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Abstract

Compact closed-form expressions of the beam shape coefficients (BSCs) of
Gaussian beams are obtained in the generalized Lorenz-Mie theory through
the finite series (FS) method. As a result, such expressions have made it
possible to more deeply understand the behaviour of the BSCs and, there-
fore, the scattering of Gaussian beams beyond the paraxial approximation.
The blowing up, in particular, of FS BSCs which has been observed for sev-
eral paraxial beams is now mathematically justified as a phenomenon that is
independent of numerical precision. Furthermore, numerical results demon-
strate how such blow ups are related to the ratio between the beam waist
radius and its wavelength.

Keywords: light scattering, lasers, Mie theory

1. Introduction

Multipole decomposition is a valuable procedure in the study of light
scattering, for instance making it possible to develop T-matrix techniques
[1], among which are the generalized Lorenz-Mie theories (GLMTs) [2, 3]. In
this paper, we shall refer to the study of electromagnetic scattering by a single
homogeneous spherical obstacle centred at the origin of a coordinate system
as the GLMT. The factors of the multipole decomposition coefficients which
depend of the incident field profile are called beam shape coefficients (BSCs).
Briefly, the GLMT gives detailed information on the field scattering having
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only the BSCs as input along with the scatterer parameters encoded in Mie
coefficients. Therefore, obtaining such BSCs for a given incident field is a
crucial process which may be done through several methods such as quadra-
tures, the integral localized approximation, angular spectrum decomposition
or the finite series (FS) method.

Regarding accuracy, computation time, or even mathematical complexity,
each method for obtaining BSCs features its own advantages and disadvan-
tages depending on the incident field profile. Thus, the method must be
chosen accordingly. In particular, the FS method has shown remarkable
performance when applied to solutions to the paraxial wave equation: com-
positions of Gaussian, Laguerre-Gaussian [4, 5, 6], Hermite-Gaussian beams
[7], and so on [8, 9, 10]. Examining the works on these families of beams, a
few unexpected behaviours were observed in the numerical evaluations of the
FS expressions, which did not arise for other kinds of electromagnetic fields.
Despite being a time-efficient exact method, the FS for such paraxial beams
had its BSCs blowing up in magnitude when numerically evaluated at higher
orders with no immediate explanation to be found within the sometimes con-
voluted mathematical expressions. It was unclear whether it was a strictly
numerical phenomenon or if there was a deeper mathematical explanation
behind it.

What made it difficult to assess the actual source of the FS paraxial
blow ups was that the BSC expressions were not always given in closed
form – they were often obtained by recursive relations or non-trivial iterative
algorithms. In this work, we deduce compact closed-form expressions for the
FS BSCs of a zeroth-order Gaussian beam which are put in terms of special
functions known as the generalized Bessel polynomials. Subsequently, the
mathematical analysis of the BSCs may be done with much more rigorous
support given the thorough knowledge available on such polynomials [11,
12]. In fact, we use known asymptotic relations of these special functions in
order to prove that the absolute value of Gaussian BSCs g±1

n,TM are bound to
indefinitely increase for high enough n. We note that this is compatible with
the observations of the non-paraxial corrections given in the series originally
found by Lax, Louisell & McKnight [13]. Furthermore, such behaviour is
related to the divergence of the Davis scheme of approximations which is in
turn based on such series of corrections [14, 15].

In the study of beam propagation beyond the paraxial approximation,
Wünsche found transition operators, through functional analysis, between
the space of solutions to the paraxial wave equation and the space of solutions
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of the Helmholtz equation [16]. Therein, the author explains that the series
that define the transition operators have issues with convergence for more
tightly focused beams, where the paraxial approximation starts to lose its
validity. Partial sums of the divergent Lax series up to more terms have
been evaluated without loss of physical meaning [17, 18]. Therefore, the
blowing up of the FS BSCs is indeed to be expected, but it was not yet
proven up to now.

In Section 2 we briefly deduce the FS method expressions for general
beam shapes. In Section 3, we employ the FS to the boundary conditions of
fundamental Gaussian beams and retrieve closed-form expressions for their
BSCs. Section 4 introduces the generalized Bessel polynomials and puts the
closed-form BSC expressions in terms of them, then we use known asymptotic
relations to prove the blow ups. Numerical results are shown in Section 5,
revealing the relation of the blow ups with the beam-waist factor. Section 6
is the conclusion.

2. Finite series method

There is a range of methods one may employ in order to obtain the BSCs
of a given electromagnetic field, each one presenting advantages and disad-
vantages depending on the shape of the field. Among such techniques is the
FS method, which retrieves the exact BSCs of the field given its radial com-
ponent at a given region in space. That is, given such boundary conditions,
the FS method gives the multipole decomposition of an exact solution to
Maxwell’s equations: a Maxwellian field. Consequently, the method is a valid
approach to survey the mathematical properties of non-trivial Maxwellian
fields. In this section, we briefly derive the FS method in the GLMT for
its application further ahead when we examine Maxwellian counterparts of
paraxial Gaussian beams.

2.1. Neumann expansion theorem

The Neumann expansion theorem (NET) is an elegant result whose demon-
stration may be found in Watson’s work [19, Section 16.13].

Theorem 1 (Neumann Expansion Theorem). If a map f : (0,∞) → C
admits, at the same time, a half-integer-order Bessel function Neumann ex-
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pansion

x1/2f(x) =
∞∑
n=0

cnJn+1/2(x) (1)

and Maclaurin series

f(x) =
∞∑
n=0

bnx
n (2)

that are both convergent, then

cn =

(
n+

1

2

) ≤n/2∑
q=0

2n−2q+1/2

q!
Γ

(
n− q +

1

2

)
bn−2q. (3)

In short, one may write the Neumann coefficients cn of f from (1) in
terms of a finite series of its Maclaurin coefficients bn in (2) through (3).

2.2. Applying the theorem in the generalized Lorenz-Mie theory

According to the GLMT [3], an electromagnetic field may be decom-
posed into partial spherical wave functions (multipoles) in spherical coordi-
nates (r, θ, ϕ). Consider a monochromatic electric field of wavenumber k and
angular frequency ω so that it may admit a phasor E adopting the time-
harmonic convention exp(+iωt). The phasor radial component Er may be
expanded as (see [3, Eq. (3.10)] or [8, Eq. (47)]):

Er = E0

∞∑
n=1

n∑
m=−n

(−i)n+12n+ 1

kr
gmn,TMjn(kr)P

|m|
n (cos θ)eimϕ (4)

where E0 is a (complex) amplitude constant, the gmn,TM are the transverse
magnetic (TM) beam shape coefficients (BSCs), jn are spherical Bessel func-

tions of first kind, and P
|m|
n are associated Legendre functions following Hob-

son’s notation [20].
First, since the exponential function satisfies the orthogonality relation∫ 2π

0

eimϕe−ipϕdϕ = 2πδmp, (5)
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where δ is the Kronecker delta, we may fix m, multiply both sides of (4) by
exp(−imϕ), and integrate with respect to ϕ so that the summation over m
is eliminated:∫ 2π

0

Ere
−imϕdϕ = 2πE0

∞∑
n=1

(−i)n+12n+ 1

kr
gmn,TMjn(kr)P

|m|
n (cos θ). (6)

Now, see that

jn(x) =

√
π

2x
Jn+1/2(x). (7)

Thus, letting x = kr and fixing θ = θ0, we obtain

x1/2 x

E0

∫ 2π

0

Er

(x
k
, θ0, ϕ

)
e−imϕdϕ =

∞∑
n=1

π
√
2π(−i)n+1(2n+ 1)

× P |m|
n (cos θ0)g

m
n,TMJn+1/2(x).

(8)

It is then evident that (8) features a Neumann expansion similar to (1).
That is, for the fixed m and θ0, define a function fm : (0,∞) → C such that

fm(x) =
x

E0

∫ 2π

0

Er

(x
k
, θ0, ϕ

)
e−imϕdϕ, (9)

then fm admits a Neumann expansion just like f in (1):

x1/2fm(x) =
∞∑
n=1

π
√
2π(−i)n+1(2n+ 1)P |m|

n (cos θ0)g
m
n,TMJn+1/2(x)

=
∞∑
n=0

cnJn+1/2(x).

(10)

Finally, if fm has a Maclaurin expansion

fm(x) =
∞∑
n=0

b(m)
n xn, (11)

we may apply the NET and find the TM BSC gmn,TM. In some more detail,

since, from (10), the Neumann coefficients of x1/2fm(x) are given by

cn = π
√
2π(−i)n+1(2n+ 1)P |m|

n (cos θ0)g
m
n,TM (12)
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for n ≥ 1 and c0 = 0, we apply the NET relating the such coefficients with
the Maclaurin coefficients b

(m)
n through (3) so that

gmn,TM =
in+1

2π3/2P
|m|
n (cos θ0)

≤n/2∑
q=0

2n−2q

q!
Γ

(
n− q +

1

2

)
b
(m)
n−2q, (13)

for P
|m|
n (cos θ0) ̸= 0.

2.3. The choice of θ0
See that (13) imposes a restriction over the choice of θ0 such that P

|m|
n (cos θ0)

cannot be equal to zero. That is, the choice of θ0 matters not only for defin-
ing the function fm to be Maclaurin-expanded, but may also make it so that
(13) would not be valid anymore for finding the BSCs gmn,TM. [6, 21]

The value θ0 = π/2 is an usual choice for making it possible to find, for
more complicated electromagnetic fields, functions fm with Maclaurin coeffi-
cients b

(m)
n that are actually possible to compute. However, since P

|m|
n (0) = 0

for odd (n−m), (13) would only hold for even (n−m), in which case [22]

Pm
n (0) = (−1)(n+m)/2 2

m

√
π

Γ
(
n+m+1

2

)(
n−m
2

)
!

. (14)

Therefore, we may rewrite (13) for θ0 = π/2 so that

gmn,TM =
(−i)|m|−1

2|m|+1π

(
n−|m|

2

)
!

Γ
(

n+|m|+1
2

) ≤n/2∑
q=0

2n−2q

q!
Γ

(
n− q +

1

2

)
b
(m)
n−2q (15)

for even (n−m).
For the odd (n−m) case, see Appendix A.

3. Modelling Gaussian beams through the finite series method

Following the rationale behind the model by Agrawal and Pattanayak
[23], we assume the electromagnetic field in the xy-plane to be given by

E(x, y, 0) = x̂E0 exp

(
−x2 + y2

w2
0

)
, (16)

H(x, y, 0) = ŷH0 exp

(
−x2 + y2

w2
0

)
, (17)
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with H0 = (ε/µ)1/2E0 where µ and ε are respectively the permeability and
the permittivity of the medium so that k = ω(µε)1/2. Thus, the electric field
radial component at θ = π/2 is

Er

(
r,
π

2
, ϕ

)
= E0 exp

(
−r2

w2
0

)
cosϕ (18)

so that, for x = kr and beam waist parameter s = (kw0)
−1,

Er

(x
k
,
π

2
, ϕ

)
= E0 exp

(
−s2x2

)
cosϕ. (19)

Now we may find a function fm to Maclaurin-expand as in (9), that is

fm(x) = x

∫ 2π

0

exp(−s2x2) cosϕe−imϕdϕ

= πx exp(−s2x2) (δm,1 + δm,−1) ,

(20)

so that fm = 0 for any m ̸= ±1, and f±1(x) = πx exp(−s2x2). Hence,
expanding the exponential function in (20), we have

f±1(x) = π
∞∑
n=0

(−s2)n

n!
x2n+1 = π

∑
n odd

(−s2)(n−1)/2(
n−1
2

)
!

xn, (21)

so that we may determine the Maclaurin coefficients b
(±1)
n . Indeed, let

f±1(x) =
∞∑
n=0

b(±1)
n xn, (22)

then, b
(±1)
2n+1 = π(−s2)n/n!, or

b(±1)
n =

π
(−s2)(n−1)/2(

n−1
2

)
!

, n odd,

0, otherwise.

(23)

Form = ±1, forcing (n−m) to be even implies that n is odd, so let n = 2p+1
for non-negative integers p. This way, the Maclaurin coefficients as shown
inside the summation in (15) would be

bn−2q = b2p+1−2q = b2(p−q)+1 = π
(−s2)p−q

(p− q)!
. (24)
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Therefore, the TM BSCs g±1
2p+1,TM of an EM field with radial electric field

component Er(θ = π/2) at the xy-plane as in (19) may be given, from (15),
by

g±1
2p+1,TM =

1

2

p∑
q=0

p!

q!(p− q)!

Γ(2p− q + 3/2)

Γ(p+ 3/2)
(−4s2)p−q. (25)

Since reversing the terms of a summation does not change it, i.e.
∑p

q=0 aq =∑p
q=0 ap−q, we have

g±1
2p+1,TM =

1

2

p∑
q=0

p!

(p− q)!q!

Γ(p+ 3/2 + q)

Γ(p+ 3/2)
(−4s2)q. (26)

Let
(
p
q

)
= p!/q!(p− q)! be the binomial coefficient and (a)q = Γ(a + q)/Γ(a)

be the Pochhammer symbol, then the TM BSCs for odd n = 2p+ 1 are

g±1
2p+1,TM =

1

2

p∑
q=0

(
p

q

)(
p+

3

2

)
q

(
−4s2

)q
. (27)

It should be noted that Eq. (26) for gmn,TM for n = 2p + 1, and m = ±1
corresponds to Eq. (6.151) for g2p+1 in [3] with a difference by a factor of 1
/ 2 due to the relationship between uni-index BSC gn and the bi-index BSC
gmn , see Eq. (6.2) in [3]. Similarly, Eq. (A.18) corresponds to Eq. (6.152) in
[3].

4. Analysis of the beam shape coefficients

Here, we introduce a class of polynomials that shall be important for
analysing the fundamental Gaussian BSCs found in the previous section: the
generalized Bessel polynomials. For deeper insight on such functions, we
refer to the works of Krall & Frink [11], and Grosswald [12].

A generalized Bessel polynomial yp(x; a, b) is defined to be the polynomial
of degree p with constant term equal to unity that satisfies the differential
equation

x2 d
2y

dx2
+ (ax+ b)

dy

dx
= p(p+ a− 1)y, (28)
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where a is not a negative integer nor zero, and b is not zero. In fact, we shall
denote such polynomials as yp(x; a) = yp(x; a, 2) taking b = 2 as is usual in
the literature. This implies that the generalized Bessel polynomials may be
expressed by the explicit formula

yp(x; a) =

p∑
q=0

(
p

q

)
(p+ a− 1)q

(x
2

)q

. (29)

At this stage, the reader might already have recognized that the TM
BSCs g±1

2p+1,TM in (27) may be readily written in terms of a generalized Bessel
polynomial:

g±1
2p+1,TM =

1

2
yp

(
−8s2;

5

2

)
. (30)

Such representation shall be useful as it immediately identifies the odd BSCs
with a generalized Bessel polynomial so that its mathematical properties –
such as recurrence relations and asymptotic behaviour – are properly rec-
ognizable. In fact, (30) reveals that, for large enough p, the BSCs
g±1
2p+1,TM must indefinitely increase in magnitude. This is a consequence
of the result that, for a fixed z ̸= 0, a neither a negative integer nor zero,
and large p [12, Chapter 13, Theorem 3],

yp(z; a) =

(
2z

e
p

)p

2a−3/2e1/z
[
1 +O

(
1

p

)]
. (31)

5. Results

In Section 4 it has been shown that, from some n onward, the BSCs gmn,TX,
TX being TM or TE, start to blow up, which has been numerically verified
throughout many works which remodel paraxial beams with the FS method,
see in particular [3], pp. 164-171. The usual behaviour that has been ob-
served in these studies is that an increase to numerical precision would make
the threshold where the BSCs blow up be higher, up to an extent in which
arbitrary precision does not seem to make a difference anymore. In this
manner, it was unclear until now whether the BSC expressions – many times
given by recursive relations – were mathematically bound to blow up, or if
there was still major numerical error propagation taking place. In particular,
blowing-ups due to a loss of significant digits have been indeed observed in
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[9] and [24] (the attribution of such blowing-ups to numerical inaccuracies
has been confirmed by complementary calculations using an infinite preci-
sion mode, private communication from Jianqi Shen). Here, the analysis of
the closed-form expressions finally shows that it is indeed a mathematical
property of the Gaussian FS BSCs to blow up for high enough n. However,
we are still left with the question of exactly up to what n one may safely
compute BSCs before values grow out of control, or even if this depends on
beam parameters.

Numerical results shown in this paper assume beams with wavelength
of λ = 1064 nm. Then, to better understand if the blowing up behaviour
depends on the beam waist w0, or the beam-waist parameter s = 1/kw0

more specifically, define N(s) to be the smallest n > 1 such that the FS
BSC g1n,TM has absolute value greater than g11,TM = 1/2. For instance, Fig. 1
shows the magnitude of FS BSCs of a lowest-order Gaussian beam calculated
assuming s = 0.01 showing the corresponding N(0.01)th BSC with a red dot.
In this case, we calculated N(0.01) = 5584 with numerical precision of 2000
decimal places (dps). Notice that employing low numerical precision causes
the BSCs to blow up earlier, before N(s), due to catastrophic cancellation.
For example, with only 15 dps, we would have found that the first BSC
greater than 1/2 was with n = 629 for s = 0.01, whereas, with 1500 dps,
2000 dps, or higher, the value of n = N(0.01) = 5584 is always obtained.

Figure 1: Absolute value of the FS BSCs for s = 0.01. The red dot represents N(0.01)
whose corresponding BSC is greater than g11,TM = 1/2 in magnitude. The wavelength is
λ = 1064 nm.

In Fig. 2 we show the BSCs as in Fig. 1 but for a range of beam waist
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radii w0 between 5µm and 20µm while maintaining a fixed wavelength of
λ = 1064 nm. The red dashed line depicts the values of N(1/kw0) for each
w0 as defined above. For visualization purposes, values that rose higher than
a given threshold were masked out of the plot. Fig. 3, similar to Fig. 2,
shows such magnitudes in logarithmic scale within the shorter range of 1 µm
up to 10 µm with the same red dashed line of Fig. 2. s

Figure 2: Absolute value of the FS BSCs for several values of w0 computed at 2000
dps between 5µm and 10µm and fixed wavelength λ = 1064 nm. The red dashed line
represents N(1/kw0) whose corresponding BSC is greater than 1/2 in magnitude.

The red dashed lines in Figs. 2 and 3 appear to form a parabola – i.e.
N(1/k/w0) seems to directly depend of w2

0 – corroborating the results of
Gouesbet, Shen and Ambrosio [15] that the non-paraxial correction series in
the Davis scheme is always invalid beyond a certain n ∼ 1/s2.

6. Conclusion

In face of the results presented above, expressing the BSCs of fundamental
Gaussian beams explicitly in terms of generalized Bessel polynomials has
made it possible to better understand the behaviour of the remodelling of
scalar paraxial beams to a vector Maxwellian framework. To begin with, such
FS BSCs, before, were generally obtained through recursive methods which
were difficult to translate to iterative counterparts, so not much insight could
be obtained merely through the method’s expressions.
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Figure 3: Detail of Fig. 2 in logarithmic scale ranging from 1µm to 10µm.

Favorably, the closed-form expressions do more rigorously elucidate some
outstanding patterns with no clear mathematical explanation at the time –
and so could have been thought to be strictly numerical phenomena. For
instance, we have shown that, even though catastrophic cancellation may
occur if lower numerical precision is employed, the non-zero FS BSCs g±1

n,TX

of Gaussian beams are mathematically bound to indefinitely increase in mag-
nitude from some n onward. This was unproven until now, even though it
was suspected to be the case on the basis of empirical evidence, e.g. page
169 of [3].

The FS method once again was a valuable asset to better understand
physical and mathematical properties of electromagnetic waves subject to
multipole decomposition. The diverging character of representations of elec-
tromagnetic beams beyond the paraxial approximation has been observed
ever since the Lax series [13] was numerically evaluated for higher terms [17].
Complementary to this, the evaluation of exact multipole decomposition co-
efficients through the FS method in the GLMT has mathematically shown
that such divergence is bound to occur when remodelling the propagation
of Gaussian beams using non-Maxwellian descriptions. Whether this should
occur as well when using Maxwellian descriptions may be an open subject of
research.
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Appendix A. The finite series odd case

Appendix A.1. TM BSC expression

When finding the TM BSC FS expression (13) we saw that the only

restriction for the choice of θ0 was that P
|m|
n (cos θ0) ̸= 0 for the concerning n

and m. Then, in Section (2.3), we have derived closed form expressions for
these BSCs gmn,TM when θ0 = π/2 with the caveat that such expressions must
only hold when (n−m) is even. We now show that it is still possible to find
BSCs for θ0 = π/2 and odd (n − m) by making a minor change to the FS
setup. For this, we note that [22]

dPm
n

d cos θ

∣∣∣∣
θ=π/2

= (Pm
n )′ (0) = (−1)(n+m−1)/22

m+1

√
π

Γ
(
n+m
2

+ 1
)(

n−m−1
2

)
!

(A.1)

for odd (n−m) and (Pm
n )′(0) = 0 otherwise.

Hence, in order to obtain valid FS expressions, we may work with the
derivative of the radial electric field component with respect to cos θ at θ =
π/2 when deducing the FS expressions. In short, one may see that we now
work with a function

fm(x) =
x

E0

∫ 2π

0

∂Er

∂ cos θ

(x
k
,
π

2
, ϕ

)
e−imϕdϕ (A.2)

to be Maclaurin-expanded with coefficients b
(m)
n , and where the Neumann

coefficients of x1/2fm(x) are given by

cn = π
√
2π(−i)n+1(2n+ 1)(P |m|

n )′(0)gmn,TM (A.3)

for n ≥ 1 and c0 = 0. Next, applying the NET to relate cn and b
(m)
n as in (3)

and substituting (Pm
n )′(0) with (A.1), we have that

gmn,TM =
(−i)|m|−2

2|m|+2π

(
n−|m|−1

2

)
!

Γ
(

n+|m|
2

+ 1
) ≤n/2∑

q=0

2n−2q

q!
Γ

(
n− q +

1

2

)
bn−2q (A.4)

for odd (n−m).
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Appendix A.2. Gaussian beam odd BSC expression

In Section 3, we have deduced the fundamental Gaussian BSCs gmn,TM for
even (n −m). We shall see how to proceed for the remaining odd (n −m)
case. We remind that it is assumed that, in the xy-plane, θ = π/2, the EM
fields are

E(x, y, 0) = x̂E0 exp

(
−x2 + y2

w2
0

)
, (A.5)

H(x, y, 0) = ŷH0 exp

(
−x2 + y2

w2
0

)
, (A.6)

where H0 = (ε/µ)1/2E0. Moreover, such fields are bound to Maxwell’s equa-
tions; more specifically Faraday’s law

∇∇∇× E = −iωµH. (A.7)

To obtain the function fm in (A.2) concerning such field, we must find the
derivative of the radial electric field component with respect to cos θ when
θ = π/2. Seeing that Er = Er(ρ, z) for ρ = (x2 + y2)1/2 due to symmetry, we
may verify that, if γ = cos θ so that z = rγ and ρ = r(1− γ2)1/2, then

∂Er

∂cos θ
=

∂Er

∂γ
=

∂ρ

∂γ

∂Er

∂ρ
+

∂z

∂γ

∂Er

∂z
. (A.8)

At θ = π/2, ∂z/∂γ = ρ = r and ∂ρ/∂γ = 0, meaning

∂Er

∂cos θ

(
θ =

π

2

)
= r

∂Er

∂z

(
θ =

π

2

)
. (A.9)

Consequently, it suffices to find the z-derivative to obtain the cos θ-derivative
at the xy-plane.

From Faraday’s law expressed in cylindrical coordinates, we have that

−iωµHϕ =
∂Eρ

∂z
− ∂Ez

∂ρ
, (A.10)

so that, at θ = π/2, where Eρ = Er,

−iωµHϕ

(
θ =

π

2

)
=

∂Er

∂z

(
θ =

π

2

)
. (A.11)
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From (A.6), Hϕ = H0 exp (−r2/w2
0) cosϕ in the waist plane, so, since k =

ω(µε)1/2, and let x = kr, s = (kw0)
−1,

∂Er

∂cos θ

(
θ =

π

2

)
= −ixE0 exp

(
−s2x2

)
cosϕ. (A.12)

Now the odd case fm may be found from (A.2):

fm(x) = −iπx2 exp(−s2x2) (δm,1 + δm,−1) , (A.13)

such that fm = 0 if m ̸= ±1. Thus, we may expand f±1 in power series as

fm(x) =
∞∑
n=0

−iπ
(−s2)n

n!
x2n+2 =

∞∑
n=0

bnx
n, (A.14)

with b2n+2 = −iπ(−s2)n/n!, or

bn =

−iπ
(−s2)−1+n/2(

n
2
− 1

)
!

, for even n > 0,

0, otherwise.

(A.15)

The FS expression (A.4) requires having the Maclaurin coefficients as bn−2q,
which, taking n = 2p+ 2 for non-negative integers p, are

bn−2q = b2(p−q)+2 = −iπ
(−s2)p−q

(p− q)!
, (A.16)

so substituting in (A.4) gives

g±1
2p+2,TM =

1

2

p!

Γ
(
p+ 5

2

) p+1∑
q=0

22(p−q)

q!
Γ

(
2p− q +

5

2

)
(−s2)p−q

(p− q)!
, (A.17)

or

g±1
2p+2,TM =

1

2

p+1∑
q=0

(
p

q

)
Γ
(
2p− q + 5

2

)
Γ
(
p+ 5

2

) (
−4s2

)p−q
. (A.18)

Now, since
(

p
p+1

)
= 0, we may eliminate the q = p + 1 summation term.

Furthermore, if we reverse the summation –
∑p

q=0 aq =
∑p

q=0 ap−q –, we
arrive at

g±1
2p+2,TM =

1

2

p∑
q=0

(
p

q

)(
p+

5

2

)
q

(
−4s2

)q
. (A.19)
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In terms of a generalized Bessel polynomial, we have

g±1
2p+2,TM =

1

2
yp

(
−8s2;

7

2

)
. (A.20)
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