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ABSTRACT Cloud computing technologies offer significant advantages in scalability and performance,
enabling rapid deployment of applications. The adoption of microservices-oriented architectures has
introduced an ecosystem characterized by an increased number of applications, frameworks, abstraction
layers, orchestrators, and hypervisors, all operating within distributed systems. This complexity results
in the generation of vast quantities of logs from diverse sources, making the analysis of these events
an inherently challenging task, particularly in the absence of automation. To address this issue, Machine
Learning techniques leveraging Large LanguageModels (LLMs) offer a promising approach for dynamically
identifying patterns within these events. In this study, we propose a novel anomaly detection framework
utilizing a microservices architecture deployed on Kubernetes and Istio, enhanced by an LLM model. The
model was trained on various error scenarios, with Chaos Mesh employed as an error injection tool to
simulate faults of different natures, and Locust used as a load generator to create workload stress conditions.
After an anomaly is detected by the LLM model, we employ a dynamic Bayesian network to provide
probabilistic inferences about the incident, proving the relationships between components and assessing
the degree of impact among them. Additionally, a ChatBot powered by the same LLMmodel allows users to
interact with the AI, ask questions about the detected incident, and gain deeper insights. The experimental
results demonstrated the model’s effectiveness, reliably identifying all error events across various test
scenarios. While it successfully avoided missing any anomalies, it did produce some false positives, which
remain within acceptable limits.

INDEX TERMS Automated root cause analysis, Bayesian networks, LLM, cloud computing.

I. INTRODUCTION
Cloud computing concepts and technologies offer significant
benefits in terms of scalability and performance. These
benefits give developers the ability to rapidly deploy large
and diverse types of computing applications.

The name Cloud Computing has been used in different
contexts over the years. However, it was only in 2006 that
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approving it for publication was Chin-Feng Lai .

Eric Schmidt, then CEO of Google, used the term to describe
a new business model that would provide services to users
over the Internet [1]. With the continued advancement of
technology and the advent of virtualization, companies such
as Amazon, Google, and Microsoft established large-scale
data distribution facilities, commonly referred to as data
centers.

Cloud-native applications represent a modern software
development paradigm grounded in three fundamental prin-
ciples: scalability, fault tolerance, and reliability. The rapid
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evolution and proliferation of cloud computing platforms
have empowered engineers to design, integrate, and automate
sophisticated, large-scale software systems with unprece-
dented speed and efficiency.

The constant evolution and integration of complex systems
technologies have introduced risks associated with perfor-
mance and reliability, and can compromise the responsibili-
ties assumed by a company or information technology service
provider towards customers.

Proper monitoring is one of the most critical components
of a high-performance system. Most applications that have
their entire life cycle in cloud, from design to discontinuation,
are built on microservices architectures. A significant portion
of disruptions in a microservices ecosystem can be attributed
to inadequate monitoring [2]. Effectively monitoring a
microservices-oriented system fundamentally requires three
components [3]: (1) the collection of logs and application
metrics, (2) dashboards capable of accurately reflecting the
current state of the system, and (3) efficient and explicit alerts
to identify potential issues within the ecosystem as a whole.

Historically, cloud providers have maintained highly
available service levels, often achieving 99.999% uptime.
However, it is inevitable that at least one component within an
ecosystem will fail at some point. Predicting the timing and
location of such failures is a challenging, if not impossible,
task. Consequently, availability engineering plays a vital role
in ensuring the uninterrupted operation of services, even in
the event of component failures.

As the complexity of cloud-native systems continues to
grow, the volume of event logs generated by these systems
increases exponentially. Consequently, the implementation of
a solution leveraging AI becomes essential to detect incident
patterns and identify the root cause effectively.Otherwise,
developers would be required to manually configure alert
rules based on application metrics and logs, which can
overwhelm them with false-positive alerts or miss active
incidents due to the inherent volatility of these environments.

Previously, developers encountered substantial challenges
when manually sifting through extensive log data to pin-
point the root causes of incidents. This labor-intensive
process frequently resulted in prolonged system downtime,
financial losses, and the inability to uphold the com-
mitments and responsibilities of organizations or service
providers.

Historically, logs have been collected and primarily used in
a reactive manner to diagnose problems in computer systems.
While the data contained within logs is highly valuable,
extracting relevant metrics from raw log data has always
been a challenge. The continuous evolution of complex
systems leads to an exponential increase in the volume of logs
generated, particularly as organizations transition towards
microservices-oriented cloud architectures. This makes it
even more difficult to manipulate, store and extract relevant
information from these data sources.

Event-based monitoring is intended to detect unex-
pected changes in system behavior. However, most existing

monitoring solutions do not provide explicit data, leaving
developers responsible for identifying outliers in dashboards,
defining and adjusting alert rules, and searching through
several layers of logs to find the root cause of the issue.
Microservices should be treated as living organisms in
constant evolution [2] and there are several reasons for this,
whether for business or performance reasons. It is common
for microservice-oriented systems to have dozens or even
hundreds of daily deploys. Constant changes add operational
complexity and make it difficult to use predefined thresholds
to detect or infer anomalies.

Significant architectural changes to the environment, such
as upgrading or removing libraries, performing database
migrations, or implementing code modifications, tend to
increase the likelihood of outages. All patterns that lead to
these events change significantly, making it difficult to use
predefined and static thresholds to detect anomalies. Thus,
Machine Learning techniques can capture these patterns for
any system quickly, and these relationships can scale far
beyond the human capacity to keep up with the growing
complexity of high-performance systems, helping to decrease
the incident time, including: find root cause, mitigation and
system repair time.

Nowadays, there are currently dozens of tools for detecting
anomalies and root cause incidents. A key objective of these
tools is not only to accurately determine the origin of an
incident, but also to present the root cause in a clear and
concise manner. However, many solutions on the market
generate complex and lengthy reports, which can hinder
understanding, particularly for users with limited context
or expertise across the various layers of the ecosystem and
microservices architecture.

This research proposes a dynamic root cause detection
system leveraging unsupervised machine learning tech-
niques. The system aims to perform probabilistic inferences
using Bayesian networks, adopting a sufficiently generic
approach to enable integration into diverse applications while
maintaining granularity for use in monitoring systems. The
objective is to provide actionable guidance and facilitate
automated, precise incident detection.

II. RELATED WORK
We will examine the strengths and limitations of LLMs in
this context, comparing their performance with traditional
methods and exploring various approaches designed to
enhance their effectiveness. The rapid advancement of
LLMs [4], [5] has undeniably opened new avenues for
anomaly detection, yet significant challenges remain.

This review synthesizes recent research to provide a com-
prehensive overview of current methodologies, applications,
and potential future directions in this exciting and evolving
area. The ability of LLMs to process and understand vast
amounts of unstructured data, coupled with their capacity for
complex pattern recognition and contextual understanding,
makes them uniquely suited to tackle the challenges of
anomaly detection in a wide range of applications.
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However, the inherent limitations of LLMs, such as
computational cost, interpretability issues, and potential
biases, must be carefully considered and addressed. Log
anomaly detection is a critical task for maintaining the
security, reliability, and performance of systems across
domains such as cloud computing, telecommunications,
and cybersecurity. System logs, which record events and
behaviors, provide a valuable source of information for
diagnosing issues, monitoring performance, and identifying
security incidents. Detecting anomalous patterns in logs is
vital, as these patterns often indicate system malfunctions,
security breaches, or unusual behaviors, enabling timely
interventions.

Before delving into LLM-based approaches, it is crucial
to establish a baseline understanding of traditional anomaly
detection methods and their inherent limitations. These
methods have historically relied on a variety of techniques,
including statistical methods, rule-based systems, and various
machine learning algorithms such as neural networks [6].

While these techniques have proven effective in specific,
well-defined contexts, they often struggle when confronted
with several key challenges. One significant limitation is their
difficulty in handling high-dimensional data, where the com-
plexity of relationships between numerous variables makes it
challenging to identify meaningful patterns and anomalies.

Furthermore, many traditional methods require extensive
labeled datasets for training, a requirement that can be
difficult and expensive to fulfill, particularly in domains
where anomalies are rare events.

The reliance on labeled data also limits the generalizability
of these models to new, unseen data or different contexts. [7].
Finally, many traditional methods lack interpretability, mak-
ing it difficult to understand the rationale behind the detection
of a specific anomaly. This lack of transparency can hinder
trust and acceptance, especially in high-stakes applications
such as healthcare or finance. [8]. The emergence of LLMs
offers a potential pathway to mitigate these limitations.

Recent advancements in using Large Language Models
for log anomaly detection show significant promise. LogFiT,
a BERT-based model fine-tuned for recognizing patterns in
normal system logs, exemplifies this trend. Unlike traditional
methods reliant on predefined templates or supervised
training with labeled data, LogFiT uses a self-supervised
learning approach.

By predicting masked tokens in log sequences, it captures
the linguistic structure of normal logs, making it robust
to variations in content and capable of handling out-of-
vocabulary tokens. This approach enables LogFiT to identify
anomalies by detecting deviations in top-k token prediction
accuracy. Experiments on datasets such as HDFS, BGL, and
Thunderbird demonstrate that LogFiT outperforms baseline
models, particularly in scenarios with high log variability,
while integrating seamlessly with the HuggingFace ecosys-
tem for scalable deployment.

Another line of research explores the application of LLMs
in time-series anomaly detection. Techniques proposed by

Gruver et al. show that LLMs can achieve zero-shot
time series forecasting, rivaling or surpassing purpose-
built models. By tokenizing numerical data and leveraging
LLMs’ ability to model multimodal distributions, these
methods effectively handle missing data, capture seasonality,
and incorporate textual context for predictions. However,
challenges such as limited context windows and suboptimal
arithmetic performance highlight areas for further research.

In anomaly detection for tabular data, LLMs have been
investigated as zero-shot batch-level detectors. Without
requiring explicit training on data distributions, these models
identify outliers by recognizing low-density regions in
datasets. Fine-tuning strategies further enhance the perfor-
mance of models such as Llama2 and Mistral, with exper-
iments on benchmarks like ODDS showing that fine-tuned
LLMs rival state-of-the-art anomaly detection techniques.

Beyond log and tabular data, anomaly detection principles
extend to other domains. For example, power systems
leverage distributed monitoring and control to maintain
stability and observability. Gamboa et al. analyze wide-
area monitoring under degraded conditions, emphasizing
the criticality of local measurements and the identification
of essential system components. This work illustrates the
broader applicability of anomaly detection methods to ensure
system functionality in diverse contexts.

A. LIMITATIONS OF EXISTING WORK AND
CONTRIBUTIONS
Existing works, while effective, often focus on structured
or semi-structured data, leaving gaps in the detection
of anomalies within unstructured logs. Moreover, most

TABLE 1. Comparison of Recent Works in LLM-Based Log Anomaly
Detection.
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approaches struggle with scalability, generalization across
heterogeneous log formats, or providing explanations for
detected anomalies. This study addresses these gaps by
proposing a novel method that extends LLM-based tech-
niques to handle unstructured logs efficiently, incorpo-
rating context-aware analysis and scalable deployment
strategies.

Table 1 presents a selection of works highlighted in one
of the most comprehensive literature reviews published on
the topic. It is evident that approaches leveraging large
languagemodels (LLMs) are scarce, and none of the reviewed
methods utilize LLM insights and Bayesian networks to
develop an interactive chat interface for user engagement. The
blue lines represent recent studies that also utilize LLMs as
anomaly detection engines, but they differ in aspects such as
training costs, the structure of training data, and the results
achieved.

Log anomaly detection has been a focal point of
research, particularly with the advent of large language
models (LLMs). Several recent works have contributed novel
approaches while highlighting challenges in this domain.

One of the key recent works on anomaly detection using
Large Language Models (LLMs) is LogFit. The LogFiT
model [10], designed for log anomaly detection, leverages
the linguistic capabilities of a pre-trained BERT-based
language model, fine-tuned to recognize patterns specific
to normal system logs. Unlike traditional log anomaly
detection methods that depend on predefined log templates
or require labeled data for supervised training, LogFiT
adopts a self-supervised approach, learning the linguistic
structure of normal log sequences by predicting masked
tokens.

LogLLM [9] combines BERT and Llama to enhance
semantic understanding of unstructured and natural language
logs. Its robust handling of diverse formats is notable, though
its reliance on computationally intensive pre-trained models
and preprocessing through regular expressions introduces
significant overhead [9]. Similarly, LogFiT focuses on
fine-tuning LLMs for structured or semi-structured logs
and incorporates self-supervised techniques for improved
anomaly detection. However, its dependence on labeled
datasets limits adaptability for unstructured logs and impedes
broader applicability [10].
This makes LogFiT robust to variability in log content and

capable of handling out-of-vocabulary tokens. By comparing
top-k token prediction accuracy, LogFiT identifies deviations
from normal logs sequences and flags them as anomalies.
Experimental evaluations on datasets such as HDFS, BGL,
and Thunderbird show that LogFiT outperforms baseline
models, particularly excelling in scenarios where log content
varies. The model’s specificity surpasses that of baselines on
HDFS and BGL datasets, while maintaining performance on
Thunderbird.

Integratedwith theHuggingFace ecosystem, LogFiT offers
a scalable and adaptable solution for future log anomaly
detection tasks, making it a powerful tool for monitoring and

maintaining system stability.The preprocessing of logs, such
as log parsing, grouping, and representation, can introduce
significant overhead [12].
These steps are critical for the effectiveness of the models

but may also complicate the deployment process and increase
the overall system’s complexity. An alternative approach that
leverage time series forecasting by encoding numerical time
series data as text [13]. The authors demonstrate that LLMs
can surprisingly perform zero-shot time series extrapolation
at a level comparable to, or even surpassing, purpose-built
models.

This success is attributed to LLMs’ inherente ability
to model multimodal distributions and capture patterns
such as seasonality and repetition. To achieve this, the
authors propose techniques for tokenizing time series data
and converting discrete token distributions into continuous
values. Moreover, LLMs can handle missing data without the
need for imputation and integrate textual side information to
explain their predictions.

While increasing model size generally improves forecast-
ing performance, the paper notes that GPT-4 performs worse
than GPT-3 due to tokenization issues and poor uncertainty
calibration. Despite limitations such as short context windows
and weaknesses in arithmetic tasks, the potential of LLMs in
time series forecasting remains promising.

Future research could explore extending context windows,
fine-tuning LLMs specifically for time series tasks, and inves-
tigating the trade-offs between LLMs’ arithmetic limitations
and their application to real-world forecasting. The paper
positions this work as a step toward unifying various tasks
under a single, powerful model, enabling more flexible and
scalable forecasting solutions.

A different approach [14] explores the use of LLMs for
anomaly detection in tabular data, highlighting their potential
as zero-shot, batch-level anomaly detectors. Notably, LLMs
can identify outliers by recognizing low-density regions in
data without requiring training on a specific distribution.
The authors also address the limitations of certain LLMs
in anomaly detection by generating synthetic datasets and
proposing a robust end-to-end fine-tuning strategy, ultimately
improving detection efficacy.

Experiments using the ODDS benchmark1 show that
GPT-4 performs comparably to state-of-the-art anomaly
detection methods, even without fine-tuning. Furthermore,
fine-tuning models such as Llama2 and Mistral significantly
improves their anomaly detection performance. The study
highlights the effectiveness of LLMs in identifying anomalies
and highlights the value of fine-tuning in enhancing their
detection capabilities.

The concept of observability extends beyond cloud com-
puting and applications. Power generating systems must
manage numerous variables and rely on models to guide
decision-making [15]. analyzes the feasibility of performing
wide-area monitoring and control functions in a distributed

1 https://paperswithcode.com/sota/anomaly-detection-on-odds
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way within a power system, leveraging the interconnected
system’s behavior to describes its dynamics.

Large Language Models represent a significant and
promising advancement in the field of anomaly detection.
They offer compelling solutions to the limitations of
traditional methods, providing enhanced capabilities for
identifying complex patterns, handling diverse data types,
and generating explanations for detected anomalies. Their
flexibility and adaptability make them valuable tools across
a wide spectrum of domains, from cybersecurity and finance
to healthcare and industrial manufacturing.

In the context of anomaly detection in microservices
environments, some mathematical models rely purely on sta-
tistical methods, avoiding the complexity of heavy Machine
Learning techniques [16]. The wide variety of service types
and the diverse nature of metrics add significant complexity
to analyzing an entire cluster. Therefore, identifying the
most critical metrics is essential for detecting issues and
performance bottlenecks in microservices.

While challenges remain in areas such as computational
cost, interpretability, and robustness, ongoing research is
actively addressing these issues. The continued development
and refinement of LLM-based anomaly detection methods
promise to significantly transform how we identify and
respond to anomalies in diverse applications. This will lead
to improvements in efficiency, safety, and security across
numerous sectors. Further research into multimodal LLM
approaches [17], [18], and the synergistic use of LLMs
with other AI techniques [19], will be crucial in unlocking
the full potential of LLMs in this rapidly developing field.
The development of robust benchmarks and standardized
evaluation methods will be essential for facilitating mean-
ingful comparisons between different approaches and driving
further innovation.

The proposed MAIA framework seeks to address these
gaps by offering an unsupervised, scalable, and cost-
efficient solution for unstructured log anomaly detection.
By minimizing dependency on labeled data and focusing
on fine-tuning LLMs for unstructured logs, MAIA achieves
versatility and adaptability. However, like many unsupervised
approaches, it requires further refinement to reduce false-
positive rates and mitigate alert fatigue.

In summary, while advancements in LLM-based anomaly
detection have significantly improved robustness and effi-
ciency, the MAIA framework builds upon these founda-
tions to address key limitations in scalability, adaptability,
and cost, making it a strong contender for cloud-native
systems.

The literature review helped to gather research sources
that will provide a theoretical basis for the continuity of the
work. With these analyzes and comparisons, it is possible to
perceive which shortcomings and problems still exist in the
scope of the work, in order to have a formal proposal for a
solution or contribution. The literature review added to the
theoretical foundation elements help us to realize that the
current tools, in the monitoring context, still have difficulties

to generate root cause indicators that are not oblique, that is,
any user without context or deep knowledge of the ecosystem
as a whole must be able to interpret the root cause of the
incident. Based on the review and on all the theoretical
foundations, the next chapter presents the proposal that fills
the gap left by these works.

III. SETUP
Cloud-native environments are composed mostly of managed
elements by service providers. They tend to be fragmented,
distributed and have several layers of abstraction, making
it easy for the end user [2]. Given this context, we must
simulate behaviors and environments compatible with these
scenarios. We created a service management and test creation
platform based on the Amazon Web Services (AWS) service
provider to reach the goal. This environment has previously
been utilized in other relevant experiments, maintaining
the same context of dynamic event analysis within cloud
platforms [20].

Next, wewill explain in further detail how this environment
works and what components make up the complete system,
shown in Figure 1.

FIGURE 1. AWS Platform-as-a-Service Top-Down.

In the PaaS context, the challenge is to ensure some
assumptions: allowing large-scale experimentation by users,
guaranteeing consistency of executions, controlling oper-
ations, controlling costs, and guaranteeing a governance
model [21].

To increase control, we need to have well-structured
processes for creating resources for low-level infrastructure,
such as AWS components such as EC2, S3, etc., and
for application deployments. Next, we will detail how the
creation and changes of resources of these two layers work
and how they are managed to guarantee all these previously
mentioned criteria.

IV. MAIA ARCHITECTURE
To simulate a real-world distributed system, we used the
sock-shop application developed by Istio.2 This application
is widely used in cloud-native environments as a reference
architecture for microservices, replicating the functionality of
an e-commerce platform.

2 https://github.com/istio/istio
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It is often used conjunction with Istio, a leading service
mesh framework, to demonstrate key features related to
the management, security, and observability of distributed
microservices architectures.

The sock shop stack uses the following languages and
tools:

• Programming Languages: Java, JavaScript and Go.
• Frameworks: Spring Boot, NodeJS, and Go kit.
• Persistence: MySQL, MongoDB, and RabbitMQ.

Thus, we were able to represent a real production system
with several programming languages, frameworks, compo-
nents, and technologies that will be dynamically analyzed in a
distributed environment. All these sub-systems are integrated
into the sock shop application as a whole. As shown in
Figure 2, the original design featured an ecosystem with
several microservices written in different different languages.
In the version used for our experiments, the applications in C
and. NET are no longer available.

FIGURE 2. Socks-Shop Polyglot architecture3

Figure 2 illustrates our experimental system, which depicts
a virtual store utilizing a diverse stack of programming
languages, frameworks, databases, and more. This system is
integrated with the platform developed in a recent paper [16].
By utilizing the PaaS model provided by our platform, users
can seamlessly modify and conduct experiments in a secure,
parallel, and controlled environment. This approach promotes
agility, fosters innovation, and enables risk-free testing,
ultimately enhancing the development and optimization
processes.

Amazon EKS orchestrates these workloads within the
AWS public cloud. To collect logs in their raw format—
without structure or parsing—we used the open-source tool
Loki4 from Grafana Labs.
Loki is a horizontally-scalable, highly available, multi-

tenant log aggregation system inspired by Prometheus.
Unlike Prometheus, which focuses on metrics, Loki concen-
trates on logs and collects them via a push model rather

3https://redthunder.blog/2018/07/30/socks-shop-polyglot-app-in-
kubernetes

4https://grafana.com/oss/loki/

than a pull model. It was also designed to be cost-effective
and highly scalable. Unlike other logging systems, Loki does
not index the contents of the logs; instead, it indexes only
metadata associated with the logs, using a set of labels for
each log stream.

A log stream is a set of logs that share the same labels.
Labels are essential for helping Loki locate a log stream
within the data store, making the quality of labels crucial for
efficient query execution.

For long-term data retention at a lower cost, Amazon S3
was utilized as the storage backend, as S3 storage costs are
significantly lower than those of EC2-attached disk volumes.

A. LOAD AND CHAOS TEST
Locust5 was used as the open-source load testing tool to
evaluate the performance and scalability of web applications
and other services. It facilitated the simulation of numerous
concurrent users interacting with the system, enabling an
assessment of its performance under varying load conditions.
The results generated from load tests conducted with Locust
were seamlessly integrated with Grafana, providing real-time
visualization and analysis of the outcomes.

In addition to generating synthetic user load, it is
essential to simulate a wide range of potential issues that
the infrastructure or application might face in real-world
scenarios.

Chaos Mesh6 was the open-source chaos engineering
platform used in our Kubernetes environments. It enables
developers and operators to inject a variety of faults into their
applications, enabling the assessment of resilience and the
capacity to endure unexpected conditions.

In Figure 3, the interconnections between the components
are illustrated, highlighting their relationships and the overall
workflow.

FIGURE 3. MAIA Architecture.

V. SETUP
The sock-shop application consist of 12 microservices
in total, each serving distinct purposes and functioning
together as part of the overall system - the socks store. All
microservices are listed in 2.

5https://locust.io/
6https://chaos-mesh.org/
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TABLE 2. Microservices in the Sock-Shop Application.

Load tests lasting approximately one hour were conducted
to train the model. During these tests, only the introductory
load generated by Locust was applied, ensuring that no
anomalies or errors were reported by any application. The
load test followed a standard workflow: a user was created,
random products were searched in the catalog and then
added to the shopping cart, addresses and payment methods
were added, and the entire purchase flow was tested. All
components generated logs, which were later used for
training.

To ensure consistency and allow rapid large-scale exper-
imentation, we use a Continuous Delivery and Continuous
Integration tool that automates all tests through a pipeline.
CircleCI7 is a platform that automates the software devel-
opment process. It helps teams to automate testing and
deployment of applications, facilitating the integration of
code changes and ensuring the delivery of high-quality
software.

FIGURE 4. CircleCI - Locust Load Test.

For both workflows - running load testes with Locust
and injection errors into the application using Chaos Mesh,
as shown in Figure 4 we used the same tool. The pipeline is
parameterized through GitHub TAG, where we define which
microservice should be affected and the type of error to be
injected. In this case, a network error was introduced into the
shipping microservice.

A. LLM TRAINING
The logs employed for training are unfiltered and devoid
of any predefined schema or structure. This absence of
constraints allows the anomaly detection system to remain
agnostic to the specific log ingestion agents employed.

7https://circleci.com/

Log data collection is facilitated through daemon sets
deployed across all nodes within the Elastic Kubernetes
Service (EKS) cluster. These agents interface with the
applications’ standard output (stdout), gather the emitted
data, and transmit it to an in-memory buffer within the
Grafana Loki application.

At one-minute intervals, this data is flushed and written
to an Amazon S3 bucket. This strategy significantly reduces
storage costs compared to maintaining the data in Persistent
Volume Claims (PVC) within the Kubernetes environment.

However, we observed that incorporating this metadata
during model training could degrade performance. Much of
the metadata is static, offering limited value and potentially
introducing noise that interferes with detecting meaningful
relationships between events. To align with our goal of
working with unstructured, schema-free data in its raw
form, we implemented a pre-processing step to remove
unnecessary metadata, retaining only the events crucial for
training.

The log anomaly detection module consists of an LLM,
specifically Llama-3 8b [22], and a sentence similarity
model [23]. By fine-tuning Llama-3 8b on logs collected
under the normal system execution, the model learns
and adapts to the expected log patterns of the system’s
microservices, as shown in Figure 5.
The fine-tuned LLM then generates the next log message

based on a sequence of 10 previously registered logs.
Since it is trained on normal execution logs, it predicts
the log message that would typically appear under normal
conditions. If the actual logs differ from the ones generated
by the LLM, an anomaly is detected. Instead of comparing
individual logmessages, the similarity between the sequences
of logs generated by the LLM and the actual registered
logs is computed using the sentence similarity model. If the
similarity score falls below 0.8, the log sequence is classi-
fied as anomalous. After extensive hyper-parameter tuning,
we selected a 0.8 threshold because anything lower made the
model overly sensitive and flooded us with false positives,
while anything higher turned it too conservative and let true
errors slip through; 0.8 therefore offers the optimal trade-
off, catching most anomalies without an exponential rise in
false alarms. The fine-tuned LLM then generates the next
log message based on a sequence of 10 previously registered
logs. Since it is trained on normal execution logs, it predicts
the log message that would typically appear under normal
conditions. If the actual logs differ from the ones generated
by the LLM, an anomaly is detected. Instead of comparing
individual logmessages, the similarity between the sequences
of logs generated by the LLM and the actual registered
logs is computed using the sentence similarity model. If the
similarity score falls below 0.8, the log sequence is classified
as anomalous. Following comprehensive hyper-parameter
optimization, a decision threshold of 0.8 was adopted: values
<0.8 markedly increased the incidence of false positives,
whereas values > 0.8 elevated the false-negative rate by
allowing genuine anomalies to go undetected. Consequently,
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0.8 represents the optimal balance between sensitivity and
specificity for the detection task.

FIGURE 5. LLM training workflow.

TABLE 3. Chaos Mesh Experiments for Sock-Shop Namespace.

Additional layers were incorporated, followed by load
testing using Locust to simulate standard purchase flows
within the sock shop environment.

The CircleCI pipeline ran for approximately one hour,
during which all microservices were invoked in the tests.

Chaos engineering experiments aim to uncover potential
weaknesses in distributed systems by simulating failure
conditions in a controlled environment. The following list
details the fault injection scenarios applied to various
microservices using Chaos Mesh. Each experiment targets
a specific failure mode, such as pod failures, network
partitions, or resource constraints, to evaluate the system’s
resilience, error handling, and recovery mechanisms. The
explanations provide context for the purpose of each scenario,
its implications on the system, and the expected outcomes.

By generating this workflow repeatedly in testing sce-
narios, the model was exposed to a wide variety of user
interactions. This process allowed us to evaluate system
performance, identify bottlenecks, and fine-tune the model
to handle real-world purchase flows effectively. The Figure 6
provides a Top-Down Overview about the load test workflow.

The blue components represent randomized flows, where
multiple actions, such as adding and removing payment
methods, addresses, or catalog searches, are performed to

FIGURE 6. Locust Load Test Workflow.

simulate realistic user behaviors. In contrast, the yellow
components represent sequential flows that occur only once
per testing round, progressing from the beginning to the
end of the workflow. For each load test conducted to train
the model, hundreds of iterations following this workflow
were executed repeatedly, generating a substantial volume of
logs to support model training. This methodology ensured
the activation of all microservices listed in Table 2 through
various interactions, resulting in the generation of event
logs.

The logs employed for training are unfiltered and devoid
of any predefined schema or structure. This absence of
constraints allows the anomaly detection system to remain
agnostic to the specific log ingestion agents employed.

Log data collection is facilitated through daemon sets
deployed across all nodes within the Elastic Kubernetes
Service (EKS) cluster. These agents interface with the
applications’ standard output (stdout), gather the emitted

FIGURE 7. Chaos Mesh Console UI.
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FIGURE 8. Chaos Mesh experiment timeline.

data, and transmit it to an in-memory buffer within the
Grafana Loki application.

At one-minute intervals, this data is flushed and writ-
ten to an Amazon S3 bucket. This strategy significantly
reduces storage costs compared to maintaining the data
in Persistent Volume Claims (PVC) within the Kubernetes
environment.

The errors introduced in each microservice during the
Chaos Mesh experiment are summarized in Table 3. The
duration of these disruptions varied, averaging around
10 minutes. The entire test spanned 30 minutes, with the
first 10 minutes serving as a baseline period under normal
system load, free from any injected faults. During the next
10 minutes, the faults listed in Table 1 were introduced. The
final 10 minutes mirrored the initial baseline, with no further
errors injected, allowing the system to return to normal
operating conditions.

Using the Chaos-mesh graphical interface we can follow
and interact with the tests in real time. As shown in Figure 7
tests logs and all events are displayed by the tool.

Figure 8 Illustrates the chronological sequence of events in
a Chaos Mesh experiment using a timeline.

FIGURE 9. Log Chunk Registered.

The Registered Block in Figure 9 refers to the set of
logs captured during actual system operations, while the
Generated Block in Figure 10 represents the logs predicted
by the model. An anomaly is identified when the similarity
score (SIM SCORE) between the Registered Block and the
Generated Block falls below a predefined threshold of 0.8.
Specifically, if the cosine similarity drops below 0.8, the
deviation is considered substantial enough to be classified as
an anomaly.

FIGURE 10. Log Chunk Generated.

Cosine similarity is a measure used to determine the
similarity between two non-zero vectors in an inner product
space, often used in fields like information retrieval, machine
learning, and natural language processing. It calculates the
cosine of the angle between two vectors, providing a metric
of orientation rather than magnitude.

The cosine similarity between two vectors A and B is
defined as:

cosine_similarity(A,B) =
A · B

∥A∥∥B∥

Where:
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• A · B is the dot product of vectors A and B.
• ∥A∥ is the magnitude (or norm) of vector A, calculated
as ∥A∥ =

√∑n
i=1 A

2
i .

• ∥B∥ is the magnitude (or norm) of vector B, calculated
as ∥B∥ =

√∑n
i=1 B

2
i .

The resulting value of cosine similarity ranges from
−1 to 1:

• A value of 1 indicates that the two vectors are identical
in direction.

• A value of 0 indicates orthogonality, meaning there is no
similarity between the vectors.

• A value of −1 indicates that the two vectors are
diametrically opposed, pointing in opposite directions.

For the example shown in Figure 10, the SIM SCORE
result is 0.82. This value is close to 1, indicating high
similarity between the registered logs and the generated
logs. Consequently, this suggests a low probability of the
logs being anomalous, as the similarity score exceeds
the predefined threshold of 0.8. This result supports the
conclusion that the log patterns align well with expected
behavior, reinforcing the model’s effectiveness in detecting
anomalies.

Given that the volume of logs generated amounted to
several thousand lines for both Registered and Generated
events, we manually classified a representative sample of
approximately 10% of the total dataset. This classification
serves as the foundation for generating the results and
categorizing the predictions within the model, which will be
elaborated upon in the subsequent chapter.

This manual classification allows for a more accurate
assessment of themodel’s performance and provides valuable
insights into the effectiveness of the anomaly detection
process. By establishing a ground truth through this sample,
we can better evaluate the model’s predictions and refine its
capabilities in identifying anomalies in log data.

B. BAYNET WORKFLOW
The proposed system, Baynet, leverages the Python library
pgmpy, which includes support for dynamic Bayesian
networks. Given the highly dynamic relationships among
system components, Baynet adopts a flexible architecture
that allows real-time updates of values and weights within
the Bayesian network, reflecting the evolving nature of
events.

FIGURE 11. Baynet Architecture.

In the following sections, we detail the operational
dynamics of Baynet and its architectural components:

1) Input Data Handling:
Baynet ingests data in the form of JSON payloads
derived from large language model (LLM) training
outputs. Upon detecting one or more anomalies, this
data is queued asynchronously via an Amazon Simple
Queue Service. Each message sent to the queue
encapsulates critical metadata, including the name of
the affected service, the type of anomaly detected,
timestamps, and additional contextual information.

2) Trace Analysis:
The system initiates an in-depth trace analysis for
microservices flagged with anomalies. This step
ensures that only traces associated with the affected
components are subjected to scrutiny, optimizing
computational efficiency.

3) Dynamic Weight Adjustment:
Based on the trace analysis, Baynet adjusts the weights
of its Bayesian network to reflect the presence of errors
identified within spans or traces. These modifications
enhance the network’s representational accuracy in real
time.

4) Component Relationship Modeling:
Baynet incorporates dynamically adjustable relation-
ships between system components. By leveraging
data provided by Istio, the framework establishes and
updates the interconnections among microservices,
ensuring a comprehensive and adaptive representation
of system dependencies.

Through this dynamic inference process, Baynet delivers
Bayesian analyses tailored to the transient behaviors inherent
in distributed systems.

The initial phase of theworkflow involves a comprehensive
analysis of all Grafana Tempo8 traces, as illustrated in the
accompanying Figure 12.

Grafana Tempo is an open-source, distributed tracing
system designed to seamlessly integrate with the Grafana
observability stack. It allows developers and operators to
collect, store, and query traces from distributed systems.
Tempo’s primary focus is to provide scalable, cost-efficient,
and simplified tracing without the need for complex storage
systems, as it is optimized for high-throughput environments.

FIGURE 12. Trace ID from Tempo Data source.

Interactively, Grafana enables us to monitor the duration,
errors, and various other metadata extracted from these

8https://grafana.com/oss/tempo/
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traces, as depicted in the Figure 13. The Tempo data is
derived from Istio’s network information, collected through
the Envoy proxies, and supplemented with additional data
from the application itself. This combination provides a
comprehensive data source that offers visibility at a high
level, capturing insights from the perspective of inter-service
calls across all microservices.

FIGURE 13. Traces Status from Tempo Data Source.

Based on the collected traces, we begin by cleaning the data
and removing irrelevant metadata for Bayesian inference.

The get_score function processes service trace data and
calculates a reliability score for each service based on several
performance metrics. The scoring system takes into account
request duration, success rate, response times (P99), HTTP
status codes, and recent deployment conditions.

FIGURE 14. Trace ID duration from Tempo Data source.

The second function defines various thresholds and
penalties used to assess service performance. These are:

• Duration Threshold: If a request takes longer than
1 second (1e9 nanoseconds), a penalty is applied.

• 2xx Success Rate Threshold: If the service’s success
rate (the proportion of successful 2xx HTTP responses)
is below 70%, a penalty is applied.

• P99 Threshold: If the 99th percentile response time
(p99) exceeds 200ms (2e8 nanoseconds), a penalty is
applied.

• HTTP Status Code Penalty: If the service returns
HTTP status codes in the 500 range (server errors),
a penalty is applied.

• Recent Deployment Penalty: If the service has been
recently deployed (indicated by the recent_deploy
flag) and the deployment’s TTL (time-to-live) is less
than 60 minutes, a penalty is applied.

The function defines a function calculate_score that
computes the reliability score for each service:

• The base score starts at 1.0 (best possible score).
• For each performance metric, if the metric exceeds its
threshold or condition, a penalty is applied to reduce the
score.

• The penalties for each metric are calculated as follows:

– Duration: A penalty is applied if the duration
exceeds the threshold.

– 2xx Rate: A penalty is applied if the success rate is
below the threshold.

– P99: A penalty is applied if the P99 response time
exceeds the threshold.

– Status Codes: A penalty is applied for any 500 series
HTTP status code.

– Recent Deployment: A penalty is applied if the
deployment TTL is less than 60 minutes.

• The final score is clamped between 0 and 1, ensuring
that no score exceeds 1 or falls below 0.

The function processes the input data as follows:

• It reads the file preprocessed_traces.csv into
a DataFrame.

• The calculate_score function is applied to each
row to compute the score for each service.

The function creates a new DataFrame with the calculated
scores, containing only the service names and their respective
scores. This DataFrame is saved to a new CSV file called
service_scores.csv.

Although the function includes a note about dynamically
retrieving thresholds from Prometheus and Istio. Finally, the
function evaluates the health and reliability of services based
on several performance metrics and generates a score for
each service. The results are stored in a CSV file for further
analysis.

Lastly, we built a Bayesian Network to model the
failure probabilities of microservices based on their health
scores. It loads service relationships and health scores from
CSV files, builds a network where services are nodes
connected by edges representing dependencies, and defines
Conditional Probability Distributions (CPDs) for each service
based on its health score. Using Variable Elimination,
it calculates the probability of each service being down
and stores the results in both a CSV file and Redis. This
model helps predict service failures and can be used for
automated monitoring or decision-making in a microservices
architecture.

The final result is displayed using a custom plugin
NodeGraph API9 and can be represented using Figure 15.
For each microservice that exists in the system, a node was
created, and the relationships and connections between them
are represented by Edges.

Within each node there is the probability of outage, for
that period of time, according to the Bayesian inference
generated in the previous step. It is worth remember-
ing that the values are dynamic, as are the relation-
ships of other services. If a new microservice is added
or removed, it will be automatically updated on the
dashboard.

9https://grafana.com/grafana/plugins/hamedkarbasi93-nodegraphapi-
datasource/
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FIGURE 15. Bayesian Network using NodeGraph.

VI. OUTCOMES AND DISCUSSIONS
The Figure 16 heatmap visualizes the performance of several
anomaly detection models across different test scenarios
(represented by filenames). Each row corresponds to a test,
and each column represents a performance metric: Accuracy,
Precision, Recall, and F1-score. The color intensity corre-
sponds to the metric’s value, with darker blues indicating
higher values and lighter yellows indicating lower values.

FIGURE 16. LLM Heatmap Matrix.

• High Precision: Across almost all tests, the precision
is very high (often 1.00 or very close). This means
that when the model predicts an anomaly, it is almost
always correct. This is a positive sign, indicating few
false alarms.

• Varied Recall: The recall varies more significantly
between tests. This indicates that the models have
different abilities to capture all actual anomalies. Some
tests have near-perfect recall (e.g., Frontend Pod
Failure), while others have lower recall.

• Accuracy and F1-Score Follow Recall: The accuracy
and F1-score generally follow the trend of the recall.
When recall is high, accuracy and F1-score are also high.
This is expected, as recall plays a significant role in both
metrics.

• False Negatives are the Primary Issue: The main
source of errors seems to be false negatives (missing
actual anomalies), as indicated by the varying recall
values and the fact that false positives are low in most
tests.

The heatmap effectively highlights that while the models
generally have high precision (few false positives), their
ability to detect all actual anomalies (recall) varies across
different test scenarios. The Mongo IO Failure test is a
clear outlier with significantly lower performance, and the
near-perfect performance on Cache Disconnected warrants
further investigation to rule out overfitting. The heatmap
provides a quick and intuitive way to compare the models’
performance across different tests and identify areas for
potential improvement.

• Cache Disconnected Failure: This test shows
perfect performance (1.00 for all metrics). This suggests
the model is very effective at detecting this specific type
of anomaly. However, perfect performance on a single
test could indicate overfitting and should be examined
with additional data.

• Mongo IO Failure: This test has the lowest recall
(0.71) and consequently the lowest accuracy (0.78) and
F1-score (0.83). This indicates the model struggles to
detect this type of anomaly. Further investigation is
needed to understand why and improve performance on
this specific scenario.

• Queue Network Disconnect Failure: This
test also has a relatively lower recall (0.83) and a higher
number of false negatives (64) compared to other tests,
indicating room for improvement in detecting queue
disconnections.

• Shipping Netchaos Failure: This test shows
good performance with high accuracy (around 0.90-
0.95), high precision (1.00), and reasonably good recall
(0.86-0.91).

• Shipping Pod Failure: This test shows good
performance with high accuracy (around 0.90-0.95),
high precision (1.00), and reasonably good recall (0.86-
0.91).

• User Pod Failure: This test shows good perfor-
mance with high accuracy (around 0.90-0.95), high
precision (1.00), and reasonably good recall (0.86-0.91).

• Shipping Bandwidth Failure: This test shows
good performance with high accuracy (around 0.90-
0.95), high precision (1.00), and reasonably good recall
(0.86-0.91).

• Shipping HTTP Failure: This test is unique in
having a small number of false positives (2). While the
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number is low, it’s worth investigating why these errors
occurred.

• Other Tests: (Frontend Pod Failure, MySQL
Failure, Cards DB Pod Failure, Payment
Pod Failure, Shipping Memory Failure):
These tests show very high performance with accuracy,
precision, recall, and F1-score generally above 0.95,
indicating the models are very effective in these specific
scenarios.

A. LLM KEY TAKEAWAYS
• Focus on Improving Recall: The main area for
improvement is increasing recall, especially for tests like
Mongo IO Failure and Queue Disconnect
Failure. This could involve:

FIGURE 17. LLM Summary Results.

– Collecting more data for these specific anomaly
types.

– Adjusting model parameters or thresholds to be
more sensitive to anomalies.

– Exploring different modeling techniques that might
be better suited for these types of anomalies.

• Investigate False Positives in Shipping HTTP
Failure: While the number of false positives is low,
understanding why they occurred can help further refine
the model.

• Validate Cache Disconnected Failure Per-
formance: The perfect performance on this test should
be validated with additional data to rule out overfitting.

• Consider Cost of Errors: Depending on the applica-
tion, the cost of false negatives (missing a real anomaly)
might be higher than the cost of false positives (false
alarms). This should be considered when deciding on the
desired trade-off between precision and recall.

Figure 17 shows a TOP-Down approach with all data from
all tests summarized in a single table, to facilitate comparison
and visualization of outliers.

B. BAYESIAN NETWORK PREDICTION RESULTS
In this section, we present the results of the Bayesian network
predictions, highlighting its performance and accuracy in
detecting and classifying anomalies. The analysis is based on
the errors approach used during the anomaly identification
phase, and the workflow integrates the Bayesian network
with trace analysis for a comprehensive evaluation. Key
metrics, comparative insights, and practical implications of
the prediction outcomes are discussed to validate the efficacy
of the approach. Based on the probabilities derived from the
Bayesian network, the corresponding levels are represented
using the following color coding:

• 0-15% - Green (low outage probability)
• 16-45% - Yellow (moderate outage probability)
• 46-99% - Red (high outage probability)
A snapshot10 was generated with tests of some experi-

ments so that it is possible to visualize the dynamics and how
the dashboards are displayed at the time of the test. Some
data may not be available. Raintank is the one who stores and
makes the data available through these links in the footer.

For the performance evaluation of the Bayesian network,
we utilized the same error (3) employed during the anomaly
identification and classification phase. For each anomaly
detected by the LLM, we initiated the trace analysis work-
flow, followed by the construction of the Bayesian network.

FIGURE 18. Bayesian Network Performance Analysis - Frontend.

The Figure 18 demonstrates the relationships and depen-
dencies among various components of the system. The
highlighted node front-end, marked in red with a 90.0%
likelihood, indicates a significantly high probability of being
the root cause of an anomaly.

All other nodes show a 0.00% likelihood, suggesting that
no anomalies have propagated to these components or that
they are not currently impacted. The network effectively
outlines the causal relationships, helping identify the source
of an issue and tracing its potential impact through the

10https://snapshots.raintank.io/dashboard/snapshot/erkWnoyE2om7
UZhQksIdtUoJoA8oleF4?orgId=0
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system. This test highlights the utility of Bayesian networks
in pinpointing anomalies and their dependencies, providing
a structured approach to troubleshooting. When the value
is close to zero, it typically indicates that no traces were
intercepted for that service, resulting in an outage probability
near zero. In most cases where the value is zero, it suggests
that the microservice was unaffected by the test, leaving no
errors for the Bayesian network to analyze.

The Figure 19 identified the shipping microservice as
the most likely point of failure, with a 78% probability of
being out of order. Additionally, the orders microservice
exhibited a 12.16% probability of failure, attributed to its
dependency on the shipping microservice. This highlights the
cascading effects of failures within a dependency chain: when
a dependent microservice experiences an issue, the connected
services may display mild symptoms of failure. However,
these symptoms often remain insufficiently significant to
classify the dependent microservices as failing, leading the
network to still consider them operational.

FIGURE 19. Bayesian Network Performance Analysis - Shipping.

VII. CONCLUSION AND FUTURE DIRECTIONS
The model was originally designed as a threshold-based
anomaly detector trained using self-supervised learning,
but it can be easily adapted into a classifier. Once the
model is deployed, operators can collect and label anomaly
log samples, allowing for the replacement of the model’s
language modeling head with a classification head to fulfill
this purpose. This adaptability enhances its functionality,
enabling it to categorize logs based on their anomaly status.
Moreover, the model can be pre-trained on diverse log
datasets, which broadens its applicability and makes it a
versatile foundation for various natural language processing
(NLP) tasks and log anomaly detection scenarios. This
flexibility allows it to be fine-tuned for specific use cases,
improving its effectiveness in detecting anomalies in different
environments and with varying log characteristics.

Chaos Mesh provides a comprehensive set of error types
that can be introduced into a system, making it a valuable
tool for resilience testing.

As part of our future work, we plan to:
• Map All Error Relationships: We will systematically
document how different error types affect various
microservices. This will involve analyzing the impact of
each error type on system performance, response times,
and overall behavior.

• Conduct Systematic Experiments: We will perform
experiments that apply each error type across all
microservices in the sock shop application. By doing
this, we can identify patterns of interactions between
errors and understand their cumulative effects on system
behavior.

• Enhance Model Training: The insights gained from
the mapping and experiments will be used to train our
anomaly detection model more effectively. By incor-
porating data from a wider range of error scenarios,
we can improve the model’s accuracy and robustness in
identifying anomalies.

• Evaluate and Iterate: We will continuously evaluate
the model’s performance based on its ability to detect
anomalies resulting from various error types. This
iterative process will help refine the model and enhance
its predictive capabilities.

By exploring these avenues, we aim to develop a more
resilient system capable of adapting to and recovering from
diverse failure scenarios, ultimately improving overall system
stability and performance.

In certain sections of the log, numerical data appears
as IP addresses, response times, status codes, and other
metrics. While the LLM approach often neglects these
numerically significant values, Long Short-Term Memory
(LSTM) networks may provide a more effective solution.

LSTM networks are designed to handle sequential data
and can retain relevant information over long sequences,
making them well-suited for tasks that involve time-series
data or event logs. Unlike LLMs, which may treat numerical
data as mere tokens and fail to account for their contex-
tual importance, LSTMs can learn patterns in numerical
sequences, thereby incorporating this data meaningfully into
the analysis.

By leveraging the strengths of LSTMs, it is possible
to maintain the significance of numerical metrics while
simultaneously modeling the temporal dependencies inherent
in log data. This dual capability allows for a more com-
prehensive understanding of the context surrounding each
event, potentially enhancing predictive accuracy and insight
generation compared to relying solely on LLMs.
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