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Abstract: Although the molecular mechanisms underlying methylmercury toxicity are not en-
tirely understood, the observed neurotoxicity in early-life is attributed to the covalent binding
of methylmercury to sulfhydryl (thiol) groups of proteins and other molecules being able to affect
protein post-translational modifications from numerous molecular pathways, such as glutamate
signaling, heat-shock chaperones and the antioxidant glutaredoxin/glutathione system. However, for
other organomercurials such as ethylmercury or thimerosal, there is not much information available.
Therefore, this review critically discusses current knowledge about organomercurials neurotoxicity—
both methylmercury and ethylmercury—following intrauterine and childhood exposure, as well
as the prospects and future needs for research in this area. Contrasting with the amount of epi-
demiological evidence available for methylmercury, there are only a few in vivo studies reporting
neurotoxic outcomes and mechanisms of toxicity for ethylmercury or thimerosal. There is also a lack
of studies on mechanistic approaches to better investigate the pathways involved in the potential
neurotoxicity caused by both organomercurials. More impactful follow-up studies, especially follow-
ing intrauterine and childhood exposure to ethylmercury, are necessary. Childhood vaccination is
critically important for controlling infectious diseases; however, the safety of mercury-containing
thimerosal and, notably, its effectiveness as preservative in vaccines are still under debate regarding
its potential dose-response effects to the central nervous system.
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1. Introduction

Mercury (Hg) is a natural hazardous pollutant occurring in different chemical forms:
elemental Hg (Hg); inorganic Hg compounds (Hg*/Hg?*) and organic Hg compounds,
as methyl and ethylmercury (MeHg and EtHg, respectively) [1]. Many aspects associated
with Hg exposure, such as individual characteristics (e.g., age or developmental stage),
the Hg chemical form, as well as dose, route and duration of exposure, can produce
particular degrees of toxicity [2]. It is known that human exposure to organic forms
of Hg (such as MeHg and EtHg) occurs mainly through contaminated fish intake and
administration of Hg-containing vaccines [3,4]. For infants, Hg oral exposures depends
on the mother’s lifestyle and food consumption, since Hg intake occurs mainly through
breastfeeding, while non-oral exposure heavily relies on vaccination schemes in developing
countries, where thimerosal-containing vaccines (TCVs) are in routine use [5]. Both of these
organomercurial compounds have been reported to exert cerebral toxicity jeopardizing the
normal development and function of brain [6-9]. This study aims to critically review and
discuss aspects regarding organomercurial kinetics as well as how MeHg and EtHg can
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impact the neurological system following both intrauterine and childhood exposure. In
addition, prospects and future needs for research in this area are provided.

2. Exposure to Organic Mercury

Animal exposure to MeHg, including humans, occurs primarily through consumption
of higher trophic level fishes and other marine mammals due to bioaccumulation and
biomagnification processes along the food chain [10,11]. On the other hand, humans
can also be exposed to organic Hg through the use of EtHg-containing vaccines [12].
Thimerosal—or sodium EtHg thiosalicylate—is made of 49.55% Hg by weight and has
been added to multidose flask vaccines from 0.003% to 0.01% as a preservative [13-15].
Thimerosal was first synthesized in 1927 and has been used as a preservative in more than
a few other pharmaceutical products such as cosmetics, eye drops, contact lens solutions,
topical medicines as well as tattoo inks [15,16]. Although thimerosal is no longer used in
the United Kingdom (UK) vaccines, and no TCVs were developed and approved in the US,
this alkyl Hg compound is still added to flu vaccines administered to pregnant women,
the elderly and infants in the US, and exposure to thimerosal via vaccination schemes is
still prevalent worldwide, especially in developing countries, where it is used in many of
the childhood vaccines such as hepatitis B (HepB), Haemophilus influenzae type B (Hib),
diphtheria—tetanus—pertussis (DTP) and various influenza vaccines [17-19]. Exposure to
EtHg from thimerosal occurs acutely by injection and the availability of pure thimerosal
into the blood post-injection allows it to rapidly cross the blood-brain barrier (BBB), leading
to an increased risk of Hg toxicity. In developing countries neonates receive their first
vaccine with TCVs within 24 h, what can highly increase the Hg concentration in the blood,
far exceeding that of the breastfeeding [20]. The amount of Hg in TCVs nominally ranges
from 12.5 pg Hg to 25 ng Hg per dose (some vaccines could also contain >25 pg Hg per
dose) and it is estimated that infants from developing countries receive about 200 pg of
Hg from TCVs during their first six months of life [17]. Additionally, newborns can also
be exposed to low concentrations of Hg, either as MeHg or EtHg, even before birth, since
Hg can cross the placenta and can be readily bioavailable to be distributed to the newborn
forming organs, including the developing brain. Gu et al. detected that the average Hg level
in cord blood from 2316 neonates from Wujiang, China was 2.02 pug/L [21], a concentration
that could be used as reference value of fetal Hg exposure from maternal placenta. Fetuses
are particularly at a higher risk compared to adults, on a dose/weigh basis, and are more
susceptible to adverse effects from Hg, being that it is not possible to estimate a safe level
of maternal Hg transfer via placenta [22]. Currently, there are no exposure limits available
for Hg exposure through TCVs administered. Therefore, it is critical that regulatory bodies
propose those limits of exposure, accounting for exposure in utero, newborns and during
childhood, since the developmental period of exposure is important regarding the risks for
neurotoxic effects, since organomercurial compounds can result in health adverse effects
even at low exposures [23-27].

As MeHg exposure occurs mainly by dietary fish consumption, MeHg poisoning is
most probable to occur in consumers of contaminated fish and marine mammals. Effects
from oral poisoning may result from intake of a single high dose or repeated exposure to
low doses. To date, one of the most catastrophic ecological disasters that culminated in
Hg poisoning occurred in May of 1956 in Minamata Bay, Japan, where people consumed
fish and shellfish contaminated with MeHg formed from mercury sulphate released by
an acetaldehyde chemical producing plant [28]. The marine products in Minamata Bay
contained high levels of Hg—between 5.61 to 35.7 mg/kg—and the total amount estimated
of Hg daily intake by fish consumption was between 2 and 5 mg for several months
following the tragedy [28,29]. Another possible MeHg mode of poisoning is the direct
contamination of food when it is used as a pesticide in agriculture, another aspect of public
health concern additional to environmental exposure. Another example that illustrates
this type of poisoning is the Iraq Neuropathy, a large epidemic that appeared in rural
areas in Iraq in 1972. MeHg poisoning resulted from use of wheat grain treated with
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MeHg-fungicide to make bread. The grains were intended for planting and not directly
for human consumption [30]. Neurodevelopmental toxicity was also reported in infants
and neonates from pregnant women who were exposed to MeHg in both Minamata and
Iraq, evidencing the ease of MeHg placental transfer [30]. There have also been several
acute EtHg poisoning episodes of children in countries such as Iraq, Romania, China and
Ghana, mainly caused by ingestion of food contaminated with EtHg chloride, such as rice
and maize (reviewed in [31]).

3. Organomercurials Kinetics

The different forms of Hg have specific kinetic outlines which are responsible for the
disparity in systemic distribution, patterns of biological effect and toxic potency [32-34]. It
is known that Hg is easily absorbed into the blood stream when a parenteral thimerosal-
containing vaccine is administered [4,35]. This was also observed following oral exposure
to thimerosal in Wistar rats [36]. Despite the recent efforts in studying EtHg kinetics,
there is less information on the biodistribution of Hg after exposure to this Hg species in
comparison to MeHg [11,34,37]. After oral exposure to MeHg, approximately 95% of the
Hg is distributed to all tissues within 30 to 40 h [38,39]. Additionally, following distribution,
almost 5% of the absorbed dose continues in the blood, more specifically within red blood
cells but also within the plasma compartment (at approximately 5% of that found in red
blood cells) in which Hg is regarded as more bioavailable for producing effects [38,40].
It is believed that inorganic Hg (InoHg) is the predominant chemical form of Hg in the
plasma of populations exposed to low levels of Hg, either to InoHg or MeHg, potentially
from infrequent seafood consumption and mercury-containing amalgams [11,41-43]. In
contrast, after evaluating Hg species in the plasma of individuals highly exposed to MeHg
through fish consumption, Carneiro et al. reported that MeHg accounted in average
for almost 40% of the total Hg in this blood compartment [44]. More specifically, when
participants were analyzed independently, 22% of them presented a higher percentage of
MeHg in plasma (>50% of the total plasma Hg levels) [44]. In addition, plasma MeHg
was correlated to a greater extent with toxic outcomes than plasma InoHg, suggesting that
MeHg is the best and most reliable internal dose biomarker for Hg in chronically and highly
Hg-exposed individuals. In agreement with these findings, several other investigators
have demonstrated positive associations between detectable plasma Hg concentrations and
adverse effects in MeHg-exposed subjects [45-47].

Due to the similarity in their chemical structure (Figure 1), kinetics and toxic effects
of EtHg have been regarded for a long time to be similar to those of MeHg. However,
differences in the biodistribution levels have been observed between these organic Hg
species. For instance, monkeys and rats exposed to EtHg presented much higher levels of
InoHg in the kidney and brain when compared to animals exposed to MeHg [36,48-51].
Still, more than 50% of Hg found in the blood, heart, brain, liver and kidney was in the
inorganic form just after half an hour post thimerosal exposure [34]. These findings have
been explained by the far more rapid biotransformation of EtHg into InoHg compared to
that of MeHg [33,34,52]. In contrast, MeHg demethylation has been described to occur
very slowly. Demethylated MeHg is the InoHg found in tissues probably as a result of
reabsorption of part of the demethylated species [52].

MeHg is able to affect fetal brain development through transportation by the amino
acid transporter subunits L-type amino acid transporter (LAT) 1 and rBAT (related to b%*
type amino acid transporter). The efflux transporter multidrug resistance-associated protein
(MRP) 1 is also involved in MeHg toxicokinetics [53]. Mercury conjugated to glutathione
is able to be transported by the amino acid transporters located at the apical side of the
syncytiotrophoblast while this conjugate is effluxed via MRP1 localized to the basal side of
the syncytiotrophoblast. This explains why mercury is transported primarily towards the
fetal side where it can exert toxicity, including neurotoxicity, during MeHg exposure [53].
MeHg accumulates more in the brain than in other tissues due to its lipophilic nature and
chemical similarity with the amino acid L-methionine which is regularly interchanged by
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cells and blood [54,55]. In brain, there is evidence showing that the transportation occurs
via the L-type large neutral amino acid transporter (LAT1) through a complex formation of
MeHg with cysteine [56]. The same has been reported for EtHg, where C6 rat glioma cells
were found to be significantly protected against the toxicities induced by both cysteine com-
plexes of Hg (MeHg-5-Cys and EtHg-5-Cys) following the administration of L-methionine,
in comparison with MeHg and EtHg alone [37]. Moreover, thiol-conjugates may also
be involved in Hg transportation in tissues other than the brain, for example, the small
intestine epithelium, liver and kidneys [55,57,58]. Although the exact mechanisms need
further clarification, it is most probably that Hg removal from the brain occurs as a result of
the co-transport of sulfur-containing compounds such as glutathione [59,60]. Information
from experiments with mammals indicate that mercury from amalgam (elemental Hg) and
MeHg can cross the placenta to be deposited in fetal tissues, primarily in fetal kidneys
and liver [61-64]. Regarding thimerosal/EtHg no studies have been found. Therefore,
information on the exact concentration of mercury or percentage of delivered dose and
what is the main transferred Hg species that can actually cross the placenta and enter the
newborn brain to cause the damage following exposure to EtHg or thimerosal is sparse.
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Figure 1. Chemical structures of methylmercury (MeHg) and ethylmercury (EtHg).

In vivo organomercurial dealkylation is considered a detoxification process [49,65,66]
and it is probably mediated by the intestinal microflora [67,68], phagocytic cells such as
polymorphonuclear leukocytes, monocytes and macrophages as well as microsomal en-
zymes [69-71]. There is also evidence that the conversion of organic Hg also occurs through
reactive oxygen species (ROS) formation [34,69,72]. Specifically, Suda et al. have shown that
neither the superoxide anion nor hydrogen peroxide alone can break the Hg-carbon bridge
in MeHg [70]. In comparison, the hydroxyl radical (OHe) is able to promote dealkylation,
mainly due to its high reactivity and low selectivity [73]. Furthermore, the EtHg molecule
has a higher susceptibility to OHe attack, which could explain its greater and faster con-
version into InoHg in comparison to MeHg [34,69]. EtHg biotransformation is much more
significant in whole blood/erythrocytes compared to its minimal conversion in plasma,
probably due to the presence of cells, hemoglobin (Hb) and a greater number of proteins
and other compounds, while plasma is a less oxidative environment. In fact, in vitro ex-
periments have demonstrated the potential interaction between EtHg" (from thimerosal)
and Hb cysteine residues (Hb-cys93) in a 2:1 stoichiometry ratio (thimerosal:Hb), resulting
in Hb structure modification which in turn decreased its oxygen binding capacity [74].
A recent study confirmed that thimerosal concentrations as low as 1.25 uM can reduce
the oxygen uptake by Hb through interactions with specific free cysteine residues in Hb,
leading to conformational changes in the protein structure [75]. These studies highlight the
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high toxicity potential of EtHg to biological systems, due to its high binding capacity to Hb.
In summary, once in blood, EtHg can be either captured by red blood cells and converted
into InoHg, be held unchanged in protein-rich tissues, or be returned to plasma/red blood
cells [34]. Figure 2 depicts the known and potential processes involved in the organic Hg
dealkylation and transport between blood and organs.
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Figure 2. Main (and potential) processes involved in mercury dealkylation and transport between
blood and organs. Organomercurial dealkylation is mediated in vivo by the intestinal microflora,
microsomal enzymes as well as phagocytic cells (polymorphonuclear leukocytes, monocytes and
macrophages). Conversion of organic Hg into InoHg can also occur through ROS and free radical
formation. This conversion is known to occur far more rapidly in blood than in plasma—a likely
less oxidative environment where organomercurials can be transported unmodified. Once in whole
blood, EtHg (and potentially MeHg) can either bind to Hb cysteine residues and be converted into
InoHg, be translocated and kept held unchanged in tissues, or be returned to plasma/red blood cells
(based on [34,74]) findings). Question mark indicates processes that need to be proven (potential).

Some authors state the dealkylation of MeHg into InoHg occurs in the brain with the
ratio of InoHg to MeHg increasing with age [76,77]. Potential explanations have linked the
MeHg demethylation processes with a possibly limited ability of InoHg to be eliminated
across the blood brain barrier (BBB) due in part to an insoluble complex formed between
InoHg and Se [39,78,79]. However, a study using labeled Hg isotopes found no measurable
conversion of MeHg into InoHg in mink brains, unlike in the liver and kidney, suggesting
that brain demethylation is insignificant [80]. Also, following EtHg exposure, two main
scenarios may explain the presence of InoHg in the brain: (i) EtHg crosses the BBB and
is converted to InoHg within this tissue; or (ii) InoHg is sequestered from blood to brain,
since studies have reported InoHg in this tissue after exposure to InoHg [34,81-84].

After exposure to MeHg, the formed InoHg is eliminated through urine and feces,
whereas MeHg itself is first converted to InoHg, conjugated to bile acids (which can
be reabsorbed) and excreted through feces [11]. After performing a follow-up study of
98 days, Thomas et al. suggested that feces is the main route of excretion of Hg following
acute exposure to MeHg in Long Evans rats, accounting for approximately 50% of the
dose, with about 20% corresponding to InoHg [85]. Also, the organic:inorganic Hg ratio
in the feces of guinea pigs was found to be 1:3 after subacute exposure to MeHg [86].



Int. |. Environ. Res. Public Health 2023, 20, 1070 6 of 19

Excretion of Hg via the urinary tract was considerably lower (3 to 7% of the dose) [85].
In comparison, in non-exposed subjects, the amount of Hg excreted in feces is slightly
higher than that found in urine, with a very similar MeHg concentration found in both
feces and urine [87]. For EtHg, one can indirectly assume that a significant part of the
Hg excreted after thimerosal exposure is potentially eliminated by urine, since most of
the Hg determined experimentally in the kidney after acute thimerosal exposure was in
the inorganic form [34]. Pichichero et al. described substantial excretion of Hg via feces
rather than urine in infants receiving vaccines [88]. However, in this study, urine was
collected as spot samples (at one time point interval after vaccination) and urinary Hg
levels were reported in concentration and not in absolute amount of Hg excreted (i.e.,
without volume correction). This discrepancy in data interpretation may arise due to
different follow-up evaluations (exposure and duration, frequency of administrations,
route and dose of exposure) and evidences the need for evaluation of chronically and
highly exposed individuals in order to clarify organomercurial elimination kinetics.

The half-life of Hg in blood after EtHg exposure has been demonstrated to last between
5.6 to 8.8 days in mice [34,49,88-90], very close to those reported for human adults (5.6 days)
and newborns (6.3 and 7 days) following thimerosal administration [88-90]. Therefore,
although the biological interaction of Hg may differ between humans and other animals [79],
published literature on Hg half-life in blood following exposure to thimerosal strongly
indicate similarities between the two categories. Carneiro et al. also reported Hg half-lives
of 10.7 for brain, 7.8 for heart, 7.7 for liver and 45.2 for kidney [34]. In contrast, reported Hg
half-lives in human blood ranged from 35 to 100 days after MeHg exposure [91,92]. For the
majority of the organs, reported Hg half-lives are also longer considering MeHg exposure
in comparison to EtHg exposure, with the exception of the kidney, which is influenced
by the formation of InoHg following EtHg exposure, whose Hg half-life is estimated at
approximately 58 days [11,34,93,94].

4. Neurotoxicity Effects following Intrauterine and Childhood Exposure to
Methylmercury

Most of the documented MeHg neurotoxic effects are associated with developmental
exposure to this compound. The major risk for human neurodevelopment was found after
in utero MeHg exposure (reviewed in [95]). During embryogenesis, the central nervous
system rapidly develops and is highly vulnerable to subtle environmental changes and
toxic effects. MeHg passes through the physiological barriers, such as the placenta and the
BBB [96]. The higher Hg accumulation in the brain during embryonic exposure, compared
to that observed at later stages of development, might reflect facilitated MeHg transfer
across the poorly developed BBB [97]. Moreover, the maturation of the BBB itself may be
impaired after MeHg exposure, probably due to astrocytic damage [98]. These findings
could explain the high sensitivity of the developing brain to MeHg.

The key role of MeHg in neurotoxicity is attributed to the covalent binding of MeHg to
sulthydryl (thiol) groups of proteins and other molecules, such as GSH [99]. As mentioned
above, the binding to cysteine allows MeHg to be transferred through the BBB because
the complex MeHg/L-cysteine is structurally close to L-methionine, a substrate for LAT1
enzymes [100]. Additionally, thiol groups are also critical for protein post-translational
modifications. Therefore, when MeHg binds to thiol groups of proteins it exerts toxic effects
by affecting numerous molecular pathways, such as glutamate signaling (the main excita-
tory neurotransmitter), heat-shock chaperones (e.g., Hsp90), in addition to the antioxidant
glutaredoxin/glutathione system, which includes glutathione (GSH) and seleno-dependent
enzymes, such as glutathione peroxidase (GPx) (Figure 3) [101,102]. The in vitro MeHg-
induced inhibition of glutamate uptake, specifically by the astrocyte glial cells, resulted in
increased extracellular glutamate levels that could activate N-methyl D-aspartate (NMDA)
receptors and rise intracellular Ca?* concentrations, potentially leading to neuronal cyto-
toxic injury (Figure 3) (reviewed in [103]). However, to draw this conclusion, neuronal cell
cultures should have been used for the comparison with astrocytic cell cultures.
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Pre-/perinatal exposure to low-dose MeHg

Oxidative stress;
Disulfide bonds in proteins

Astrocyte-mediated
glutamate excitotoxicity

Long-term

Impaired brain function

Figure 3. The main mechanisms for the long-term effect of pre/perinatal exposure to methyl mercury
(MeHg) on impaired brain function. Chronic exposure to MeHg leads to brain-specific accumulation
of MeHg and inoHg in the developing fetus. MeHg may exert its effects on cell function and gene
expression by: (1) binding to the thiol groups in glutathione, seleno-dependent enzymes and other
proteins pertaining to the antioxidant system; (2) inducing astrocyte-dependent glutamate excito-
toxicity and (3) by epigenetic reprogramming of gene expression through chromatin remodeling. A
nucleosome composed of DNA and histone octamer is shown; epigenetic changes in DNA methyla-
tion are schematically represented by C (unmethylated cytosine) and mC (methylated cytosine).

In vivo studies on adult monkeys also showed that chronic exposure (6 or 12 months)
to low-dose MeHg (50 ug Hg/kg/day) decreased the number of astrocytes in the thalamus
without having a significant effect on other cell types [104]. Together, it was suggested
that astrocytes are especially sensitive to MeHg toxicity, whereas the neuronal damage
is secondary to astrocytic dysfunction [102]. In contrast, an in vitro study suggested that
neurons are more susceptible to Hg species-induced cytotoxicity than human astrocytes [6].
These researchers found dehydrogenase activity, lysosomal and membrane integrity being
affected by much lower concentrations of the different Hg species in study (HgCl,, EtHg
and MeHg) in neurons than in astrocytes. Although these studies implicate neurons and
astrocytes in MeHg-induced toxicity, there is an obvious knowledge gap in the cause—effect
relationships between these cell types that requires further research.

Oxidative damage to the cells is among the primary causes of neurotoxicity, including
MeHg-induced neurotoxicity (Figure 3) [101]. MeHg exposure may result in decreased GSH
levels in cultured neurons and astrocytes, therefore reducing ROS scavenging capacity [105],
while it may also increase ROS production by mitochondria [106]. Several studies associate
chronic oxidative stress and ROS accumulation with cognitive impairment, anxiety and
depression-like behaviors in humans and rodents [107-109]. Furthermore, growing evi-
dence from animal studies suggests that transient pre/perinatal exposure to low levels of
MeHg (similar to the exposure levels in high fish-consuming human populations) leads to
chronic oxidative stress induction associated with decreased expression of key antioxidant
enzymes, such as glyoxalases, glutathione peroxidase and/or reductase, in the brain of
weanling [101] and adult [110] mice. In healthy developing mouse brains, the levels of
GSH and glutathione peroxidase gradually increase during prenatal development; this
process may be required for neuroprotection against increased oxygen metabolism and
ROS production that occur after birth [111]. Thus, the MeHg-induced impairments of the
developing antioxidant system can render the brain more sensitive to damaging effects
of postnatally produced ROS [101]. In accordance with this statement, a study in mice
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showed that perinatal exposure to low-level MeHg strongly delayed the development of
parvalbumin (PV) interneurons across the brain at the pre-weanling age P17, and promoted
the rapid, dramatic increase in the formation of perineuronal nets (PNNs) around the
neurons, including PV interneurons, from P17 to post-weanling age P24 [112]. PV is a
calcium-binding protein expressed in GABAergic fast-spiking interneurons [113], the num-
ber of which greatly increases during the early stages of development of newborns [112].
PV interneurons are critical for the formation of inhibitory brain circuits, the development
of experience-dependent neuronal plasticity, learning and memory [114]. Cabungcal and
co-authors reported that oxidative stress is especially damaging for the development of
PV-interneuronal subtypes [115,116]. PNNs are composed of extracellular matrix proteo-
glycans and linking proteins, particularly expressed around GABAergic interneurons [117].
They control PV interneurons maturation and inhibitory brain circuits [118] and protect
neurons from oxidative damage [115,116,119]. Umemori and co-authors suggested that the
rapid production of PNNs from P17 to P24 might be a protective mechanism of the brain
against MeHg-induced oxidative stress [112].

Although the postnatal brain might develop some protective mechanisms against
prenatal MeHg-induced toxicity, there is growing evidence from animal and human studies
about irreversible long-lasting damage of MeHg to the nervous system. Ceccatelli and
co-authors provide an excellent overview of these studies [120]. The developmental MeHg
exposure promotes long-term deficits in brain functioning that become evident with age
(“silent neurotoxicity” [121]). These deficits include cognitive performance, attention
and memory, and neuropsychiatric disorders [122-124]. Decreased adult hippocampal
neurogenesis, which is critical for adult neuronal plasticity [125], could be one of the
mechanisms for the development and long-lasting maintenance of these deficits [120].
MeHg-induced impaired mitochondrial function and neural stem cells oxidative damage
has been reported [26]. Moreover, perinatal MeHg exposure in mice induced epigenetic
reprogramming of gene expression in the hippocampus [126,127]. Pathological epigenetic
reprogramming early in life may impair neuronal plasticity and trigger the development
of brain disorders in adult humans and rodents (Figure 3) (for one of the latest reviews,
see [128]). Epigenetic mechanisms such as chromatin remodeling, DNA methylation and
histone modifications, non-coding RNAs and transposable elements, control short- and
long-term alterations in gene expression without changes in DNA sequence (reviewed
in [129]). Epigenetic mechanisms of genome plasticity are vitally important for brain
functioning because epigenetic changes are able to influence gene expression in non-
dividing cells, such as neurons [127-129].

The implication of genetic factors in MeHg-induced neurotoxicity might probably
resolve at least some discrepancies between numerous epidemiological studies of hu-
man early-life MeHg exposure in fish-consuming populations around the world, includ-
ing the Faroe Islands [130], Brazil [131,132], Seychelles [133], Quebec [134], Madeira and
Japan [135]. Interestingly, the genetic polymorphism in apolipoprotein E (APOE), a major
protein transporter in the brain, was significantly correlated with Hg cord blood concen-
trations and neurodevelopmental impairment in children in Taiwan, where MeHg from
fish was assumed as the main source of Hg [136]. Moreover, in a low-fish consuming
population from the UK, a possible genetic predisposition to MeHg-induced cognitive
deficits was associated with single-nucleotide polymorphisms (SNPs) within genes for
paraoxonase 1, progesterone receptor, as well as transferrin and brain-derived neurotrophic
factor (Bdnf) [137]. In a more recent study, Morris and colleagues reviewed studies which
demonstrate that epigenetics and genetic factors, such as polymorphisms to single genes
(e.g., metallothionein, coprophorphyrogenoxidase, ATP-binding cassette transporter, BDNF
and APOE) as well as to GSH antioxidant system-related genes, increase the susceptibility
of children to the neurotoxic effects of InoHg and MeHg [138]. In this study, the authors also
concluded that Hg exposure may be associated with the development of autism spectrum
disorders (ASD) in children, particularly on those in which some type of mutation in GSH
system-related genes have been detected, since several reviewed studies evidence positive
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associations between GSH system abnormalities and ASD onset [138]. In animal mouse
models, the deficiency in Reelin, an extracellular matrix protein critical for brain develop-
ment, was identified as a susceptibility risk factor for prenatal MeHg-induced toxicity [139],
whereas overexpression of TrkB (a Bdnf receptor) could protect from MeHg-dependent
depression-like behavior but not anxiety [110]. Because large epidemiological studies
that include genotyping are highly costly, the preclinical studies in experimental animals
currently provide an invaluable tool for elucidating molecular mechanisms of MeHg- as
well as EtHg-induced neurotoxicity.

5. Neurotoxicity Effects following Intrauterine and Childhood Exposure to
Ethylmercury

As discussed above, currently the main source of EtHg exposure is as thimerosal
preservative in vaccines, since the EtHg-containing fungicides should have been elimi-
nated from use [140]. It is noteworthy that the administration of TCVs, which results in
acute EtHg exposure in pregnant women, newborns and infants, is still a major concern
faced by less developed countries, where there are not public policies to support the use
of thimerosal-free vaccines, while in more developed countries this ingredient was sig-
nificantly withdrawal from infant vaccine formulations to avoid any possible associated
exposure risks [20,141]. Therefore, more robust evidence from populational studies ad-
dressing the neurotoxic effects associated with acute exposure to TCVs-EtHg are of utmost
importance to support vaccine-policymakers’ decisions in developing countries.

The majority of studies, including large epidemiological studies, try to explore the
causal relationship between early-life exposure to Hg from TCVs and ASD (for detailed
review, see [142]). This relationship was first reported in 1998 in a Lancet article which
was later retracted and, therefore, not cited here. Most studies report absence of correla-
tion between human thimerosal exposure and childhood neuropsychological outcomes
including ASD in the UK [143], Denmark [144,145] and in a review paper [146]. A few neg-
ative associations of thimerosal content in vaccines include lower finger-tapping scores in
10-11-year-old girls in Italy [147], speech disabilities in boys and girls, and lower verbal IQ
in girls [148], and tics in boys [149] in 7 to 10 years old children in the USA. The authors also
reported several beneficial outcomes associated with vaccinations, such as better fine motor
coordination [148]. However, not all studies were “case-control”, i.e., included the control
group of children that received the thimerosal-free vaccines, which is a recurrent limitation
in epidemiological studies which investigate thimerosal exposure in children. Nonetheless,
the absence of negative effects of TCVs on neuronal pathology and ASD-related behavior
has been supported using a monkey model [150,151]; however, the authors did not access
the Hg levels in vaccinated animals. Several case-control studies in USA children associ-
ated a risk of delays in development or ASD with thimerosal; the cases were individuals
with pervasive developmental disorders, delays (reading difficulties, dyslexia, language
disorders, etc.) or ASD, whereas the controls were healthy children. However, most of these
studies were led by Dr. Mark Geier, whose research has been questioned [152]. Apart from
evidence presented by Geier ‘s group, relevant literature on case-control studies does not
support a causal association between mercury exposure from the preservative thimerosal
and increased risk of ASD [153-155]. Also, according to a comparative pharmacokinetic
estimate of mercury in U.S. infants following yearly exposures to inactivated influenza
vaccines containing thimerosal, TCVs can be considered safe [156]. In the same way, the
meta-analysis performed by Yoshimasu et al. reported no material associations between
thimerosal exposure and increased risk of ASD or ADHD [157]. This is potentially related
to the low-level exposure to Hg that occurs through TCVs and the rapid elimination of
EtHg from blood.

According to Modabbernia et al., future risk assessment studies of ASD would benefit
from a developmental psychopathology approach, prospective design, precise exposure
measurement and should take into account the dynamic interplay between gene and envi-
ronment by using genetically informed designs [158], since a number of epidemiological
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studies on this issue is limited to observations made at an early stage. Therefore, focus-
ing on reliable timing of exposure in relation to critical developmental periods as well
as to genetic vulnerabilities of developmental disorders is of great importance for better
understanding the susceptibility to EtHg exposures [157].

In order to solve the discrepancies mentioned above, the analysis of potential genetic or
environmental risk factors of susceptibility to EtHg and putative molecular mechanisms of
possible EtHg-induced neurotoxicity, experimental non-primate models (e.g., rodent) could
be helpful. Some of the already-documented neurotoxic effects after in utero/perinatal
exposure to thimerosal through in vivo experimental studies are shown in Table 1. Different
neurotoxic outcomes have been described to arise following exposure to thimerosal such as
neural development delay, social interaction deficiency (autistic-like behavior), delayed
auditory response, increased levels of oxidative stress biomarkers, hormonal deregulation,
altered susceptibility to neurotransmitters, etc. In comparison to epidemiologic data—
where some of the studies evidence the absence of association between EtHg exposure
and neurotoxic effects—there is a myriad of experimental studies that report such effects.
This fact might arise from the use of high doses that do not represent the real scenario, or
more remotely due to the current devaluation of studies with negative results. For instance,
among the studies investigating neurotoxicity following the exposure to thimerosal in
low doses [24,159,160] only the study of Olczak et al. showed toxicity (locomotor activity
impaired in males receiving 12 ug Hg/kg at postnatal days 7, 9, 11 and 15) [160]. The other
studies using low doses showed no effect at the lowest dose used [24,159]. When comparing
how the exposure to thimerosal/EtHg is carried out experimentally in non-human puppies
versus the vaccination schedule of human babies, one can assume the in vivo studies are
relevant since they expose rats on postnatal days 1 to 15. This is relevant because the
majority of vaccines are administered during the first twelve months of age, what would
correspond to almost 14 days in rats [161]. Nevertheless, studies evaluating neurotoxicity
induced by EtHg/thimerosal following exposure in utero are much rarer in comparison to
postnatal exposure.

To date, only a few rodent studies examined a potential neurotoxic role of EtHg and
there are rare studies aiming to mechanistically investigate the pathways involved in the
neurotoxicity of EtHg/thimerosal. One of the first studies that highlighted the impor-
tance of genetic profile for EtHg sensitivity showed that the autoimmune disease-sensitive
mouse strain S/L/] exhibited profound neurodevelopmental deficits (growth retardation,
locomotor activity, hippocampal distortion and enlargement) after thimerosal exposure,
compared with strains without autoimmune sensitivity (BALB/c], H-2d, or C57BL/6], H-2b
mice) [159]. However, another study using the same mouse strain did not confirm these
findings [24]. Later, the neurotoxic effects of thimerosal, at doses similar to those used
in vaccines, reported decreased pain sensitivity (nociception) [162] and significant neu-
roanatomical alterations in the hippocampus, cerebellum, temporal cortex in six-week-old
young adult rats [163]. This same research group documented thimerosal dose-dependent
and sex-dependent impairment of locomotor activity, anxiety, and social interactions, which
were associated with reduced striatal dopamine D2 receptors, probably by inactivating
its functional thiol groups [160]. Moreover, the exposure of neonatal mice to thimerosal
doses 20 times higher than that used in humans resulted in marked neurodevelopmental
delay and deficiency in social interaction in adulthood, suggesting an ASD-like pheno-
type [164]. Moreover, the high-throughput RNA sequencing suggested the involvement
of gonadotropin hormone signaling (up-regulated), immune genes (down-regulated) and
axonal guidance signaling (differentially affected) in higher-dose thimerosal-induced ASD-
like behavior [164]. However, this study was developed using concentrations of Hg as
thimerosal 20 times higher than that used in regular Chinese infant immunization during
the first 4 months of life. Finally, one of the latest experimental studies documented to date
trying to elucidate possible mechanisms associated to EtHg-induced neurotoxicity showed
that this compound can cause a concentration-dependent (3 to 30 uM) ependymal cell
cilia movement inhibition in ICR mice brain slices, with an IC50 of 5.80 uM for inhibition
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curves, which is around concentrations previously described for human poisoning [165].
Although this study did not investigate the effects of EtHg following pre- or perinatal
exposure, the authors concluded that the inhibition of ependymal cell cilia movement
might be particularly damaging during prenatal exposure, since during this exposure
period the underdeveloped BBB is more susceptible to EtHg and the cerebrospinal fluid
flow—which is solely dependent on cilia motility—is highly important for active migration
and proliferation of neurons [165].

Table 1. Neurotoxic effects after in utero/perinatal exposure to thimerosal/EtHg through in vivo

experimental studies.

Biological System Route Exposure Design and Dose Outcomes Reference
The treated pups showed life
neural development delay
(eye-opening ratio), social
interaction deficiency
(autistic-like behavior), and
inclination for depression.

Pups were injected on postnatal Neuropathological changes were
day 1 (P1), P3, P5, and P9 with a also observed in the brain tissue
20-fold higher Hg dose than those  of adult mice neonatally treated
used in current Chinese infant with thimerosal.
FVBN_NJ mice sct immunization schedule during High-throughput RNA [164]
the first 4 months of life (304, 238,  sequencing of autistic-behaved
196, and 176 ug of Hg/kg, given =~ mice brains revealed the
respectively to each of the alternation of a number of
postnatal days) canonical pathways involving
neuronal development and
neuronal synaptic function as
well as several gonadotropin
hormone transcripts were
strikingly up-regulated in
thimerosal-treated males.
Delayed auditory (startle
response) was verified in SD
neonates; decreased motor
learning was registered for males
(both SHR and SD) and also for
SD females. Also, a significant
increase in cerebellar levels of the
oxidative stress marker
Dams were exposed to 200 ug 3-nitrotyrosine was found in
Spontaneously Hypertensive thimerosal per kg during higher l.evels in SHR femgles as
Rats (SHR) or sc! pregnancy (gestational days 10 to well as in SD males than in [18]
Sprague-Dawley (SD) rats 15) and lactation (post-natal days controls. The activity of cerebellar
5 to 10). type 2 deiodinase (converts
thyroxine to the active hormone,
3',3,5-triiodothyronine (T3)) was
significantly decreased in SHR
males exposed to thimerosal with
Odf4—a gene regulated by the
levels of T3—found to be
overexpressed in comparison
to controls.
Pups were injected on post-natal
days 7,9, 11, and 15 with: vehicle,
1 x thimerosal (cumulative
dose = 39.8 ug Hg/kg
representing the maximum Hg
exposure, on a pg/kg basis, to No significant behavioral
SJL/J mice combination of SC ! which a child could have been alterations (i.e., social interaction, [24]

and IM 2

exposed from vaccination if
hepatitis B, diphtheria tetanus
pertussis (DPT), and Hemophilus
influenza B (HiB) were conserved
with thimerosal) or

10 x thimerosal (10-fold higher
cumulative dose: 390 ug/kg)

sensory gating, and anxiety) were
produced by the treatment.
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Table 1. Cont.
Biological System Route Exposure Design and Dose Outcomes Reference

SJL/J, C57BL/6], and
BALB/c] mice

Pups were treated at postnatal
day (P)7, P9, P11, and P15 with (1)
thimerosal-only (14.2, 10.8, 9.2, or
5.6 ug/kg of ethylmercury per
postnatal immunization day) or
M2 (2) thimerosal vaccines
(thimerosal-preserved diphtheria,
tetanus, acellular pertussis (DTaP,
Lederle), and Haemophilus
influenza B (HiB, Lederle)
vaccines—EtHg load the same as
group (1); or (3) Control (PBS)

Thimerosal-treated
animals—either through
thimerosal administration or
through its content as
vaccines—had no significant
differences in any parameters
measured and results were then
combined for the analysis. SJL/]
mice are known to be
autoimmune disease-sensitive
and showed growth delay,
decreased locomotion, amplified
response to novelty, and densely
packed, hyperchromic
hippocampal neurons with
altered glutamate receptors and
transporters. Strains resistant to
autoimmunity—C57BL/6] and
BALB/c]—were not affected

by thimerosal.

[159]

Wistar rats of both sexes

Pups were injected on postnatal
days 7,9, 11 and 15 with one of

M2 the four different doses in study
(12, 240, 1440, or 3000 ug Hg/kg)
+ vehicle

The locomotor activity was
impaired in males at the lowest
dose tested whereas in females
this effect was only observed at
the highest dose; animals of both
sexes treated with the highest
dose of thimerosal presented
reduced rates of prosocial
behavior and the frequency of
asocial/antisocial interactions [160]
was increased and decreased,
respectively, in males and females.
For males, significant less striatal
D2 receptors were found at the
dose 12 pug Hg/kg while for
females this was observed at 240
ug Hg/kg. No effects were
documented considering spatial
learning and memory.

1 SC: subcutaneous. 2 IM: intramuscular.

6. Conclusions

Taken all together, the current knowledge about EtHg-induced neurotoxicity is still

controversial perhaps due to the lack of costly genetic assessment of the human populations
studied, insufficient data about human subjects involved in the studies (such as the prenatal
and early postnatal exposure to other environmental stressors, physical or chemical), and
only a small number of animal studies that could provide molecular mechanisms of EtHg
effects on brain development. Childhood vaccination is critically important for control of
some infectious diseases; however, the safety of thimerosal and, notably, its effectiveness as
a preservative at the used dose, is still under debate.
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