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Abstract

Brazil has a long history of intensive silviculture with Eucalyptus 
species, mainly Eucalyptus urophylla and E. grandis. However, 
breeding advances may reduce genetic diversity in bred popu-
lations. Nine microsatellite markers assessed genetic diversity 
in wild and improved populations of E. urophylla and E. grandis, 
and genetic similarity in nine widely planted clones. Four wild 
populations of E. urophylla were evaluated: Flores, Timor-Leste, 
Timor and other Islands, along with three improved populati-
ons. For E. grandis, one wild and one improved population 
were analyzed. Results showed higher genetic diversity in 
improved populations, possibly due to admixed composition 
from different provenances. Wild populations of E. urophylla 
formed two distinct groups. All clones were genetically similar 
to improved E. urophylla populations. Some clones are inter-
specific hybrids, contradicting their reported pedigree, but 
predominantly E. urophylla.

Introduction

The intensive cultivation of exotic species, including those 
from the Eucalyptus genus, has a long history worldwide, 
dating back to the 18th century (Martin and Quillet 1974), and 
has experienced significant expansion in recent times. In Brazil, 
this intensification began in the 20th century, specifically with 
Eucalyptus urophylla S.T. Blake and E. grandis Hills ex Maiden 
due to their good adaptation and rapid growth in various regi-
ons of the country (Schumacher and Vieira 2015; Silva et al. 
2018, 2019). Among these species, E. urophylla is currently the 
most widely used, as it exhibits drought tolerance and resis-
tance to various pests and diseases (Assis et al. 2015; Silva et al. 
2019).

Despite the long history of eucalypt domestication in the 
Brazilian forestry (Ferreira and Santos 2015), eucalypt is a crop 
with a long reproductive cycle and the species have undergo-
ne only a few cycles of selection and recombination. Therefore, 
there is a high possibility that the breeding populations are still 
genetically close to the wild populations (Barros et al. 2023).

Hybridization is a commonly used technique in eucalypts 
breeding, as it allows the combination of desirable traits from 
species within the same subgenus (Scanavaca and Garcia 
2021). Cloning has made it possible to propagate hybrid 
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genotypes and clonal plantations have expanded throughout 
Brazil (Campinhos and Ikemori 1977; Assis and Mafia 2007; 
Palaudzyszyn Filho and Santos 2011). Thus, vegetative propa-
gation combined with inter- and intra-specific hybridization 
has led to the development of superior cultivars, capitalizing 
on a single genotype's additive and non-additive genetic 
effects (Grattapaglia and Kirst 2008).

Hybridization and cloning continue to guide genetic 
improvement programs, but strategies that aim to achieve 
genetic gain without the loss of genetic diversity have gained 
prominence in eucalypt population improvement (Silva et al. 
2018; Araujo et al. 2021, 2023; Barros et al. 2023). Genetic cha-
racterization within and among populations and species has 
become a more targeted focus (Mora et al. 2016; Lu et al. 2018), 
aiding population improvement for clonal selection.

Initially, population characterization was studied using 
morphological markers. However, molecular identification 
techniques, particularly molecular markers (Kirst et al. 2005; 
Ottewell et al. 2005) gained prominence, as they can also esti-
mate similarities between individuals and populations. Due to 
their co-dominance, multi-allelic nature, and high polymor-
phism rate, microsatellites markers are excellent for estimating 
the levels of genetic diversity, population structure and rela-
tedness etc (Payn et al. 2007, 2008; Zolet et al. 2017).

In genetic improvement programs, the selection of geno-
types that present specific characteristics of commercial inte-
rest, such as greater growth vigor, resistance to diseases and 
pests, adaptation to specific environmental, causes the narro-
wing of the genetic base, which can lead to the loss of alleles. 
Genetic improvement populations with little or no genetic 
variation can become susceptible to biotic and abiotic stresses 
(Salgotra and Chauhan 2023). The loss of genetic variation can 
make the continuity of genetic improvement programs 
unfeasible, which leads to the need to introduce new materials 
to continue selection activities and capitalize on genetic gains. 
This can be the case of Eucalyptus breeding programs and the 
status of genetic diversity of such populations has been poorly 
investigated (Miranda et al. 2019). Therefore, it is essential to 
monitor genetic diversity throughout genetic improvement 
programs.

The objective of this study was to determine if there is dif-
ference in genetic diversity between wild and improved popu-
lations of E. grandis and E. urophylla, as well as the genetic simi-
larity of nine commercial clones planted in the country. Our 
initial hypothesis is that in comparison to wild populations, 
selection in genetic improvement programs has led to the loss 
of genetic diversity. The alternative hypothesis is that in com-
parison to wild populations, selection in genetic improvement 
programs has not caused loss or even increased genetic diver-
sity due to the mixture of genetic materials originating from 
different provenances.

Material and Methods

Studied populations

In this study, the best individuals from each population were 
genotyped, coming from the following sources:
a) Wild population of E. grandis- Gra-Wild: 253 individuals from 
wild populations of Coffs Harbor and Atherton. The collection 
description is in Miranda et al. (2019)
b) Improved population of E. grandis- Gra-PCMF: 990 individu-
als from a population deployed in 2009 at the Experimental 
Stations belonging to ESALQ/USP in the state of São Paulo, 
IPEF's experimental network. The populations were composed 
of 160 open-pollinated progenies from different populations 
(description in Miranda et al. 2019).

c) Wild populations of E. urophylla, described as,
c1) U-Flores: 25 individuals from a population established in 
Brazil in 1977, using seeds from the island of Flores–Indonesia, 
at altitudes between 600 and 1000 m;
c2) U-East Timor: 25 individuals from a population implanted in 
Brazil in 1977, from seeds from the macroregion of Bessi–Lao, 
Dili and Remexio, with altitudes between 1400 and 2200 m;
c3) U-Timor: 25 individuals from a population implanted in Bra-
zil in 1980, from seeds of Lelogama, Timau, Debaha, Futusu-
nam, Nautsuu, Kenkneno and Futumnasi;
c4) U-OtherIsland: 25 individuals from a population implanted 
in Brazil in 1980, from seeds from Adonara, Lomblen, Alor and 
Pantar islands.
d) Improved populations of E. urophylla, being:
d1) U-PCMF-A: 90 individuals from a population established in 
2009 at the Forest Sciences Experimental Station in Anhembi, 
belonging to ESALQ/USP, as part of the IPEF experimental net-
work. The population was composed of 167 open-pollinated 
families from different populations and from different private 
companies (description in Silva et al. 2019);
d2) U-PCMF-I: 79 individuals from a population established in 
2009 at the Ilha Solteira Experimental Station, belonging to 
FEIS/UNESP, as part of the IPEF experimental network. The 
population was composed of 134 open-pollinated families 
from different populations and from different private compa-
nies (description in Silva et al. 2019);
d3) U-PCMF-L: 65 individuals from a population established in 
2013 at the Experimental Farm in Lençóis Paulistas, belonging 
to Bracell S/A, as part of the IPEF experimental network. The 
population was composed of 130 open-pollinated families 
from different populations and from different private compa-
nies (description in Silva et al. 2019). These populations are 
located in the state of São Paulo, Brazil. Seed lots and selection 
of individuals were described in Silva et al. (2019).

e) Commercial clones, described as AEC144, CNB10, FIB0075, 
GG100, H13, IPB15, JAR2646, VER361 and VM04. Some of these 
clones were obtained from open-pollination. As E. urophylla 
and E. grandis are the most cultivated species in Brazil, there is 
the possibility that these clones are hybrids between these two 
species.

Microsatellite analysis
DNA extraction was performed following the CTAB proto-

col (Doyle and Doyle 1987) using fresh leaves, and 
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amplification of microsatellite markers was performed by PCR, 
as described by Brondani et al. (2006). Fluorescence detection 
was determined via capillary electrophoresis with the ABI 3100 
XL automatic platform, as described by Faria et al. (2010, 2011). 
Nine microsatellite markers were used: EMBRA2, EMBRA3, 
EMBRA11, EMBRA12, EMBRA28, EMBRA63, EMBRA157, EMB-
RA204, and EMBRA333. These microsatellite markers, which 
exhibited good polymorphism for both species, were selected. 
The markers were obtained and described by Grattapaglia et 
al. (2015).

Genetic diversity and population structure
Statistical analyzes were performed using the R software (R 
Core Team 2022). The adegenet v.2 package (Jombart 2008) 
was used to estimate the total number of alleles per locus (K), 
the number of private alleles (Pa), mean observed (Ho) and 
expected heterozygosity (He) per population. The mean allelic 
richness (R) and fixation index (FIS) were estimated using the 
hierfstat v.0.5.7 package (Goudet and Jombart 2020). The 
genetic differentiation among populations was estimated 
using the standardized statistic GST' (Hedrick 2005), GST'=GST 
(1+HS)/(1-HS), where GST and HS (mean genetic diversity within 
populations) were calculated using the FSTAT 2.9.3.2. software 
(Goudet 1995). 

Genetic distance analyzes between trees were estimated 
using Goldstein et al. (1995) genetic distance with the poppr 
package, v. 2.9.3., and presented as a dendrogram, grouped by 
the UPGMA (Unweighted Pair Group Average) grouping 
method with 100.000 boostraps to evaluate the consistency of 
the nodes. The evaluation was also carried out through princi-
pal coordinate analysis (PCoA) using the distance matrix of 
Goldstein et al. (1995) of individual allele frequencies. 

The genetic structuring analysis between the trees was 
carried out using Bayesian inference from the STRUCTURE 
v.2.3.4 software (Pritchard et al. 2000). The analyzes were per-
formed with a burn-in of 500,000 and Markov and Monte Carlo 
Chains (MCMC) of 1,000,000 MCMC after burn-in and with 10 
repetitions for each K value, with K ranging from 1 to 15. The 
number of K subpopulations that best determines the number 
of clusters used was the one implemented in the STRUCTURE 
Selector program (Li and Liu 2018), which is based on the indi-
ces defined by Puechmaille (2016). 

Results

Among the E. urophylla populations, the breeding popula-
tions showed higher observed (Ho=0.792) and expected       
(He=0.868) heterozygosity, mean allelic richness (R=6.4) and 
number of private alleles (Pa=11), and lower inbreeding             
(FIS=0.088) than wild populations, (Ho=0.728; He=0.818; R=5.8; 
Pa=9; FIS=0.11) (Table 1). For E. grandis, the improved populati-
on also exhibited higher mean Ho (0.75), R (6.6), and number of 
private alleles (Pa=18), and lower FIS than will populations 
(Ho=0.68; R= 6.4; Pa=3). Between species, E. urophylla showed 
higher Ho, He, and R, and lower FIS than E. grandis. Clones 

displayed highest mean Ho (0.867) and He (0.865), and lower FIS 
(-0.002).

For E. grandis, the genetic differentiation between all sam-
pled populations (GST'= 0.775) was greater than between the 
breeding populations (GST'= 0.162), but lower than among the 
wild populations (GST'= 0.854) (Table 2). The genetic difference 
between the breeding populations and the clones was higher 
(GST'= 0.236) than between the breeding populations and the 
wild ones (GST'= 0.159), but smaller than between the wild ones 
and the clones (GST'= 0.86). For E. urophylla, the genetic diffe-
rentiation between all sampled populations (GST'= 0.195) was 
greater than between the breeding populations (GST'= 0.082) 
and among the wild populations (GST'= 0.113). The genetic dif-
ference between the improved populations and the clones 
was smaller (GST'= 0.057) than between the improved populati-
ons and the wild ones (GST'= 0.094) and between the wild ones 
and the clones (GST'= 0.187). The commercial clones are the 
most genetically distant from the other populations. The sepa-
ration between the E. grandis and E. urophylla populations was 
evident, as well as the distinction between the wild and bree-
ding populations, which formed clusters (Figure 1). 

Genetic differentiation is observed between the E. grandis 
and E. urophylla, but it is small among populations within the 
same species (breeding or wild). The clones grouped together 
between the species, indicating hybridization between them. 
It can also be observed more clearly that the clones are closely 
related to the population type and species. However, there is 
proximity between the wild and breeding populations (Figure 
2).

With three clusters (K= 3), it was possible to observe the 
separation of the species and admixture within E. grandis. In 
the breeding population of E. urophylla, some individuals 
showed admixture with E. grandis. In fact, one of the clones 
exhibited greater similarity to E. grandis, while the others were 
more like E. urophylla (Figure 3). 

All clones exhibited the influence of E. urophylla, and 
among them, all showed greater proximity to the improved 
populations, with the most prevalent being the population 
from Ilha Solteira (Table 3).
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Table 1                                                                                                                                                                                                                                      
Genetic diversity parameters estimated by species and improvement level.(Legend: *P< 0.01; n is the sample size; Ho and Ho are 
the mean observed and expected heterozygosity, respectively; FIS is the mean fixation index; R is the mean allelic richness for 
five genotypes; Pa is the number of private alleles.)

Table 2                                                                                                                                                                                                                                      
Genetic differentiation (GST, Hedrick 2005) among wild and breeding populations. Legend: U-wild = all wild populations of E. 
urophylla; U- breeding = all breeding populations of E. urophylla; *P< 0.05; GST between all E. urophylla populations = 0.236*; GST 
between all E. urophylla populations versus clones = 0.082*; GST between all E. grandis populations = 0.32*; GST between all E. 
grandis populations versus clones = 0.282*)

Population n Ho He FIS R Pa

E. urophylla 334 0.772 0.859 0.101* - -

E. urophylla: breeding 234 0.792 0.868 0.088** 6.4 11

	• U-PCMF-A 90 0.801 0.859 0.067** 6.3 3

	• U-PCMF-I 79 0.792 0.875 0.094** 6.5 7

	• U-PCMF-L 65 0.778 0.854 0.09** 6.1 6

E. urophylla: wild 100 0.728 0.818 0.11** 5.8 9

	•  U-Flores 25 0.74 0.756 0.021 4.9 2

	•  U-East Timor 25 0.746 0.827 0.098** 6.0 1

	•  U-Other Island 25 0.738 0.835 0.116** 6.0 3

	•  U-Timor 25 0.688 0.813 0.154** 5.5 2

E. grandis 1247 0.736 0.89 0.173* -

E. grandis: breeding 990 0.75 0.882 0.149** 6.6 18

E. grandis: wild 253 0.68 0.881 0.228** 6.4 3

Clones 9 0.867 0.865 -0.002 6.2 2

U- breeding U-wild U-PCMF-I U-PCMF-L U-Flores U-East Timor U-Other Island U-Timor G-wild Clones

U- breeding 0.082* 0.094* 0.057

U-wild 0.113* 0.187*

U-PCMF-A 0.042 0.052 0.266* 0.137* 0.141* 0.177* 0.095

U-PCMF-I 0.096* 0.205* 0.081* 0,107* 0.144* 0.029

U-PCMF-L 0.033* 0.023 0.003 0.005 0.107*

U-Flores 0.146* 0.097* 0.075* 0.331*

U-East Timor 0.033 0.071 0.156*

U-Other Island 0.041* 0.124

U-Timor 0.23*

G- breeding 0.159* 0.256*

G-wild 0.29*
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Figure 1                                                                                                                                                                                                                                  
Dendrogram of populations based on Goldstein’s genetic distance

 

 

 

Figure 2                                                                                                                                                                                                                                   
Genetic distances among samples of wild and breeding populations of Eucalyptus obtained from a principal coordinate analy-
sis (PCoA).
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Clones Populations Similarity (%)

H13 U-PCMF-L 96.5

IPB15 U-PCMF-A 68.3

CNB10 U-PCMF-A 55.9

AEC144 U-PCMF-I 97.5

VER361 U-PCMF-I 96.3

GG100 U-PCMF-I 51.8

FIB0075 U-PCMF-L 77.3

VM04 U-PCMF-I 96.6

JAR2646 U-PCMF-L 79.5

Figure 3                                                                                                                                                                                                                                   
Barplot depicting the genetic composition of individuals with respect to the three clusters (K= 3) obtained in the best Structure 
model.

Table 3                                                                                                                                                                                                                                       
Populations showing higher similarity with each of the nine clones. (Selection criteria Paetkau at al. (1995) and/or Rannala & 
Mountain (1997))
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Discussion

The results of genetic diversity indicated that the breeding 
populations of both E. grandis and E. urophylla exhibited higher 
observed heterozygosity and low inbreeding, demonstrating 
the genetic variability within these populations due to the mix-
ture of different provenances. This highlights their importance 
as a genetic resource for the establishment of foundational 
populations in breeding programs for both species. The fixati-
on index of the breeding populations was lower in both spe-
cies, reinforcing the idea of mixing different origins within the-
se populations. The breeding populations are composed of 
multiple origins with the purpose of achieving greater variabi-
lity, including intra-specific hybrids (Assis et al. 2015). Wild 
populations may exhibit higher F values than breeding popu-
lations because the natural geographical barriers they face can 
limit gene flow between natural populations (Tipiama et al. 
2007; Grattapaglia and Kirst 2008).

The allelic richness was higher in the populations of E. 
grandis compared to E. urophylla, surpassing the values repor-
ted for other species such as E. cladoxylon (1.47 in Buch and 
Thuma 2013; 1.54 in Mora et al. 2016). One of the reasons for 
this difference is the specificity of the SSR markers used, which 
have been previously tested in these species (Nevill et al. 2008). 
Another reason is the wide distribution of E. grandis, from lati-
tude 18o to 32oS (Boland et al. 2006), which occurs in two sepa-
rate macro-populations, as observed in the results of this stu-
dy, where two distinct genetic composition were detected 
within the species (Oliveira et al. 2023).

Despite the distinctions between wild and breeding 
populations not being entirely clear, clustering based on Nei's 
distance revealed some separation between these populati-
ons, although it had less bootstrap consistency compared to 
the differentiation observed between the species.  

Among the wild populations of E. urophylla, no strongly 
distinct groups were observed, which is consistent with the 
description provided by Payn et al. (2008). They described that 
genetic differentiation among populations of E. urophylla was 
low across seven islands (FST=0.031); however, differentiation 
increased with geographic distance. Despite the absence of 
strong significant genetic distance or differentiation among 
wild populations, the findings indicate that in the improved 
populations of E. urophylla, the composition was structured 
with two distinct groups. The populations in Ilha Solteira origi-
nated from East Timor, akin to those in Anhembi, while in 
Lençóis Paulista, the provenance encompassed Timor.

 The proximity of these populations within the breeding 
populations indicates that these specific origins are extensi-
vely utilized in breeding programs in Brazil. It is noteworthy 
that breeding populations consist of various populations that 
have undergone improvement in the country (Silva et al. 2018), 
potentially attributed to the better adaptability of these speci-
fic provenances in the region where the Brazilian forestry sec-
tor operates.

The clones are genetically close, forming a single group, in 
between the populations of E. grandis and E. urophylla. This is 

expected, as these cultivars are predominantly composed of 
admixtures of both species. However, it was observed that 
most clones have a greater contribution from E. urophylla, as 
indicated by pedigree records and highlighted in the literature 
(Assis et al. 2015). Our results particularly show that the nine 
clones are in genetically close to the Ilha Solteira breeding 
population. Nevertheless, one of the clones showed evidence 
of hybridization with E. grandis, contradicting its recorded 
pedigree. It should be noted that the clones were mostly obtai-
ned through open pollination or utilized parents obtained 
from open pollination, which could introduce errors in pedig-
ree records due to gene flow occurring within distances of less 
than one km (Silva and Abrahao 2020).

All clones showed genetic similarity to the breeding popu-
lations of E. urophylla. On the other hand, clones VM04 and 
VER361 exhibited genetic similarity, or past hybridizations, 
with the breeding populations of E. grandis. The clone AEC144, 
which is the most planted clone in Brazil (Silva et al. 2021), 
showed a contribution from E. grandis, contradicting the recor-
ded pedigree which register it as pure E. urophylla. These clo-
nes were obtained through open pollination and high-intensi-
ty mass selection. As open pollination naturally occurs in the 
base populations, spontaneous hybridization can occur unin-
tentionally. Subsequently, the transgressive individuals are 
cloned (Assis et al. 2015), leading to the possibility of several 
clones being used without the correct annotation of species 
(Oliveira et al. 2023).

Conclusion

The analysis of genetic diversity revealed that the bree-
ding populations exhibit greater genetic diversity compared to 
the wild populations of both species. Eucalyptus grandis 
demonstrated higher genetic variability than E. urophylla, likely 
due to its broader natural distribution. The studied clones exhi-
bited different degrees of hybridization and genetic influences 
from both wild and breeding populations. Interestingly, the 
presence of E. grandis was observed in the clones, contrary to 
their expected pedigree annotations. This contamination of     
E. grandis was also observed in the breeding population of        
E. urophylla.
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