “(p) of the continuous
spectrum,

W g(p) = (M/4m)' /> e @D, (V MEP) :
1#1,,

RACE Y. [ T (@ p)
47 Q,

+7, (M /2/(0)2%0 A

w = |l +pul,
“I"lia,E(P) =

e (x/ﬁp)],

Q4 =142, (ME /4)* cos(mx,) + (Ag)* (ME J4)¥
E>0,

and (in the case of A, € (—m/2, 0)) the eigenfunctions \I/lka“ (p)
corresponding to the discrete levels E i;),

M2|EX| sin(rx,)
\lj]):’a (P) _ \/ Ka a el (po—la)g Kx“ ( /|ME5\:) |,0) ,

w2x,
such that
HY, p(p) = EVi £(p), [ #1,,
"W (p) = BV p(p). E 20,
AW (p) = E{)Wi(p), b=0,—1.

The corresponding inversion formulae have the form

2

1€z, 11, ¢ 0

+Z[/ @, (E)V)" ; (P)AE + P, ¥ "(p)}

V(p) = O (E)V,(p)dE

YW e L2(R?),

(E) = / PP, [+l

@, (E) = / APV ()Y (p),

@), = [ dp¥;" () (p),

[aorvorr = Z/ CERE A

leZ

3

and the terms with &;, and \IJIAE “(p) are absent in the case of
)\a ¢ (—JT/2, O)
We now consider the case of the MSF where B # 0.

2.1.3. s.a. radial Hamiltonianvs with MSF. In this case, the
radial differential operation A(l) is given by (10) with y =
4Bl ¢ 0, or
}\l/(l) = — 83 +g1,072 +g2,02 +gl(0)’
g =xf —1/4,
§% =y +p).

=\l+ul, g =y>/4,

Up to the constant term 6'1(0), this s.a. differential
operation is identical to the 1D Schrédinger operation —d? +
g1x 2+ gox?. Its singular part was studied by us recently
in [22]. We note that as in the case of the pure AB field, the
division to different regions of g; is actually determined by
the same term g, p~2 singular at the origin and independent of
the value of B.

The first region: g > 3/4. In this region, we have
{ +,u)2 > 1, such that
u=0:1<—-1 or [>21 1ie.l#l,
wu>0:1<-2 or [21 iel#l,
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For such [, the initial symmetric operator h(l) has
zero-deficiency indices. It is essentially s.a. and its unique

s.a. extension is A )= h (1) with the domain D;lf(]) (R,). The

spectrum of hi(l) is simple, discrete and given by
spec by (1) = {&m=y Q+ll+pul+A+w)+2m), meZ,}.
(22)
The eigenfunctions U, ;2
Ui (p)
= Qi (y/2) 1012 260 A (—m, 1+ 3015 0 /2),

0 <mr(1+x,+m)>‘/2
I.m — s

m\T2(1+ %)

(23)

of the Hamiltonian / 1(I) form a complete orthonormalized
system in the Hilbert space L>(R,).

The second region: —1/4 < g; <3/4. In this region, we
have 0 < (I + ;L)2 < 1, or equivalently (16). We know that if
w =0, these inequalities have no solutions for / € Z, while
if u > 0 there are the two solutions, [ =1, =a, a =0, —1.
Therefore, we again remain with the case of u > 0.

For each [ = [,, there exists a one-parameter U (1)-family
of s.a. radial Hamiltonians & 2. (l) parameterized by a
real parameter A, € S (—m /2, 7/2). These Hamiltonians are
specified by the asymptotic s.a. boundary conditions at
p— 0,

m“(p>=c[( y720) " sinag+ (Viize) cosxa}

+0(p*?), (24)

where «, =|u+al, O0<k, <1 and C is an arbitrary
constant®, and their domains are given by

Dy, 4, ={¥ :¥ € D;

i (Re)s

Y satisfy (24)}. (25)

The spectrum of h . (o) 1s simple, discrete and is bounded
from below,

spec il\)»a (la) = {gam = Ta,m +5[Ef)): me Z+] s
where 1, , are solutions of the equation w;_(t,,,) =0,

oy, (W) =w,(W)sin, +w_(W)cos A,
wsW)=T(0=xx,)/T(/2Ex,/2—W/2y).

26)

The eigenfunctions U, ,{? o

U)f,)m(p) = Qa,m [u+(,o; Ta,m) Sin)‘a +u,(p; ‘Ca,m) Ccos )\a] 5
- 1/2
0 _ w, (Ta,m)
, v ZV”aw;m (Ta,m) '
@,, (W) =w,(W)cosr, —w_(W)sini,,
s (p; W) = (y/2) /48l pl2%5 10" /4 (12 £ 3¢, /2
— W/2y, 124 v0°/2), @7

5 In comparison with (17), we fix the dimensional parameter ko by ko =

Vv/2.

of the Hamiltonian / »,(lz) form a complete orthonormalized
system in the Hilbert space L?(R,).

For 1, = £m/2 and A, = 0, one can easily obtain explicit
expressions for the spectrum and eigenfunctions. For A, =
+7/2, they are given by the respective formulae (22) and (23)
with the substitutions / — [, and » — x,. For A, =0,
these formulae are modified by the additional substitution
%, — —x,. In addition, one can see that in each interval
(rET/D /) /D) e 7. are

Tam' s Tymar )» M €{—1}UZ,, where 74

solutions of the equation w. - /2(74,») = 0 and we set formally
r(f_i_”l/ D= —o0o, there is one solution 7,, of the equation
wy, (Ta.m) = 0 for a fixed A, € (= /2, 7/2); the solution 7,
. . (£7/2) (£7/2)

increases monotonically from 7., '~ +0to 7, /" — 0 when

Aq changes from —m/2+0to /2 —O0.

The third region: gy = —1/4. In this region, we have [+
w =0. Thus, we remain with only the case of u =0 with
I=1y=0.

For [ =1y, there exists a one-parameter U (1)-family
of s.a. radial Hamiltonians ﬁx(lo), parameterized by the
real parameter A € S (—m/2, w/2). These Hamiltonians are
specified by the asymptotic s.a. boundary conditions at
p— 0,

Yi(p)=C [p”z In ( y/Zp) cos A+p'/? sinA] +0(p**1n p),

(28)
where C is an arbitrary constant and their domains are
given by

Dy, ap=1{¥: v e Dh’f(lo)(RJ,), Y satisfy (28)}. (29)
The spectrum of h 1 (lp) is simple, discrete and is bounded
from below, and

T, h=%m)2

spec ﬁ,\(lo) =1&,, mEe€ ,
{(—1}UZy, M| <7/2

where &,, are solutions of the equation w; (&,) =0,

w, (W) =cos A[Y(ag) —2¢ (1)] —sin X, oy=1/2—W/2y.
(30)

The limit A — %7 /2 in this equation and its solutions
are described by the equation ¥ '(ag)=0 or 1/2—
ESETD 12y — —m, m € Z,, and by the solution &5 =
y(1+2m).

A qualitative description of the spectrum is given
above. One can see that in each interval (£57%, Srfff/ 2y,
m € {—1}UZ,, there is one solution &, (for a fixed A €
(—m/2,7/2)) of equation (30) (we set formally E(j”/ D
—00); the solution &, increases monotonically from 5,(,?[”/ D4
0to 5&7/2) — 0 when A changes from 7/2 —0to —7/2+0.

The eigenfunctions U, A(S,)n,

UL = Qs [u1(p3 En) sin A +u3(p; Ey) cos Al
i (p; W) = (y/2)* p' 27" o (ay, 1; yp?/2),
uz(p; W) =ui(p; W)ln ( y/2p) +(y[2)\/4p e e/t

X @124+ —W/2y, 1+2u; yp*/2)|
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0 _[_ B3 (Em) }'/2
L Vv En ]

@) (W) = sin A[Y (ap) — 29 (1)] +cos A, (€20

of the Hamiltonians / 2 (lp) form a complete orthonormalized
system in the Hilbert space L?(R,).

We note that the spectrum and eigenfunctions in the case
of A = £ /2 can be obtained from the respective formulae for
the first region in the formal limit [ — 0.

Complete spectrum and inversion formulae. In previous
subsubsections, we constructed all the s.a. radial Hamiltonians
associated with the s.a. differential operation ﬁ(l) as s.a.
extensions of the symmetric operator h(l) for any [ € Z and
for any ¢y, n and B. We assemble our previous results into
two groups.

For ;1 = 0, we have

hi (D),

hy (o),

1#1,=0,
reS(—n/2,71/2),

Dy,o) = Dy, (Ry),

and the domain Dy, () is given by equation (29).
For u > 0, we have

(), 1#l,=a=0,—1, Dy = D, (Ry),
o (a), ha €S(=m/2,7/2),

and the domain Dy, ) is given by equation (25).

As a result, each set of possible s.a. radial Hamiltonians
he(l) generates s.a. rotationally invariant Schrodinger
operators H i‘ =M ’lflel in accordance with relations (14)
and (15). As in the case of the pure AB field where B =0,
we let E denote the spectrum points of H L.

It is convenient to change the indexing I/, m of the
spectrum points and eigenfunctions to /, n, as follows:

m, | < -1,
n:n(l’m):{m+l,120, meZ, l€Z,
; | (32)
n, g_v
m:m(n’l):{n—l,Oélén, nez,, lelZ,

and then interchange their position, such that, finally, the
indices [, m are replaced by indices n, [.

When writing formulae for eigenfunctions W, ; of an
operator H L in terms of eigenfunctions U, of the operators
he(l), we have to introduce the factor (27p)~'/2ei¢@ =Dy
in accordance with equation (7) and make the substitution
& .m = ME,, for the corresponding spectrum points.

The final result is the following. There is a family of
s.a. 2D Schrodinger operators I-Alel parameterized by real
parameters A, such that A L= H s

= YO arne Y h .
€711, I,
A =M7'Sh(DS, 1 #1,,
A3 W) =My, () ST

L = l09 I’LZO

7 e, =07

_ )\.ES(_T[/Z,jT/z), MZO,
A*_{AHGS(—H/Z,ﬂ/Z), u>0. (33)

The spectrum of H i is given by

spec ﬁf = {Uiez121. (En 1o n € Z)YU U=, (E  n € Z,)),

E, =yM ' [1+2n4+20(0)u], 1<n, [#L,
1, 1>0,
6= {0, 1<0, G
o, (ME?) =0, [x] <7/2,
R =0,
EF? =y M1 (1+2n),
E;(z)m) =M [Ta,n +y(a +M)] , wka(fa,n) =0,
EF — y M1 +2n+20(a)ul,
nesy, nu>0, (35)

where w, (W) and w, (W) are given by respective
equations (30) and (26). .
A complete set of orthonormalized eigenfunctions of H kl

consists of the functions W, ;(p), [ # I, and \I!,:l (p),

1 o
V,i(p) = \/2—71—)0@16@0 ])wUZ{Irr)l(il,l) (0), (36)

where U, ,(1,)[ (p) are given by equations (23) and (we note that

m(n, l,) =n)

1 )
\pé,lo (p) = melf%w U)Eii (p)’ w= 0,
1 )
\I}r);.a]“ (p) = el€(@o—l)e U(2) 450,

NeET) (P

where Ufi(p) and Uﬁ?n(p) are given by respective
equations (31) and (27), such that

ﬁt \Ijn,](p) = En,l\yn,l(p)a
H(p) W), = E{OW) (p).

nl, —

L#1,

We note that for the case of A==+m/2, [=1y=0,
and for the case of A, ==£n/2, [=1,=a=0,—1, the
energy eigenvalues E* and E%< and the corresponding
eigenfunctions W) and W} are given by respective
equations (34) and (36) extended to all values of /.

The corresponding inversion formulae have the form

DD e+ Y D (p),

l€Z, 1#l, nely Ly ,n€Z,

Y(p) =

By = / AU (P (p), | £,
D, = / dp¥,, ()Y (p).

/dpl‘lf(p)lz =33 |0

€7 nel,

VW e LX(RY).
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2.2. The 3D case

In three dimensions, we start with the differential operation
H (4). The initial symmetric operator H associated with
H is defined on the domain Dy =DR}\R,) € H = L*(R?),
where D(R3\R,) is the space of smooth and compactly
supported functions vanishing in the neighborhood of the
z-axis. The domain Dy is dense in $), and the symmetricity of
H is obvious. Ans.a. Schrodinger operator must be defined as
an s.a. extension of H.

There is an evident space symmetry in the classical
description of the system, the symmetry with respect to
rotations around the z-axis and translations along this axis,
which is manifested as the invariance of the classical
Hamiltonian under these space transformations. The key point
in constructing a quantum description of the system is the
requirement of the invariance of the Schrodinger operator
under the same transformations. Namely, let G be the group
of the above space transformations S: r — Sr. This group is
unitarily represented in $): if S € G, then the corresponding
operator Uy is defined by
=y(S'n),

Usy)(r) Yy € 9.

The operator H evidently commutes® with Uy for any S.

We search only for s.a. extensions H. of H that also
commute with Ug for any S. This condition is the explicit
form of the invariance, or symmetry, of a Schrédinger
operator under the space transformations. As in classical
mechanics, this symmetry allows separating the cylindrical
coordinates p, ¢ and z and reducing the 3D problem to
a 1D radial problem. Let L2(R x R,) denote the space of
square-integrable functions with respect to the Lebesgue
measure dp,dp on R x R, andlet V : Ziz L*(R xR,) —
$ be the unitary operator defined by the relationship

V)P, 9, 2) = dp. Yy O £t p., ).

1
VI S

Similarly to the preceding subsection, it is natural to expect
that any s.a. Schrédinger operator H, can be represented in
the form

gezv/ dp: Y hell pyV,
R;

leZ

where ﬁe(l, p,) for fixed [ and p, is an s.a. extension of
the symmetric operator h(l, p.)=h(l)+ p?/2m, in L*(R,)
and the operator ﬁ(l) in L2(R,) is defined on the domain
Dyqy = D(R,), where it acts as

hl)y=—82+p2 [(l+y,+yp2/2)2 — 1/4] .

% We remind the reader of the notion of commutativity in this case (where
one of the operators, Us, is bounded and defined everywhere): we say that
the operators H and Us commute if USH - HUS that is, if ¥ € Dy, then
also Ugyy € Dy and USH1// HUsl//

The correct expression for H. can be written in terms of a
suitable direct integral,

A & @ A~
H,= v/ dp: Y ¥ he(l, p)V
RZ

leZ

Its rigorous justification will be discussed in a publication of
A Smirnov.

The inversion formulae in three dimensions are obtained
by the following modifications to the 2D inversion formulae:

(D) Yz [AE — [dp. 3y [dET, E*
spectrum points of 2D s.a. Schrédinger operators I:I L
whereas the eigenvalues (spectrum points) E of the 3D
s.a. Schrodinger operators H, are E=E'+ )= / 2m,
p: €R.

(2) The contribution of discrete spectrum points of the 2D s.a.
Schrodinger operator H L has to be multiplied by [ dp..

where are

(3) Eigenfunctions of 2D s.a. Schrédinger operators H + have
to be multiplied by (27/)~1/?€i?=*/* in order to obtain
eigenfunctions of the 3D s.a. Schrodinger operators H..

(4) The extension parameters A, and A have to be replaced
by the functions A, (p;) and A(p;).

2.2.1. s.a. Schrodinger operators with the AB field.  For
the case of u =0, there is a family of s.a. 3D Schrédinger
operators parameterized by a real-valued function A(p,) €
S(—m/2,7/2), p, €R.

The spectrum of H A(p,) 18 given by

spec 1:1{/\(17:)}

p2/2m, —AM~ '« exp[2(tan A(p,) — O)],
A(p)| <m/2

g, AMpy) ==xm/2

=R, U

A complete system of orthonormalized genera-
lized eigenfunctions of H,,) consists of functions

Wy, g1 (r), 1 # Do, and W07 (r),

\yl,pz,Ei (r) — (87T2h/M)_1/2 eipZZ/h+iell(¢07l)wJJ{,( /MElp),

}L(P ) (r)

IO P e (87T2h():2 +7_[2/4)/M)fl/Zeip;Z/hHGq(]ﬁogﬂ

x [0 (VMES o)+ 7N ME* ).
L= tani(p,) —C—In <\/ MEL/2K0> ,

and functions lIJMp ) (r),

J2MRESS 1K ((MIE )]
A(p:) 120 Ap) 1P )
x [AM(p)| <m/2 ,
0, A(p,) ==m/2
E\\ )= —4M ™'} exp2(tan A(p;) — ©),
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such that

nd eigenfunctions lIJ;\ ;p I(r),

a
HY, . 5o (0) = (p2/2me+EX) W, pi(r), E*>0, ) 2501 _ipsz/htilly+e, o)
‘ (r) (27r h) e 4
A(p2) (2 Ly o) 1
H\I/l o EL (r)= (PZ/Eme +FE ) lo,p. . E+ (r), E— >0, M2|E)\L“((*p)j)|sin(7r;f[,)K M|EL(_) |
Ap2) 2 L)) gt po) 2 *a \ Y ralp) 1P )
HY; 0 () = (Pz/zm”Ex(pZ)) lo.p. () 1 ha(po) € (=7/2,0),
o . 0, Aa(p2) ¢ (—=7/2,0),
The corresponding inversion formulae have the form N
E\) = —4M ™'k exp2(tan A4 (p;) — O,

Y(r) = fdn Z / @), (ENW, ,. pi(r)dEL  such that

I€Z, 140
. HY, p (1) = (p2/2me+ EY) Wy, po(r),  E* >0,
1 Ap) 1
+/0 CD]O’[,Z (E )\Ijlo,p;.El (l')dE H‘I’I}L ;P )EL (I') — (pz /2me+EJ_) )»[:(P) (l') EJ_ > 0,

+, , WP )(r)] VW € L2([RY),
@, (EY) = f U, e (OW(r)dr, [#1,

@, (EY) = / W (r) W (r)dr,

(I)IO»P::/

o 2 2

/|\Il(r)|2dr= /dpz[/Z/ |1, (ES)| dEL+|<1>10,,,Z|].
€Z 0

there is a family of s.a. 3D

W) (1) W (r) dr,

For the case wu >0,
Hamiltonians H,(,.); parameterized by two real-valued
functions A,(p;) € S(—n/2,7/2), a=0,—1, p, e R.

The spectrum of H {ha(p.)) 18 given by
P2/2me =AMk |

ra(p2) € (=7/2,0) UR,,

@, ra(py) & (—7/2,0)
=|p+al, kg =T =207 (1 +2,) tan A, (p.),

spec H,(p.)) =

’e = | +al.

A complete orthonormalized system in L?(R?) consists

11,

of both generalized eigenfunctions ¥, , gi(r),

ra(pz)
and ¥} pp e (D),

qjl,pz,Ei (r) — (Snzh/M)—l/Z eipzz/h+iEq(¢0—l)(pJ)q( /MELp)’

P e (P2) =12

B elpz/hie (do—l)g
l 0. E

(87°hQ,)

X [J}fa ( E{o) (\/7/216())2%0

(r)=

X Fe s, ( MEJ‘,O> ]

0, =1+2 (ME*/4)™ X, cos(mx,) + (ME /4)% 32,

10

+E;-)

le:u’;’f:)(r)z(p?/zme x(p)) A(")(r)

The corresponding inversion formulae have the form

\y(r)zfdp, > / @, (ENY,, g (DdE*

€7, I#,

+y /0 @y, . (E1) ) (dE
a
+ @y, V@) | Ve LAR),

‘Dz,p.-(El)=/dr‘lfz,pg,Ei(r)‘l’(r), Et>0, [#1,

@, . (EY) = /

o, , = / dry;: "(P )(r)\ll(r)

/dr|llf(r)|2 - /dp, {Z/ |©, . (EH[* dE*

leZ

+ Z ‘(D]mpz‘z:| .
a

2.2.2. s.a. Schrodinger operators with MSF.  There is a
family of s.a. 3D Schrodinger operators H ».(p,) Parameterized
by real-valued functions A.(p;) € S(—7/2,7/2), p, € R),
where A, are defined by equation (33).

The spectrum of H A (p.) 18 given by

drw, " ()W), E'>0,

lo,pz EX

spec FI)\*([,z) = {p§/2m6+Ej_A*(pz), ne Z+} U [VMil’ OO),

where Enl +(P2) are defined by equations (34) and (35) with the
substitution A, — A.(p;).
A complete system of generalized orthonormalized

eigenfunctions of H,_, ) consists of functions ¥, ; ,(r), [ #
re(p2)

l., and \Ilpf,l*,,n(r)’ nezt,,
W), () = mei"ﬂ”‘““”“"”’Uf,i,im,z) (). 1#L.
37)
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where [, are defined by equation (33), m(n, [) is given by (32)
and Uz(,lw)l(/)) are given by equations (23),

A(p2) _ ip.z/h+i 3 _
"I,pz,lo,n(r) = _zﬂ\/%elﬂ / +15¢>0</’U)L(pz)!n(p)’ w=0,

Aa(pz) ip,z/h+ie(Po—l, (2)
\Ilp:,,l,,,n(p) = znmem /h+ie (g )(pU)»[,(pz),n(p)’ w>0,
where U}E?)p,),lz (p) and Ux(jzp,),n (p) are given by the respective

equations (31) and (27) with the substitution A, — A.(p,),
such that

HY, 1,(0) = (p2/2me+ EX) W, 1,(x), [#L,,

HY, P, (0) = (p2/2me+ EZ=P)) Wil (1), (38)
where
Ef =yM ' 14+20420(0)p), 1 <n, [#1,, neZ,.
(39)

We note that for A(p,) = r,(p;) = £n/2, the energy
eigenvalues and corresponding eigenfunctions ¥, ; ,(r) are
given by equations (38), (39) and (37) extended to all values
of [.

The corresponding inversion formulae have the form

W(r) = /dpz Z Z dez,l,n\I’[pzl,m(n,l)(r)

neZ, | leZ, l#l,
+ E qu;,l*.n (I‘):| s
=1,

<I>p;,l,n = /drwp;,l,n(r)‘y(r)’ 175 l*,

(DPZJ*JI = /

/dr|wr)|2 = /dpzZ S @yl

l€Z nely

Ax(pz)
\I]ﬁz,l*,n

dr w5 ()W),

. YW e LXRY).

3. S.a. Dirac Hamiltonians with MSF

3.1. Generalities

In this section, we set ¢ = h = 1. Written in the form of the
Schrddinger equation, the Dirac equation with the MSF reads
IV (x)

ot

0

i x=(x,r),

:I-VI‘IJ(X),

r=(x* k=1,2,3), x"=1,

where W (x) ={y,(x), a=1,...,4} is a four-spinor and
H is the s.a. Dirac differential operation, the ‘formal Dirac
Hamiltonian’,

~

H = o (p=eseA) +mep,

where the vector potential A is given by (2),
o=y k=1,2,3),=y"and y*, £ =0,1,2,3, are
Dirac y matrices.

11

The space of quantum states for a particle is the Hilbert
space ) = L* (R®) of square-integrable bispinors ¥ (r) with
the scalar product

(W, Wy) :/drw;(r)wz(r), dr = dx' dx? dx*® = pd pde dz,

where p, ¢ and z are the cylindric coordinates. The Hilbert
space $) can be presented as

4
9= %8, 9,=L'®).

a=1

Our first aim is to construct all s.a. Dirac operators (Dirac
Hamiltonians) associated with the s.a. differential operation
H using the general approach presented in [25]. In particular,
the construction is based on the known spatial symmetry in the
problem’ , which allows separating the cylindric coordinates
0, and z.

It is convenient to choose the following representation for

y matrices:
o3 1 io?
0 3] Yy = 0 2]

0
-0

0
—io

0

2 —ial 0 3 0 1
Z=lo i) V1 o)

. 0 1 a® 0
5__ 01,23 3 _
y'=-wyyy = (1 0)’ 2—<0 U3>~

Written in cylindric coordinates, the differential operation H
then becomes

H = diag (Y +meo’, Y —meo?) + p, antidiag(o”, o),

where
Y = Q[03d, +p ' (id, +€,0)],

Q:alsin(p—azcosgo, Q2: 1,

and

&P =ec@o+u+yp’/2), ¢o=lesdl=epp—p,
O0<u<l1, y=elB|>0.
This operation commutes with the s.a. differential
operations

1y

Po= =0 Se=y> (v’ —m b

),

.= —id, +03/2,

v

Jo= —id, + 3% =diag (J., J2)
where £ = diag(c?, 0?).

_ We pass to the p, representation for bispinors, W(r) —
V(pz. p),

1 -
Y(r) = \/T_n/e"’“\y(pz,p)dpz,

- 1 o
V(p, p)=—= [ e V¥ (x)dz.

2

7 By the spatial symmetry, we mean the invariance under rotations around
the solenoid axis and under the translations along this axis.
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In this representation, the operation J . 1s the same, while H
and S, respectively, become

H— H (py) = H = diag (Y+meo3, Y —mea3)
+ p, antidiag (03, 03) ,
S.— 8. (p.) =m;"p. antidiag (I, I) +diag(I, —1I).
We decompose the bispinor W (p,, p) for a fixed p, into
two orthogonal components that are the eigenvectors for the
spin matrix S,(p,):

The space of four-spinors W (p,, p) with a fixed p, is the
direct orthogonal sum of two eigenspaces of S, (p;),

U(p,, p)=Vi(p., p)+V_1(ps, p),

where
. M+me\'"? X
‘.y 9, == —
1Pz, ) ( oM ) pe (M +me)™ i
= x1(p:, pP) ®e1(p.),
- M+m\'"? (—p, (M +mo)~" x_
w_l(pz,m:( 2M6) ( bz . 1)
=X71(pz»P)®efl(pz)a
) <M+me>1/2< 1 )
e1\pz) = _ s
: oM P (M +me)”!

e 1(p) = —io’ei(py), (40)

and e;(p;),s ==£1, are two orthonormalized bispinors,
ef(p)ef(p;) =08, and xs(p,, p) are some doublets. The
space of bispinors U(p., p) with a fixed p, is the direct
orthogonal sum of two eigenspaces of Sz (p2),

~ ~ M .
S (p) Ys(pz, p) = Sm_lys(pz’ P,
e

— 24 p2 —
M=,/m;+pz, s==1.
We thus obtain a one-to-one correspondence between

bispinors W (r) and pairs of doublets x;(p., p),
Y(r) < lI;s(pz» p) = xs(pz, p),

such that || W 1= X, || x 1= X2, [ dp-dp x; (P2, P Xs
(P2 P)- 5 5

The differential operations H and J, induce the
differential operations h and J. in the space of doublets
Xs (P2, p):

v

H(pz)q’}s:ﬁ(s’pz))(s@en jz(pz)“i”szjz)(s@es’

ﬁ(s, p) =0 [038,, +p7 ! (iBw +eq<5)] +sMo?.

The s.a. operator j, associated with j, has a discrete
spectrum, its eigenvalues are all half-integers labeled here by
integers [ as €(¢o — [ +1/2),

7.E(p) = [e(go—1+1/D))&(p), €.

12

It is convenient to represent vectors & (@) = &/(p., p, ¢) of the
corresponding eigenspaces, as

&(p) = (27[)—1/2 ei[e(¢o—l+1/z)—63/z]¢ﬁl

1
= Si1(9)——=—=F{, pz, p),
Si(p) = e“@/D¢ antidiag (i €'¢/2, —e /%),

St () Si(p) =1, (41)

where ¥, = 9/(p;, p) and F(l, p., p) are arbitrary doublets
independent of ¢.

The space of doublets x;(p., p) is a direct orthogonal
sum of the eigenspaces of the operator j,, which means that
the doublets allow the representations

1
J21p

Xs(pzp) =Y Si(@)F(s, 1, pz, p),
leZ

and the factor 1/4/2mp is introduced for further convenience.

The operation h (s, p;) induces an operation ﬁ(s, )
(‘radial Hamiltonian” depending on the parameter p, as well)
in the space of doublets F,

M 1 v
h(s, po) xs = Y ——==S1(@h(s.F(s.1. p:: p).
leZ 27T,O

h(s, 1) =i020, +€(yp/2+p ol —sMa>, (42)

where k; =1+ —1/2.

In the Hilbert space L2 (R,)=L*[R,)®L*[R,) of
doublets F'(p) (with p, fixed), we define the initial symmetric
radial Hamiltonian ﬁ(s, [) associated with the s.a. differential
operation h (s, /) and acting on the domain Dy, ),

Dy iy =D (Ry) =D(Ry) @ D(R,). (43)
3.2. Solutions of radial equations
1. We first consider the homogeneous equation
(s, ) = WIF (p) =0 (44)

and some of its useful solutions.

We let f and g denote the respective upper and lower
components of doublets F, F = (f/g). Then equation (44)
is equivalent to the set of radial equations for the doublet
components

f—eyp/2+p ) f+(W—sM)g =0,
g +elyp/2+p g — (W+sM)f =0, (45)

where the prime denotes derivatives with respect to p.

We let ﬁ+ = IL(S, [) and h_ = ﬁ,(s, [) denote the
differential operation h with e =1 and € = —1, respectively.
We then have

l;+(s, = iazap + (y,o/2+,0_1x1) ol — sMo3,
ﬁ,(s, )= iozap — (y,o/2+,o_lx1) ol —sMo?
=io? [iazap +(yp/2+p )o! +sM03] (i02)+

=i0?hi(—s,0) (ic?)".
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It follows that solutions F_=F_(s,l, E_(s); p) of
the equation ho— E_(s)]F- =0 are bijectively related to
solutions F, = F.(s,l,, E.(s); p) of the equation [ﬁ+ —
E.(s)]F, = 0 as follows:

F_(s,1, E_(s); p) = 10° Fy(=s. 1, E+(5); p),
E_(s) = E.(—s).
That is why we consider below the case of e =sgn(¢B) =1
only and omit the subscript ‘+’.
The set (45) can be reduced to second-order differential

equations for both f and g. For example, we have the
following set of equations equivalent to (45):

—w+y<}q+%>:|f=0,

g=W—sM)~' [—f'+(p/2+p ) f]. w=W—M.
(46)

10 —1)

"= |:(J//0/2)2 + 2

By the substitution

fp) =2z p(x), z=yp*/2, a=1/2%(0q—1/2),

we reduce the first equation (46) to the equation for p(z) that
is the equation for confluent hypergeometric functions,

202p+(B—2)0p—ap=0, B=a+1/2,

a=a/2+x/2+1/2—w/2y. (47

Known solutions of equation (47) allow solutions of equations
(44) to be obtained.

In what follows, we use the following solutions
Fi(p; s, W), Fo(p; s, W) and F3(p; s, W) of equation (44):

F = p1/2—l—u e2/2
y (— @B~ (W —sM)p® (i +1, B+ 1; z)>
@ (a1, Bis 2) 7

(2, Bo; 2) )
2B ' (W+sM)p®(a, fo+1;2))
27N W —sM)pW (o + 1, B+ 1; z))

Fy = pltn=172 ¢=2/2 <

Fy= pl/Z*I*M 671/2 <

Y(ai, fi;2)
(48)
where
Br=1—-l—pn, ar=-w/2y, fr=Il+u,
_ _ _20/2PTB)
Dl2—1+/,L—U)/2]/, a)l_a)l(s,W)_m,
B T8
Wy = a)g(W) = F(O{z) .

All the solutions Fj, F>, and F5 are real-entire in W, and
F3 = a)2F1 — a)le.

The solutions (48) have the following asymptotic
behavior at the origin and at infinity.

As p — 0, we have

Fr=p'>7 (= @B~ (W —sM)p/1) O(p?),
Fy=p" 712 (17 2B) ™ (W +sM)p1) O (0%,

13

(W —sM)I"(B1)

I+pu—1/2
=i r@en’
0(p?), 1<-1,
x 10+, 1=0, p>0,
O(p*Inp), =0, pn=0,
T(B2) 1o OGP, 1>1,
g3=m 1/2—1—p 6(p2#), =0, u>0, 49)

where F3 = (f3/g3).
As p — 00, we have

a—p
_ W2TRUB) asrar-2py o2

F
I'(ay)
x (yp(W+sM)~'/1)O(p™?),
P = —(y/Z)"‘l T'(62) pm+2tx1 e?/?

I(@)

x (1/ (rp)™ (W +sM)) O(p™2),
Fy= (y/2)" p" 72 e™/?

((ro)™ (W =sM) /1) O(p™2).

We define the Wronskian Wr(F, F) of the two doublets
F=(f/g)and F =(f/g) by

Wr(F, F)= f§—gf =iFo*F.

If (h—W)F = (h—W)F =0, then Wr(F, F) = C = const.
Solutions F and F are linearly independent iff C = 0. It is
easy to see that Wr(Fy, F>) = —1.

If Im W > 0, the solutions Fj, F>, and Fy are pairwise
linearly independent,

Wr(Fy, F3) =w1(W), Wr(F2, F3) = wy(W).

Taking the asymptotics of the linearly independent
solutions F; and F3 into account, we find that there are no
square integrable solutions of equation (44) with Im W #0
and |/| > 1 or [ =0, u =0. This implies that in these cases,
the deficiency indices of A (s, ) are zero. In the case of [ = 0,
w > 0, the solution F3 is square integrable, which implies that
the deficiency indices of h (s, 0) are equal to (1, 1).

For any / and p, the asymptotic behavior of any solution
F of equation (44) at the origin, as p — 0, is not more
singular than p~ !, F(p) = O(p~™!).

II. We now consider the inhomogeneous equation
(h(s,) =W)F(p) =W(p), VW cL*(R.).
Its general solution allows the representations

F(p) =c1Fs(p; W) +caF3(p; W)+’

X [Fd(p; W)/Oo F3(r; W)W(r)dr + F3(p; W)
P

X /p Fy(r; W)\I/(r)dr:| ,
0

d=1,1<0,

d=2,1>1. (50)

wq =Wr(Fy, F3), d= {
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A simple estimate of the integral terms in the right-hand
side (rhs) of (50) using the Cauchy—Bunyakovskii inequality
shows that they are bounded as p — oo. It follows that F €
L2(R,) implies ¢; = 0.

An evaluation shows that as p — 0, the integral terms are
of the order of O(p!'/?) (up to the factor In p for |k;| = 1/2).
In this case, F € L2(R,) implies ¢, = 0, and we find

F(p) = ' [Fd<p; W) / F3(rs W)W (r)dr + Fy(p; W)
p

X /p Fy(r; W)\IJ(r)dr] . (&2))
0

For |k;| < 1/2, the doublet F5(p; W) is square-integrable,
and a solution F(p) € L?>(R,) allows the representation

F(p) = bw; ' Fi(p; W) +c2F3(p; W)

ro;! |:F3(p; W) / " Fios Wyw(dr
0

_Fi(p; W) / e W)\If(r)dr} ,
0

p—0,
(52)

F(p) = bw; ' Fi(p; W)+ F3(p; W)+ 0 ('),

where

b= /DO F3(r; W)W (r)dr.
0

We use representations (50)—(52) to determine the Green
functions for s.a. radial Hamiltonians.

3.3. s.a. radial Hamiltonians

3.3.1. Generalities.  We proceed to construct s.a. radial
Hamiltonians ﬁe(s,l) in the Hilbert space L2(R,) as s.a.
extensions of the initial symmetric radial operators ﬁ(s, 1) (43)
and analyze the corresponding spectral problems.

The action of all of the following operators associated
with the differential operations ﬁ(s, ) is given by i;(s, );
therefore we cite only their domains.

We begin with the adjoint 4*(s, [) of A(s, [). Its domain
Dy« is the natural domain for h (s, D),

_ *
Dy = D};(”) ®Ry)

= {F*(,o) - F,ac.inR,, F. k(s 1) F, e]L2(R+)}.

The quadratic asymmetry form Ap+(F,) of ﬁ*(s,l) is
expressed in terms of the local quadratic form

[F., F1(p) = g(p) f(0) — f(p)g(p), Fu=(f/g)

as follows:

A (F,) = (Fy, h*F,) — (h*F,, F,) = —[F,, F,](p)[.

We can prove that lim, . F.(p)=0 for any
F, € D;lf (R,). Indeed, because F, and h (s,F, are
square-integrable at infinity, the combination

F/—(yp/2)0°F, = —io*[h(s, ) F,—(x1/p)o ' FotsMo® F,]

14

is also square-integrable at infinity. This implies that f
and f'— (yp/2) f, together with g and g'+ (yp/2) g, are
square-integrable at infinity. We consider the identity

p—
(o) = / (370 £ () + Faf ()1dr

P
+yf rlfMPdr+1f@P?, 9=3,—yp/2.

The rhs of this identity has a limit (finite or infinite) as
p — oo. Therefore, | f(p)| also has a limit as p — oo. This
limit has to be zero because f(p) is square-integrable at
infinity. In the same way, we can verify that g(p) — O as
o — 00.

To analyze the behavior of F, at the origin, we consider
the relationship

U =/h(s,)F,, U, F, € L2(R,), (53)

or

f=p2+p ") f=—x2. g+ (vo/2+p ") g = x1,
x=0x/x) =V +sMa’F, e L*(R,),

as an equation for F, at a given x. The general solution of
these equations allows the representation

flp)=p* e/t |:C1 +/
o

p
g(p)=p e [62+/ r eV’z/4X1(r)dr]-
£o

oo

e eV’z/“xZ(r)dr] :
(54)

It turns out that the asymptotic behavior of the functions
f and g at the origin crucially depends on the value of /.
Therefore, our exposition is naturally divided into subsections
related to the corresponding regions. We distinguish three
regions of /.

3.3.2. The first region: k1 < —1/2.

<

The representation (54) allows the estimation of an

asymptotic behavior of doublets F, € D;{(S B (R,) at the origin

In this region, we have

-1, >0,
0, u=0.

for the first region:

o
Flp) = p~¥el 7ol [51 _/ ,|x,e—yr2/4X2(,)dr}
0
=cip M+ 0",

oo

~ _ 2

C :c1+/ rlal ey /4y, (r) dr.
0

The condition f € L*(R,) implies ¢; =0, and therefore,
f(p)=0(p'?) as p — 0. As to g(p), we find that

g(p)= :

We thus find that F, (p) - 0 as p — 0, which implies

that A,+(F,) =0, VF, € D;f(s I)(RJ,). This means that the

0(p'?), x<-1)2,

12 p— 0.
O(p''*Inp), »x=—-1/2 (1=0,u=0),
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deficiency indices of each of the symmetric operators
ﬁ(s, ) in the first region are zero. Therefore, there exists
only one s.a. extension ﬁe (s,1, p;) = ﬁ(l)(s, )= ﬁ*(s, l) of
h (s, 1), 1i.e. aunique s.a. radial Hamiltonian with given s and /,
its domain is the natural domain, D/%(.)<s, n= D;(s,l) Ry .
The representation (51) with d = 1 implies that the Green
function for the s.a. Hamiltonian / m (s, 1) is given by

, 1 |FBe: W) F(ps W), p>p,
G(p,p s W)= ) /
or(W) | Fi(p; W)® F3(p; W), p<p.
(55)

Unfortunately, we cannot use representation (48) for F3 as a
sum of two terms directly for all values of u because both are
singular at u = 0 (although the sum is not). To cover the total
range of u, we use another representation for Fs.

We let Fy(p; W) denote the functions Fy(p; W),
d=1,2,3, with a fixed / and represent F3; as

Fy=w[AyFy+Fyl, Ay=Au(W)
= QW) =T'(B2) P (W),
Fy = Fy(p; W) =T(B2) Pu(W)Fy1(p; W) — Fy(p; W),

w2 (W)

QW)= —

1 (W) o (W)
_ (WsM)(y/2)'T (o)
PuW) = =t @~

Using the relation (see [24])

T (a+n+1)
n+ 1T ()
X P(a+n+1,n+2;x), (56)

1
Tﬁ)q’(a» B;x)=

lim
B——n

we can verify that

T B Fau(p: W] o= Pu(W)Fu(p; W)l .

n—0

Taking the latter relation into account, it is easy to see that in
the first region, Aj; and Fy are finite for u > 0, as well as w;
and Fy;, and also that Py;(E) and Fy (p; E) are real.
The Green function is then represented as
G(p, p's W) = Au(W)Fu(p; W) ® Fu(p's W)
{F4z(p; W)@ Fu(e's W), p>p,
+

Fiu(p; W)Q® Fu(p's W),
for all u > 0.

We choose the guiding functional @, (F; W) for the s.a.
operator i1y (s, /) in the form

, 57)
p<p

oo
@, (F; W)=/ Fi(p; W)F(p),
0
F(p) €D =D,(R)ND; .

It is easy to prove that the guiding functional is simple. It
follows that the spectrum of h m (s, 1) is simple.

Using  representation  (57) for the  Green
function, we find that the derivative o'(E)=[rF}
(0: W) 'ImG(p, p; E+i0) of the spectral function is

15

given by

o' (E)=n""Im A;,(E +10). (58)

It is easy to prove that Im A;(E +10) is continuous in u for
wu > 0, such that it is sufficient to find o/(E) only for the case
of u > 0, where equation (58) is more simple,

_ WsM) (v/2)" T (B)

oHE) 27T (BT (c2)

ImT (1) lyw=g+io -

W=E

(59)

It is easy to see that o’(E) may differ from zero only at

the points E; defined by the relation oy = —k (I'(r;) = 00),
or M? — E} = —2yk, which yields

My :\/M2+2)/k,

The presence of the factor (E+sM) in the rhs of (59)
implies that the points £ = —sM = —s M, do not belong to
the spectrum of ﬁ(l)(s, ). In what follows it is convenient to
change the numeration of the spectrum points. We introduce
an index n(s):

Ek::l:Mk, My=M, k€Z+.

n(s) € Z(s) = {ny ()}, ¢=4=,
Z+, s:l, _N, s:19
n.y(s) e n_(s) e (60)
N,s=—1, Z_,s:—
Then we can write
Ey =My = Enis) =M, n(s) € Z(s).

Finally, we obtain

o(E)= Y QhyS(E—Eng),

n(s)eZ(s)

Qn(s) - \/

Br=1+|l|—p.

(/2P T (Bi +Ins)]) (1+sME;")
In()['T2(B1)

’

Thus, the simple spectrum of ﬁ(l)(s,l) is given by
spec ﬁ(l)(s, = {En(x), n(s) € Z(s)}. The eigenvectors

1 I
Uns) = Uns) (8,1, p23 p) = Qi) F1(p; Engs)), n(s) € Z(s),

(61)
of ﬁ(l)(s, [) form a complete orthonormalized system in the
space L?(R,) of doublets F (p).

3.3.3. The second region: k; > 1/2.
[>1.
The representation (54) yields the following estimates for

In this region, we have

an asymptotic behavior of doublets F, € Dl’;‘(s D (R,) at the
origin for the second region: ’
0(p'?), m >1/2,
flp)=
0(p'np), n=1/2. PO

g(p)=0(p'?),

It follows that F, (p) - 0 as p — 0, which implies that

Apr(F) =0, VF*ED;;‘M) (R;). This means that the

deficiency indices of each of the symmetric operators h(s, 1)
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in the second region are also zero. Therefore, there exists
only one s.a. extension l;e (s,1, p,) = ﬁ(z)(s, = ﬁ*(s, [) of
h(s,1),ie.a unique s.a. radial Hamiltonian with given s and /,
its domain is the natural domain, Dﬁ(z,(s, n= D;(s’ N Ry).

The representation (51) with d = 2 implies that the Green
function for the s.a. Hamiltonian / @ (s, 1) is given by

, i F3(0: W) @ Fa(p"s W), p > p,
G(p,ps W) =w, (W) ) )
Fy(p; W) ® Fy(p"s W), p <p'.

Again, the representation (48) for F3 as a sum of two terms
is not applicable directly for u = 0. We therefore use the
following representation for Fi:

F3 = wy (Fs) — Ay Fy)

Ay = Ay(W) = Qa(W) +T'(B1) Pu(W),

Fsi = F51(p; W) = Fi(p; W)+ T'(81) Py(W) Far(p; W),

. Py(W) = 2(0—1)IT(a; +1)

Using relation (56), we can verify that

T~ (B) Fu(p; W) — Py (W) Fy(p; W)

u—0 n=0 "

Taking the latter relation into account, it is easy to see that
Ay and Fj; are finite for > 0, as well as w; and F5;, in the
second region, and Py;(E) and Fs;(p; E) are real.
The Green function is then represented as
G(p,p's W)= — Ay (W)Fy(p; W) ® Fy(p'; W)
F51(p; W) ® Fy(p's W), p>p,
+
Fy(p; W)® Fsi(p's W), p < p'.
for all u > 0.
We choose the guiding functional ®,(F; W) for the s.a.
operator /(3 (s, [) in the form

(62)

By(F; W) = / Fx(p; W)F(p),
0

F(p)eD=D,(R)N Dﬁm(s,l)-
It is easy to prove that the guiding functional is simple. It
follows that the spectrum of /) (s, [) is simple.

Using representation (62) for the Green function, we find
that the derivative o’ (E) of the spectral function is given by

o'(E) = —7 ' Im Ay (E +i0). (63)

It is easy to prove that Im A,;(E +1i0) is continuous in u for
i > 0, such that it is sufficient to find o/(E) only for the case
of u > 0 where equation (63) is more simple,

_ W —sM) (y/2" T (B)

o= F B (v an)

Im I" () lw=E+i0 -
W=E

It is easy to see that o’(E) may differ from zero only at
the points Ej; defined by the relation o, = —k (I'(az) = 00)
or

M? — El+2y(l+p) = —2yk, keZ,,

(W =sM)(y/2)"'T (a1 +1)

16

which yields

Ev=+VM?>+2y(k+1+u) = My, k€7,

All the points Ej are the spectrum points.
It is convenient to change indexing k for n(s),

Ep = En) = 0 Mn(s)+ps {0(s) € Z(s5), [n(s)| =1}
X (ny(s) =0 (k+1l), ke Z,).

Thus, we finally obtain

o(E)y= Y Qh,8(E—Ey),

nez,|n|>l

(/D" T (In@)|+ ) (1 —sME )
Onis) = :

(In()| = DT + )
The simple spectrum of ﬁ(g) (s, 1) is given by

spec o (s, 1) = { Encs), 1(s) € 2, In(s)| >1}.

The eigenvectors

1l 1

Unis) =Unes) (5,1, pz5 p) = Onis) F2(p3 Engs)), 1n(s) € Z(s),
(64)

of the Hamiltonian ﬁ(z) (s, I) form a complete orthonormalized

set in the space L>(R,) of doublets F(p).

3.3.4. The third region: |x;| < 1/2. In this region, we have
l=1y=0,and »; isreduced to %o = —1/2, u > 0.

Representation (54) yields the following asymptotic
behavior of doublets F; € DE(& " (R;) as p — O:

f(p) = c1(mep) L0,

g(p) = ca(mep)™

It follows that Ay« (F,) = cyc1 — cica. Such a representation
for the quadratic form Aj+(F,) implies that the deficiency
indices of the initial symmetric operator h (s,ly) are
my = 1. The condition Aj;+(F,) =0 yields asymptotic
boundary conditions as p — 0,

F(p)=c<

with a fixed A € S(—n/2, 7 /2) (note that A depend on s and
DPz» A = A(s, p;)) define a maximum subspace in D;(s’ ) Ry
where A+ =0. This subspace is the domain of an s.a.
operator that is an s.a. extension of h (s, lp).

We thus find that there exists a one-parameter U (1)
family of s.a. radial Hamiltonians h (s, lo) parameterized by
the real parameter A € S (—m/2, w/2). These Hamiltonians
are specified by the domains

(mep)™ cos A 65)

+0(p'?),
(mep) ™70 sink) (o)

Dy, s1y) = {F(,o) :F(p) € D;(S,IO) Ry), F satisfy (65)} .
(66)
According to representation (52), which certainly holds

for the doublets F belonging to Dp, (.1, and (49), the
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asymptotic behavior of F as p — 0 reads

—cyw1 p™
F = 1 _
by +crw)p™™

)+0(p1/2>.

On the other hand, F satisfies boundary conditions (65),
whence it follows that there must be

bcos

a)la)(;\) ’

C) = w()) = w7 COS A +me_2”°a)1 sin . (67)

Then representation (52) for F* with ¢, given by (67) implies
that the Green function for the s.a. Hamiltonian 4, (s, lp) is
given by
Gp, p's W) = Q7 (W) F)(p; W) ® Fy(p's W)
F(,\)(PQ W)Q Foy(p's W), p>p/,
Foy(p; W)® Foy(ps W), p<p',
(68)

where

Foy(o; W) =m " Fi(p; W)sinA+m?* F,(p; W) cos A,
Foy(p; W) =m ™ Fy(p; W) cos A —m* Fy(p; W) sin,

o mF3 =00y Foy+00) F o,
@y (W) = wy sin A — m_w) cos A.

We note that the doublets F)(o; W) and I:"(A)(p; W)
are real-entire in W, and the doublet F,(p; W) satisfies
asymptotic s.a. boundary conditions (65).

We choose the guiding functional &, (F; W) for the s.a.
operator h 1 (s, lp) in the form

B (F3 W) = f Foo(0: W)F(p),
0

F(p)eD=D,(R)ND; .

It is easy to prove that the guiding functional is simple. It
follows that the spectrum of hy(s, 1) is simple.

Using the representation (68) for the Green function,
we find that the derivative o/(FE) of the spectral function is
given by

o (E)=n""Im Q' (E +i0).

Because Q(E) is real, o’ (E) differs from zero only at the zero
points Ej of the function Q(E), Q(Ey) = 0, and we find that

/ / —1/2
o(E)=Y QI(E-Ey, Qu=[-2E] ",
k
Q(Ep) <O0.
Thus, the simple spectrum of (s, lp) s given by
spec h; (s, lo) = {Ex, k € Z}. The eigenvectors

1T 11

Ur =Ux (A, s, pz; p) = QrFoy(ps Ey), keZ, (69)

of h;.(s, ly) form a complete orthonormalized system in the
space L*(R,).

17

For A =0 and A = 47 /2, we can evaluate the spectrum
explicitly.
I. First, we consider the case A = /2. In this case,
we have
Fiupy(o; W) =m ™ Fi(p; W),
QW) =m; ™o (W)wy ' (W),

and

230
o'(E) = mZ°T (B2) (W +sM)

- Im D" =E+i0 -
2 2P T BT by

(70)
As in the first region, o/(E) differs from zero only at the
points (for which we will use the notation &) defined by the
relationship o) = —k (I' (1) = 00), or by

Mg

—k,
2y

E; =:|:Mk, kGZ.,..

The presence of the factor (E +sM) in the rhs of (70) implies
that the points £ = —sM = —sM, do not belong to the
spectrum of h>(s, lp). Thus,

5k=(sgnk)M|k|, |k|>1, 50=SM; kel.

Using (60), we change the indexing of the spectrum points,
Sk:gn(s) :§M\n(s)|, UZH(S) GZ(S).

Then, we finally obtain

o(E)= Y mI*0%nwS(E —En).

n(s)eZ(s)

O /2ines) =\/

Thus, the simple spectrum of ﬁﬂ/g(s,lo) is given by
spec ﬁ,,/z(s, lo) = {&n(s), n(s) € Z(s)}. The eigenvectors

L(n)|+1— w1 +sMEL)
G/ W1 —p)

m 1
Uspaines) = U (/2. 8, b, p2s p)

= Oz Fi1(0; Eng)), ns) € Z(s),

of ﬁ,, 2(s, lp) form a complete orthonormalized system in the
space L>(R,) of doublets F(p).

We note that the spectrum, spectral function and
eigenfunctions of ﬁ,, 12(s,lp) can be obtained from the
respective expressions from the first region, »; < —1/2, by the
substitution / = 0. We also note that for i < 1/2, the function
Fizp2)(0; W) =m_ " F(p; W) has minimal singularity in the
family of functions F(p; W); in fact, it is nonsingular;
for u > 1/2, the function Fg)(p; W) =m? F,(p; W) has a
minimal singularity in the family of Fgy(p; W); in fact,
F)(p; W) is not singular at all; for u = 1/2, all functions
of the family F;)(po; W) have the same type of asymptotics:
Fuy(p; W) = O(1) as p — 0.

We obtain the same results for the spectrum and complete
orthonormalized set of the eigenvectors for the case X =
—m/2.
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II. In the same manner, for the case A =0, we obtain
Foy(p; W) =mX F,(p; W); the simple spectrum of A(s, ly)
is given by
spec ho(s, o) = {Ex(0), n€ 2},  Z={n; €¢Zs, { =}
and

o'(E) =

Qon =\/

where Ey, are solutions of the equation

Dm0 Q05,8(E — Eq(0)),

nez

(/2" T(In|+ ) (1 — sME, ' (0))
In!IT2 ()

b

w == (Ef(0) = M*)/2y = —|n|,  Eq(0) = ¢ Minjuy,

and n, = 0 and n_ = 0 are considered different elements of Z.
I I
The eigenvectors Ugn = Uq)n (0, 5, lo, pz; p) = Qopn F2

(p; Eq(0)), ne Z, of the Hamiltonian ﬁo(s, lp) form a
complete orthonormalized system in the space L*(R,) of
doublets F(p).

We note that the spectrum, spectral function and
eigenfunctions of ﬁg(s, lp) can be obtained from the
respective expressions for the second region, s»; > 1/2, by
the substitution / =0. We also recall that for u > 1/2, the
function Fg)(p; W) =m* F,(p; W) has minimal singularity
at the origin in the family of functions F,(p; W); in fact,
F0)(p; W) is completely nonsingular.

III. Now, we consider the general case |A| < /2. In this
case we can equivalently write

— (rcos?A) " Imew ! (E +i0)

> OiS(E — E (),

keZ
w(W)=t(W)+tan i, o' (Ex(A)) >0,

-1

01 = [V (G cosr]

(W +sM)T (—w/2y)
mer(ﬂ - w/2y)

o @me /T
()

HE((0)) = —tan A, £'(Ec(A) > 0,
O Ex(h) = — [1'(Ex(0) cos* 2] <0.

o'(E)

t(W)=«

>0,

The function
t(E) =km' T (u—w/2y)(E +sM)T (—w/2y)

has the properties ¢ (En(5) £ 0) = Fo0; 1 (E4(0)) = 0. Thus, we
obtain:

(a) s =1.
In each interval (&, _1,&, ), n_ < —1, for a fixed A €
(—m/2,/2), there exists an eigenvalue E, (A) which
increases monotonically from &, _; +0 (passing E,,_(0))
to &_—0 as A changes from m/2—0 (passing 0)
to —m/2+0; in the interval (£_;, &,,—0), for a fixed

)

18

A€ (—m/2,/2), there exists an eigenvalue E, _o(A),
which increases monotonically from £_;+0 (passing
E, —0(0)) to &,-0—0 as A changes from 7/2—-0
(passing 0) to —m/2+0; in each interval (&, , &y, 41),
ny >0, for a fixed A € (—m/2,7/2), there exists an
eigenvalue E,, (A) which increases monotonically from
&y, +0 (passing E,, (0)) to &,,+1 —0 as A changes from
/2 — 0 (passing 0) to —7 /2 +0.

s =—1.

In each interval (&£, _1,&, ), n_ <0, for a fixed A €
(—m/2,m/2), there exists an eigenvalue E, (A) which
increases monotonically from &, _; +0 (passing E,,_(0))
to £_—0 as A changes from /2 —0 (passing 0) to
—m/2+0; in the interval (&, —o, &y,=1), for a fixed
A€ (—m/2,m/2), there exists an eigenvalue E, _o(A)
which increases monotonically from &, —¢+0 (passing

(b)

E, —0(0)) to &,-1—0 as A changes from 7/2—-0
(passing 0) to —m/2+0; in each interval (&,,, &y, +1),
n, > 1, for a fixed A € (—n/2,/2), there exists an
eigenvalue E,, which increases monotonically from &,, +
0 (passing E,, (0)) to &,,+1 — 0 as A changes from 7 /2 — 0
(passing 0) to —/2+0.

4. Summary

We have constructed all s.a. radial Hamiltonians /. (s, 1, p;)
as s.a. extensions of the symmetric operators A (s, 1, p;) for
any s, [ and p, and for any values of ¢y, n and y. The
complete s.a. Dirac operators H. associated with the Dirac
differential operation H are constructed from the sets of
he (s, 1, p;) by means of a procedure of ‘a direct summation
over s and / and a direct integration over p,’. Each set
of possible s.a. radial Hamiltonians };e (s, 1, p;) generates
a translationary-rotationally-invariant s.a. Hamiltonian H..
Namely, let G be the group of the above space transformations
S: r+— Sr. This group is unitarily represented in $): if S € G,
then the corresponding operator Uy is defined by

(Us ) (1) =e =2y (571, Yy e,

where 6 is the rotation angle of the vector p around the z-axis.
The operator H evidently commutes with Ug for any S. We
consider only such s.a. extensions H . of H that also commute
with Uy for any S. This condition is the explicit form of the
invariance, or symmetry, of a quantum Hamiltonian under
the space transformations. As in classical mechanics, this
symmetry allows the seperation of the cylindrical coordinates
p, ¢ and z and the reduction of the 3D problem to a 1D
radial problem. Let V be a unitary operator defined by the
relationship

Ve, 9. 2)

1
/ dp;
R,

- 2. /p

where S;(¢) and e;(p,) are given by, respectively, (4})
and (40). It is natural to expect that any s.a. Hamiltonian H .
can be represented in the form

A=y [ ap. Y S v,

s=%x1 leZ

D[S @F .1 pe 0] @es(p),
leZ
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where ﬁe(s, I, p.) for fixed s, [ and p, is an s.a. extension
of the symmetric operator s, 1, p.) associated with the
differential operation h(s, 1, p.) given by equation (43). The
operator ﬁ(s,l, p:) is defined on the domain Dy ) =
D(R,) C L>(R,,dp) in the Hilbert space L>*(R,,dp) of
functions F(p, [, p,) with the scalar product

F](S, lv Pz p)FQ(S, la Pz ,O)d,O
R,

(F](S, lv pz)v FZ(ss l? pz))=

An exact expression for H, is

m:V/ dp. YO SO s, 1 pyv
R,

s==%1 leZ

Its rigorous justification will be discussed in a work by
A Smirnov.

The inversion formulae in Hilbert space $ are
correspondingly obtained from the known radial inversion
formulae by a procedure of summation over s, / and
integration over p.. It should be noted that here we must
consider the extension parameter A as a function of s and p;,
A= A(s, p:). In what follows, [ dp. means [ dp.. Thus,
we can summarize as follows:

For u =0, there is a unique s.a. Dirac operator H.. Tts
spectrum is simple and given by

spec I:Ie = (=00, —mc] U [me, 00).

The generalized eigenfunctions W , u(s),i(r) of H s

1 .
lI"x,p;,n(x).l(r) = znﬁelpwsl((p)Fn(s)(sa l, Pz :0) ®ex(pz)’
1
Uas) (5,0, psp), 10,
Fn(s)(ssl» Dz P) = "
Uni) (5.0, psp) s TSI In(s)],

H“I’[s,pg,n(s),l(r) = Es,pz,n(s),l\ps,pz,n(s),l(r)’

Ev ponord = E\m2+ p2+2y In(s)]. n(s) € Z(5).
1< InG)l,

Where Z(s) is defined by equation (60), and the doublets

n(S)(s L, p;; p) and Un(x)(s I, p;; p) are given by the
respective equations (61) and (64), form a complete
orthonormalized system in the Hilbert space L> (R3) of the
Dirac bispinors. The latter means that the following inversion
formulae exist:

V(r) = /dpzz Z Z D@y, p..n(s).0 Ws, o)1 (1),

s=x1 n(s)eZ(s) I<|n(s)|

(DSquq“(S)JZ /ws,p,,n(s),l(r)‘p(r)dry

/|\If<r)|2dr—fdpzz DD 1Pl

s==+1n(s)eZ(s) I<|n(s)]
YU e L? (RY).

We note that for A =0 and +/2, the spectrum at / =0 can
be found explicitly, see the third region.

19

For @ >0, there is a family of s.a. Dirac operators
H (3(s,p.)) parameterized by two real-valued functions A (s, p.),
reS(—mn/2,7/2),s ==%1. Their spectra are degenerated
and continuous.

A complete set of generalized eigenfunctions of H (G5, p))

A(s,pz)

consists of Wy, n(s)(r) and W o

have the form
<

(r). These bispinors

"Ils,pz,n(s),l(r) lpzle (<P)Fn(s)(51 [, pz; p) ®es(ps),

U (s, p;;p), I <
Fu(s, 1, p;; p) =

U (s,0, pzs ), 1< n(s)],
n(s) € Z(s), I<In(s)|, [#0,
and
PP LT I
v[’ klo( ) \/ﬁepz*'Slo((p)Uk ()\(S, pz)’sv Pz p)®es(pz),
kelZ,

i}
where U, (A(s, p;),s, p;; p) are given by (69) with the

substitution A(s) — A(s, p;), such that

H\I"s.p,.n(s),l(r) = Es,pj,n(s),l\ys,p,,n(s),l(r)s

I<n(s)|, [#0,
Ev ponios = 0/ m2+ p2+ 2y [In(s)| +6(D)].
0,1<0

9(”2{1 1>1°

A(s,p2) A(s ) A(s,pz)

H\Ijsppklo( )= spljcloqjsppklg( )’
A(s,pz) .
E, @ E}, i) =0,

cosA+a (W)sinA
sinA —a (W)cosi’

m ™ (/)T () T (1= —w/2y)
(W+sM)T (1— ) T (—w/2y)

QM W)=

a(W)_

In the case under consideration,
inversion formulae have the form

\IJ(I') /dp~ Z Z Z (Dvp n(v)l\yv[z n(?)l(r)

s==1 | n(s)e2@s) 1<In(s)].1#£0

+ E D@, p. kity W
k

B,y nisrt = f Voo o @Umdr, 140,

qDS,stkJo = /

/ W () dr = / ST D I DR S Y

s==x1 | n(s)eZ(s) I<|n(s)],[£0

+ Z ’ch,pz,k,lo ‘2
k

the corresponding

k(sp)

- klo(r)] YU e L? (RY),

v T )W (rdr,
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