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Shearless barrier improves the plasma confinement and can be created by the application of a bias. 
Previously, they were identified with a 2D map of charged particle motion in one drift mode. Now, 
we add a second drift mode and derive a 3D map. By fixing the parameters related to the first mode 
and varying the second mode amplitude, we show that the existence of the barriers depends on the 
second mode amplitude. Winding number and recurrence times have been used to study the particle 
transport and the existence of the shearless. We also observe that even after the shearless destruction, the 
stickiness in its neighborhood continues to have a transport blocking effect to some extent. So, to evaluate 
the effectiveness of the barriers, we compute the ratio of initial conditions that crossed the barriers and 
by using the space parameter we highlighted the sensitivity of transport barriers to perturbations.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Turbulence driven particle transport in magnetically confined 
plasmas is a recurrent and well-known transport phenomenon 
[1,2]. This commonly observed particle transport should be re-
duced to improve plasma confinement. Over the years, several 
control mechanisms have been implemented to reduce the par-
ticle transport, one of which is to change the radial contribution 
of the electric field through the application of an external electric 
potential [3].

Considering drift waves as a turbulence mechanism in toka-
maks, a model was proposed in order to describe the particle 
transport as a consequence of chaotic motion and to explain its 
dependence on the radial electric field [4–6]. For nonmonotonic 
equilibrium electric field, the model allows a Hamiltonian approx-
imation that leads to a nontwist nonlinear map with two coupled 
equations [4]. This map describes changes in the topology of reg-
ular structures in the phase space with the onset of shearless 
barriers [7], typical of nontwist maps [8–11], that limit the par-
ticle transport.

To investigate the plasma turbulence and the associated particle 
transport control, experiments have been performed in a new de-
vice, the Texas Helimak, specially designed to have discharges with 
different radial electric field equilibria. A recent work [12] used 
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one-mode approximation for the drift wave model and for the 
study of the shearless barrier in the magnetically confined plasmas 
in nonmonotonic Texas Helimak equilibria. In the current work we 
added a second mode to the same model. One motivation to intro-
duce this second mode is to improve the existing drift wave model 
and try to mimic the turbulent dynamics of the plasma.

For the modified model, we derive a map with three interde-
pendent coordinates. By fixing the amplitude of the first mode 
and varying the amplitude of the second one, we investigate the 
existence of the shearless barriers, and we compute the critical 
parameter values for their destruction.

We also observe that even after the shearless barrier destruc-
tion, the stickiness in its neighborhood continues to have a trans-
port blocking effect to some extent. So, in order to evaluate the 
effectiveness of the barriers, we compute the ratio of initial condi-
tions that crossed the barriers in terms of the parameters related 
to the modes and by using the space parameter we highlighted the 
sensitivity of transport barriers to perturbations.

In Section 2 we introduce the model and derive the new map. 
The transport barrier effectiveness is analyzed in Section 3, and the 
conclusions are given in Section 4.

2. The model

Investigations about the turbulence and transport in tokamak 
present difficulties, due to its geometry. Considering this issue, the 
Texas Helimak (TH hereafter) was developed, which is a device 
designed with a simpler geometry than tokamaks to perform mag-

https://doi.org/10.1016/j.physleta.2022.128237
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2022.128237&domain=pdf
mailto:luis.souza@unesp.br
mailto:ricardo.egydio@unesp.br
mailto:ibere@if.usp.br
https://doi.org/10.1016/j.physleta.2022.128237


L.F. Bernardi de Souza, R. Egydio de Carvalho and I.L. Caldas Physics Letters A 444 (2022) 128237
netized experiments that reproduce selected plasma characteristics 
at the edge of the tokamaks. The TH consists of a circular vessel 
and helical magnetic field lines. The magnetic field has a toroidal 
and a vertical component expressed by,

�B = Bϕ êϕ + Bzêz (1)

The helicity of the field lines is the inverse of the safety factor 
given by [13],

q = H Bϕ

rBz
(2)

in which H is the height of the TH camera. The plasma equilibrium 
has vertical and radial electric field components.

Due to the circular component of the magnetic field, a verti-
cal electric field appears and, consequently an electric drift veloc-
ity. This velocity has a radial component that pushes the plasma 
against the wall of the machine [12].

The fluctuations in TH are present in the whole plasma and 
they depend on the radial electric field and density profiles [14]. In 
the analyzed experiments the radial electric field can be modified 
by a bias, an external electric potential applied in a set of plates 
[12,13]. Thus, turbulence-driven particle transport can be modi-
fied, and its properties investigated. This turbulence, as the one 
observed in the scrape-off layer of tokamaks, is essentially elec-
trostatic with a different spectrum from the magnetic fluctuations 
[13–16]. In TH, the magnetic fluctuations are even negligible [13].

For a better approximation of the model, experimental data 
from [17–19] were used to estimate the map’s control parame-
ters and for numerical simulations. We limited the study for two 
positive bias values (4 and 8 Volts).

2.1. Two-modes drift wave map

The drift wave model [4] assumes that the motion of the parti-
cles is dictated by the drift �E × �B so, the particle motion equation 
or the guiding center equation is given by,

d�x
dt

= υ||
�B
B

+ �E × �B
B2

(3)

in which �x is the position vector of the particles, υ|| is the velocity 
modulus of the particles parallel to the circular component of the 
magnetic field �B . In the TH, the electric field is composed by two 
terms, an equilibrium radial field E0 and a perturbative component 
�̃E so that,

�E = E0êr + �̃E (4)

and they are derived from a perturbative electrostatic potential,

�̃E = − �∇φ̃ (5)

The model includes the drift wave effect as a turbulence mech-
anism i.e., the perturbative term is written in cylindrical coordi-
nates (r, ϕ, z) as the expansion,

φ̃(�x, t) =
∑
l,m,n

φl,m,ncos(mϕ − lz z − nω0t) (6)

in which φl,m,n is the amplitude of the waves, ω0 is the lowest 
angular frequency in the drift wave spectrum and lz = 2π l/H (l =
1, 2, 3...N). Using the following identities,

∞∑
cos(nω0t) = 2π

∞∑
δ(ω0t − 2πn) (7)
n=−∞ n=−∞

2

∞∑
n=−∞

sin(nω0t) = 0 (8)

the electrostatic potential (6) can be written as,

φ̃ = 2π
∑
l,m,n

φl,m,ncos (mϕ − lz z) δ(ω0t − 2πn) (9)

In TH, the magnitude of the vertical component of the magnetic 
field (Bz) is at most 10% of the magnitude of the circular compo-
nent Bϕ [5], so the approximation can be made, B ≈ Bϕ � Bz , 
therefore the decomposition of equation (3) in each coordinate re-
sults in,

dr

dt
= 1

B

∂φ̃

∂z
(10)

r
dϕ

dt
= υ|| (11)

dz

dt
= υ||

Bz

B
+ E0

B
− 1

B

∂φ̃

∂r
(12)

The drift wave model is composed of infinite spatial modes 
which are denoted by m and l in equation (6). In our current ap-
proach we consider two spatial modes in the electrostatic potential 
of equation (6), which we call by (M, L) for the first mode and 
(M + 1, L) for the next consecutive mode. Thus, the infinite spa-
tial modes model is adjusted to only two dominant spatial modes. 
The choice of the values of M and L was based in experiments 
with the TH and reported in [18]. In fact, we considered that the 
experimental power spectra have a broad frequency interval and 
a narrow wave number interval. This profile allows us to assume 
two modes with different wave numbers and the same frequen-
cies. Therefore, the electrostatic potential (6) is approximated as,

φ̃ = 2π
{
φM,L cos [Mϕ − Lz] + φM+1,L cos [(M + 1)ϕ − Lz)]

}
×

∑
n

δ(ω0t − 2πn) (6′)

It is now convenient to make the following variables change,

I = r2 − R2
int

R2
ext − R2

int

(13)

χ = Mϕ − Lz (14)

where Rint and Rext are internal and external radius of the TH, 
respectively. The coordinate χ is an angle and I is the action vari-
able. Therefore, from (13) and (14) on, the equations of motion 
are written in the action-angle coordinates. The perturbative term 
(9) consists of periodic pulses of period T = 2π/ω0, so that the 
integration of equations (13) and (14) is done between two con-
secutive pulses, however the coordinate χ has a term in ϕ , so it is 
also necessary to integrate equation (11) in the same interval as I
and χ . Hence, the two-mode nonlinear drift wave map is given by,

In+1 = In + α1sinχn + α2sin(χn + ϕn) (15a)

χn+1 = χn + β√
In+1 + b2

(15b)

ϕn+1 = ϕn + γ√
In+1 + b2

(15c)

with b2 ≡ R2
int

R2
ext−R2

int
. The control parameters α1, α2, β and γ are 

defined as,

α1 ≡ 4π LφM,L
2

(16)

ω0q(In)a Bz
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α2 ≡ 4π LφM+1,L

ω0q (In)a2 Bz
(17)

β ≡ 2π

ω0aq (In)

[
υ|| (Mq (In) − L) − LE0

Bz

]
(18)

γ ≡ 2πυ||
ω0a

(19)

q is the safety factor which is kept constant as q = 2.89 according 
to [19]. E0 is the equilibrium electric field and a ≡

√
R2

ext − R2
int .

Comparing this set of equations with one used in [12], we ob-
serve that the presence of the second mode results in an additional 
coupled equation for ϕn+1 and four control parameters. We as-
sumed q, φM,L , φM+1,L constants and M = 2 and L = 3. Although 
the new map has three coupled coordinates, the phase spaces will 
be displayed in action-angle coordinates (I, χ).

The control parameters α1 and α2 are related to the amplitude 
of the waves, according to (16) and (17). The parameter β is re-
lated to the equilibrium electric field E0(I) which we will assume 
with a quadratic radial profile. The choice for the radial approxima-
tion of the electric field profiles changes the properties of the map, 
leading to topological rearrangements in the phase space. More 
specifically, choosing a nonlinear radial profile for the electric field 
leads to the violation of the twist condition what can introduce at 
least one shearless curve in the phase space [9].

For null wave amplitudes, i.e., φM,L and φM+1,L equal to zero, 
implies that α1 and α2 are also nulls according to (16) and (17), 
therefore the map represents an integrable system and the orbits 
in the phase space will be represented by invariant curves, for any 
initial condition I0. For non-null values of the wave amplitudes, 
the phase space presents regular structures and chaotic orbits. One 
method of evaluating the nature of the orbits in non-integrable 
systems is through the winding number. For a given initial condi-
tion χ0, the winding number is defined as,


 = lim
n→∞

χn − χ0

n
(20)

and n is a great number of iterations.
If the winding number profile has an extreme (local maximum 

or minimum), the coordinates corresponding to the extreme iden-
tify a point over the shearless curve in the phase space. The shear-
less curve has the important characteristic of being quite robust 
under the effect of perturbations and for the plasma confinement 
problem, the destruction of the shearless curve indicates lack of 
particle confinement causing particle lost in the system [12].

In addition to the winding number profile, another numerical 
method to analyze the shearless curve, or any quasi-periodic or-
bits, is by the Slater’s theorem [20], which says for a quasi-periodic 
orbit there are at most three different recurrence times, denoted 
by �1, �2 and �3 = �1 + �2. Therefore, calculating the recurrence 
times it is possible to determine if the orbit is quasi-periodic or 
chaotic [21,22].

In the next sections, will be evaluated the influence of the sec-
ond mode in the phase space, the critical parameters values of 
which the shearless curve is destroyed and the effectiveness of the 
transport barriers in terms of the map’s control parameters.

2.2. Effect of the second mode

In [6], the bias influence was carried out by setting −10 V for 
the wave’s amplitude, therefore, we keep this same amplitude for 
the first wave, i.e., φM,L also assumes −10 V. Next, we vary grad-
ually the second wave amplitude (φM+1,L ). We choose only the 
bias 4 and 8 Volts because the shearless barrier is present for both 
cases when the amplitude of the first wave is set to −10 V [6]. The 
coordinates were normalized between 0 and 1. An escape condition 
3

Fig. 1. The winding number profile for χ0 = 0.5 and several values of I, the red 
dot (I = 0.4308, 
 = 1.2532) allows to choose an initial condition on the shearless 
curve for 4 Volts bias. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Fig. 2. Perspectives in the space (I, χ, ϕ). In black the iterations of the initial con-
dition; in red the shearless curve in the projected phase space (I, χ); in blue the 
phase space (I, ϕ) and in green the configuration space (χ, ϕ). The shearless curve 
appears only in the projection (I, χ).

√
I2
n+1 + b2 was also considered, this means that iterations of I

was interrupted when I2
n+1 < b2. For the winding number profiles, 

the initial condition was χ0 = 0.5 and ϕ0 = 0.5 with 104 itera-
tions. For both bias values, as φM,L = −10 V then α1 = −0.09423. 
Along the numerical calculation the values of φM+1,L were implic-
itly obtained by varying conveniently the values of α2.

The addition of a second mode introduced a new coordinate 
in relation to the one-mode map [4,12], therefore the dynamics 
is governed by a map with three coordinates (I, χ, ϕ), but the 
most significant results occur when we analyze the dynamics in 
the plane (χ , I). The main result that led us to this conclusion was 
that the shearless curve appeared only in the (χ , I) plane. In Fig. 1
we present the winding number profile, with α2 = 0, for the case 
of 4 Volts bias and we can see a minimum point, what identifies a 
point belonging to the shearless curve.

In Fig. 2 we show iterations, in black color, of this identified 
point on the shearless curve in the 3d space (I, χ, ϕ). We see that 
the shearless curve appears only when the dynamic is projected 
in the (χ , I) plane, color red, while in the other projections, (ϕ, I), 
color blue, and (ϕ, χ ), color green, it does not appear. Hence, from 
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Fig. 3. The phase space (I, χ) with α1 = −0.09423 and α2 = 0, for 4 Volts bias. The 
shearless curve is in red.

now on the investigations of the influence of the second mode in 
the dynamics will only occur in the plane (χ , I). The same behav-
ior was found for the 8 Volts bias case.

In Fig. 3 the phase space with α2 = 0 was obtained by iter-
ating 100 times the map equations for 50 initial conditions. The 
obtained phase space shows invariant curves and resonance is-
lands in the central region with the chaotic sea divided in two re-
gions, highlighted in red is the shearless curve. The shearless curve 
was iterated with the initial condition identified by the minimum 
point in the winding number profile in Fig. 1. The barriers splitted 
the chaotic region, avoiding the internal trajectories to escape to 
the wall and improving the plasma confinement. Furthermore, the 
presence of the shearless curve for α2 = 0 is of great importance as 
we now have a reference for comparisons when the second mode 
enters in the dynamics.

We present in Fig. 4a the phase space (χ, I), for α2 = −0.01633
(the critical value for the shearless), using two colors, red and 
green, representing iterations of each 12 initial conditions above 
and below, respectively, where the shearless curve was previously 
located. We iterated each initial condition 104 times, where we ob-
serve that the orbits are limited and separated by a high density 
of points at the place where was the shearless torus. This effect is 
called stickiness and this region continues blocking the transport 
Fig. 4. Phase spaces for the 4 Volts bias case with α1 = −0.09423, ϕ0 = 0.5, χ0 ∈ [0, 1] a
green region for I0 ∈ [0.2, 0.3]. In a), α2 = −0.01633, we see the stickiness blocking the 

4

Table 1
Slater Recurrence Times (4 Volts bias) for the shearless 
curves with three different values of α2 and fixed α1 =
−0.09423. When α2 = −0.01633 the shearless torus is de-
stroyed. The initial conditions used on the shearless are 
(I, χ, ϕ) = (0.4308, 0.5, 0.5).

α2 �1 �2 �3

−0.01611 4 104 108
−0.01622 4 104 108
−0.01633 4 73 108

in the phase space for a high number of iterations. It can appear 
just after the destruction of the shearless curve [10,23]. Fig. 4b 
shows the orbits mixing with the value of α2 = −0.05033.

As the amplitude of the second wave is increased, the regular 
structures begin to be destroyed leading to a rising sea of chaos. In 
order to evaluate the effects of the perturbation on the shearless 
barrier, we computed the Poincaré recurrence times for the shear-
less curve using as initial condition the minimum of the winding 
number profile, Fig. 1. The Poincaré recurrence time theorem states 
that in dynamical systems an orbit will return to a state arbitrar-
ily close to its initial state after a sufficiently long, but finite, time 
[20]. On other hand, an adapted version of Slater’s theorem for 
dynamical systems states that a translation over irrational tori re-
turns to an arbitrary interval in at most three different recurrence 
times, so that the largest of them is the sum of the smallest ones 
[21,22].

In Table 1 we present recurrence times numerically obtained 
for three values of α2. Since the Slater’s recurrence time condition 
is violated for α2 = −0.01633, we know that the shearless barrier 
does not exist for this value. Moreover, we verify that this value 
of α2 is the critical value for the shearless barrier destruction, i.e., 
when α2 reaches −0.01633 the shearless torus is destroyed.

Similar results were obtained for the 8 V bias case. Without the 
presence of the second wave, the phase space in Fig. 5a) shows 
regular structures dividing and limiting the chaotic orbits into two 
separated regions and highlighted in red is the shearless curve. 
The shearless torus is easily identified as being the minimum of 
the winding number profile in Fig. 5b).

For the shearless torus with the second mode on, according to 
the recurrence times presented in Table 2, α2 = −0.01082 is the 
critical value since the recurrence times no longer obey the condi-
tion of Slater’s theorem.
nd were given 12 initial conditions in the red region for I0 ∈ [0.7, 0.8] and 12 in the 
transport. In b), α2 = −0.05033, we see the orbits mixing.
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Fig. 5. In a) phase space with α1 = −0.09423 and α2 = 0 (8 Volts bias) showing the shearless curve highlighted in red. In (b) the winding number profile for the same 
parameters, the red dot (I = 0.4115, χ = 1.6810) allows to choose an initial condition on the shearless curve.

Fig. 6. Phase spaces for the 8 Volts bias case with α1 = −0.09423, ϕ0 = 0.5, χ0 ∈ [0, 1] and were given 12 initial conditions in the red region for I0 ∈ [0.7, 0.8] and 12 in the 
green region for I0 ∈ [0.2, 0.3]. In a), α2 = −0.01088, we see the stickiness blocking the transport. In b), α2 = −0.04082, we see the orbits mixing.
Table 2
Slater Recurrence Times (8 Volts bias) for three different 
values of α2 with α1 = −0.09423. When α2 = −0.01082
the shearless torus is destroyed.

α2 �1 �2 �3

−0.01061 6 71 77
−0.01071 6 71 77
−0.01082 6 56 71

For the 8 Volts bias case, with the increase of the amplitude of 
the second wave, the regular structures are gradually substituted 
by chaotic orbits as we can see in Fig. 6a with α2 = −0.01082. 
Similarly to the 4 Volt bias case, the orbits of the red and green 
regions are still limited and do not mix in the phase space due to 
the high density of points where the invariant torus was located, 
evidencing the existence of a temporary transport barrier consti-
tuted by a region of stickiness. In Fig. 6a we iterated each initial 
condition 104 times. Fig. 6b shows the orbits mixing with the value 
of α2 = −0.04082.

With the destruction of the shearless curve, and the other in-
variant curves, it is expected that the chaotic orbits would spread 
throughout the phase space, however transport blocking effects 
5

are still present. Fig. 4 and Fig. 6 show, for both bias values, that 
where the invariant curves were initially located there is a stick-
iness layer formed by a high density of points making it difficult 
for the chaotic orbits to access the entire phase space even after 
the invariant torus destruction.

3. Transport barrier effectiveness

Previously, the transport barrier study [12] was limited to com-
pute the critical parameter values of the shearless curve destruc-
tion for one perturbing mode, but its robustness was not evaluated. 
Now we evaluate this robustness by considering the perturbation 
caused by a second mode, in terms of the control parameters α1
and α2, regardless of which kind of barrier is causing the blockage, 
the invariant curves, the shearless torus or the stickiness.

Fig. 7a and Fig. 7b show the space of parameters (α2, α1) 
depicted in a color scale, using the ranges α1 ∈ [−0.15, 0] and 
α2 ∈ [−0.2, 0]. This choice was made after many numerical sim-
ulations. Each parameter interval was varied in steps of 10−3 and 
for each pair α1 and α2, 2500 initial conditions were given in the 
chaotic region. Next, the map was iterated 1 × 106 times for each 
initial condition and finally was collected the initial conditions ra-
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Fig. 7. Space of parameters depicted in a color scale representing the ratio of initial conditions that crossed the position of the transport barrier. The other colors represent 
the stickiness intensity. The blue color means that the barrier is still acting, while it does not exist for the red region. The initial conditions used were, I0 ∈ [0.75, 0.9], 
χ0 ∈ [0, 1] and ϕ0 = 0.5. a) case of 4 Volts bias; b) case of 8 Volts bias.
tio of trajectories that have crossed the region where there were 
transport barriers, for each pair of α1 and α2. The condition used 
to assess whether the trajectory from an initial condition crossed 
the barrier comes from the observation that the barriers are lim-
ited between I ∼ [0.25, 0.73] in the phase space. Therefore, for an 
initial condition given above I0 > 0.73, if the trajectory reaches 
I < 0.25, or vice-versa, it follows that the trajectory crossed the 
barrier region.

The color scale in Figs. 7a and 7b represents the ratio of initial 
conditions that crossed the transport barrier region. The dark blue 
color represents parameters for which the barriers are identified. 
The other colors indicate the stickiness effectiveness. In particu-
lar, the red colors represent parameters for which no barriers are 
observed.

Both space parameters presented in Fig. 7a and Fig. 7b are qual-
itatively similar in the sense that only a small area representing 
less than 20% (dark blue region) indicates that these barriers exist. 
We can also see in Fig. 7a and Fig. 7b for high parameter values, in 
absolute values, more and more initial conditions are crossing the 
barriers as the red color dominates both parameter spaces. There-
fore, the increase of the parameter values, in absolute values, leads 
to a decrease in the effectiveness of the barriers.

4. Conclusion

In this work, we introduced a new three-dimensional nonlinear 
map to describe shearless transport barriers in magnetically con-
fined plasmas in a drift wave model with two dominant modes.

For the numerical applications, we considered plasma equilib-
rium profiles similar to those observed in Texas Helimak, modified 
by the bias, an external electric field, applied to control turbulence 
and transport. This modified electric field profiles are nonmono-
tonic and the resulting map violates the twist condition, giving 
rise to shearless transport barriers in phase space. Furthermore, 
by fixing the amplitude of the first mode and varying the am-
plitude of the second one, we investigate the existence of the 
shearless barriers and compute the critical parameter values for 
their destruction. Thus, examining the particle trajectories winding 
numbers and their recurrence, we show that the barriers existence 
previously predicted for one dominant drift mode are limited by 
the second mode amplitude increasing.

Despite the destruction of regular structures in the phase space, 
we also observed stickiness reducing the transport where the 
shearless curve was previously located. Then to evaluate the effec-
tiveness of the transport barriers, for both biases, we analyzed the 
6

space of parameters, depicted in a color scale, which showed that 
as the wave amplitudes increase, the effectiveness of the barriers 
decrease. However, choosing appropriately the amplitudes of the 
waves it is possible to preserve the transport barriers (as showed 
in the blue regions of Fig. 7) and consequently to have a better 
confinement even with two modes acting in the plasma.
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