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José Ramos-CastañedaID
6,7*

1 Maestrı́a en Investigación en Enfermedades Infecciosas, Facultad de Ciencias Médicas y de la Salud,

Instituto de Investigación Masira, Universidad de Santander, Bucaramanga, Santander, Colombia, 2 Escuela

de Medicina, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de

Santander, Bucaramanga, Santander, Colombia, 3 Centro de Investigación en Evaluación y Encuestas,

Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México, 4 Centro Educativo de Humanidades,
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Abstract

In dengue-endemic areas, transmission control is limited by the difficulty of achieving suffi-

cient coverage and sustainability of interventions. To maximize the effectiveness of inter-

ventions, areas with higher transmission could be identified and prioritized. The aim was to

identify burden clusters of Dengue virus (DENV) infection and evaluate their association

with microclimatic factors in two endemic towns from southern Mexico. Information from a

prospective population cohort study (2�5 years of follow-up) was used, microclimatic vari-

ables were calculated from satellite information, and a cross-sectional design was con-

ducted to evaluate the relationship between the outcome and microclimatic variables in the

five surveys. Spatial clustering was observed in specific geographic areas at different peri-

ods. Both, land surface temperature (aPR 0�945; IC95% 0�895–0�996) and soil humidity

(aPR 3�018; IC95% 1�013–8�994), were independently associated with DENV burden clus-

ters. These findings can help health authorities design focused dengue surveillance and

control activities in dengue endemic areas.

Introduction

Dengue is an acute viral disease transmitted by Aedes mosquitoes [1]. The World Health Orga-

nization (WHO) reports 50 to 100 million cases yearly, of which 500,000 are severe and

approximately 2�5% result in death [2]. From 1980 to 2022, Pan American Health Organiza-

tion (PAHO)/WHO reported 34,553,761 dengue cases in the Americas region, including

458,547 (1�3%) severe cases and 15,644 deaths; in Mexico, in the same period, 2,330,045
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confirmed dengue cases were reported to PAHO/WHO, of which 111,244 (4�8%) were severe

cases and 1,441 deaths [3]. The circulation of all four serotypes of the Dengue virus (DENV)

has been reported in Mexico [3], making it a country with hyperendemic transmission [1]. In

Mexico, as in many other parts of the world, passive surveillance for dengue is conducted [4].

Our group has studied dengue transmission in endemic towns in Mexico and found that

around 60% of infections are asymptomatic, and an underreporting rate is over 90%, typical of

dengue endemic areas [5, 6].

The WHO has considered the development of surveillance systems that take into account

temporal and spatial heterogeneity as a priority in dengue prevention at the global level [7]. In

addition, surveillance systems should consider house-to-house transmission [8], the effect of

microclimate [9], and the immunity of people in the surveillance area [10]. In the same sense,

understanding the impact of environmental variables on the burden of DENV infection is vital

to focus surveillance and control strategies, and to establish policies that prevent increases in

disease burden and transmission in endemic areas. Hahn and collaborators suggest that the

introduction of geospatial assessments reveals possible associations of disease with environ-

mental and social factors in specific areas that define the burden of disease [11].

Mexico has two vector-borne disease surveillance platforms which are not integrated; the

epidemiological platform, which provides sociodemographic, clinical, and virological informa-

tion on dengue cases [12, 13], and the entomological platform [14], which provides informa-

tion on the number of eggs, some entomological indicators, surveillance at the health

jurisdiction level on insecticide resistance, and on the presence of DENV in mosquitoes

emerging from eggs collected from ovitrap surveillance [15]. None of these platforms integrate

climatic information, among other reasons because the source of information is usually the

patient’s home or the home where the ovitrap is located, respectively. Although the systems

provide useful information for the knowledge of dengue transmission, this information is not

sufficient to manage prospectively the control actions of the viruses transmitted by Aedes
aegypti.

In this context, geographic information systems and spatial analysis techniques applied to

public health facilitate the detection of these areas of increased burden, making it possible to

understand the phenomena that occur in the local geographic areas and thus contribute to the

prevention, management, and control of endemic diseases such as dengue [16]. Therefore, the

study aimed to assess the association between some microenvironmental determinants and

the occurrence of burden clusters of DENV infection in a population-based cohort in two

endemic towns in southern Mexico from 2014 to 2016. This study includes symptomatic and

asymptomatic infections assessed by serology during 2�5 years of follow-up.

Materials and methods

Study area

Two dengue endemic towns in the state of Morelos, Mexico were selected taking into account

the epidemiological information available up to the time of the study, which was provided by

the Ministry of Health (SSA) of the federal government, where it was established that Morelos

was the state with the most confirmed cases of dengue in Mexico. The first of them, Axochia-

pan (the urban area of the municipality of the same name) has approximately 18,659 inhabi-

tants according to the 2015 INEGI estimated population; the temperature ranges between

13˚C and 35˚C. The second one, Tepalcingo (the urban area of the municipality of the same

name) has approximately 12,895 inhabitants; the temperature varies between 19˚C and 34˚C

(S1 Fig) [17–19]. Details of dengue transmission in the selected localities can be found in Mar-

tinez-Vega and collaborators, 2012 [20].
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Sources of information

A secondary analysis was conducted on data collected in a prospective population-based

cohort study of people aged five years and older living in Tepalcingo and Axochiapan between

2014 and 2016. This cohort was assembled in 2011 and the objective of the primary study was

to determine that dengue transmission occurs primarily in the peridomestic area of Index

Cases in two Mexican endemic towns [5]. They were selected because they were dengue-

endemic localities in Morelos with high incidence rates and similar population densities. In

addition, the Ministry of Health has carried out a vector surveillance program since 2008.

In the second phase of the cohort study (2014–2016), the seroconversion dynamics were

evaluated through the annual estimation of seroprevalence, and the association between previ-

ous serostatus and risk of incident DENV infection was determined [21].

This analysis included the subgroup of persons evaluated during the second phase of the

cohort study who had participated during the first phase of the cohort and were DENV sero-

negative, had a recent DENV infection, or were random selected from seropositive partici-

pants without DENV recent infection (n = 461 of 862 included between August 2011 and

March 2012) [5], or who were recruited in the second phase of the cohort and were DENV

seronegative (n = 19 of 104 included between August and November 2014) (S2 Fig). Partici-

pants were assessed every six months on five occasions between August 2014 and November

2016 [21]. At each assessment, a survey was conducted, and a blood sample was taken for sero-

logical diagnosis of recent DENV infection [22]. The individually structured questionnaire

included demographic variables and dengue symptoms. In addition, information on the

house’s characteristics was collected, and each dwelling’s geographic location was obtained

using a portable Global Positioning System (GPS, Garmin Ltd.).

Recent DENV infection

Recent DENV infection was defined based on the seroprevalence status and the year when the

survey was done (Table 1), using IgG Indirect ELISA test (Cat E-DEN 01 G), and Panbio1

IgG and IgM capture ELISA tests (Cat No. E-DEN02G and E-DEN01M) following the manu-

facturer’s indications of Panbio1 [22]. This definition was based on the fact that no other fla-

vivirus was circulating in Mexico after the re-emergence of DENV in the late 1970s until the

introduction of Zika virus in 2015.

Microclimate variables

The microclimate analysis was carried out using the method of Roman-Perez and collabora-

tors [23]. Briefly, micro-climatic variables of soil humidity were calculated through the Tas-

seled Cap transformation for 2014–2016. The land surface temperature (LST) was computed

with the Split Window algorithm with radiometric, emissivity, and atmospheric correction at a

resolution of 30 meters [24, 25]. These micro-climatic variables were obtained from 19 satellite

images from the Landsat 8 OLI-TIRS sensor from the United State Geological Survey (USGS)

and the National Aeronautics and Space Administration (NASA) [26]. Averages of LST and

soil humidity were calculated for each study area polygon and survey. The variable humidity

was reclassified dichotomously for analyzing micro-climatic factors associated with DENV

burden clusters (high humidity: high and very high = 1; very low, low, and medium = 0).

Cluster and hotspot analysis

Burden clusters of recent DENV infection in both towns were analyzed in order to search for

spatial clusters of the event in the studied areas. In addition, we identified recent DENV
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infection hotspots, which allowed us to identify areas with statistically significant higher levels

surrounded by other entities with high values, in Axochiapan and Tepalcingo, to understand

the spatial patterns of recent DENV infection in both Mexican towns.

To determine the spatiotemporal variation of recent DENV infection, a polygon network

was constructed on the point maps of the towns. The size of each polygon was 200 meters to

the centroid. On this grid, study participants were located according to their recent DENV

infection status (infected/not infected, Table 1) in each of the five surveys. The DENV infec-

tion frequency was calculated for each polygon. Getis-Ord Gi* tool were used to identify "hot

spots" with 99% confidence of the occurrence of recent DENV infection in the polygons [27].

In addition, the Moran’s Statistic for autocorrelation analysis (ESRI—Cluster Anselin Moran’s

I) was used at a 95% confidence level to identify high burden clusters; each entity was analyzed

within the context of neighboring entities located within the specific distance band (200

meters) using ArcGIS 10.61 software. SQL Server was used to create a Geodatabase, Bing

maps were used, and satellite images of each town were obtained from Google Earth©. Data

from participants from neighborhoods far from the urban area of Axochiapan were not

included in the analysis because their inclusion would have resulted in some polygons having

no neighbors and would have increased the number of zeros.

Statistical analysis

We considered the dichotomous variable of the household belonging to a burden cluster of

recent DENV infection in each survey for 2�5 years as the outcome, it was previously defined

with the Moran’s statistic with 99% reliability. This statistic allowed evaluating the spatial auto-

correlation of the data set, which refers to the degree to which the values of the interest variable

were similar or different at neighboring locations. That is, it allowed us to infer if similar values

are grouped in space [28]. In addition, the exposures of interest were the LST and soil

Table 1. Definition of recent confirmed DENV infection.

Survey Date Test Definition of infection*
1 August to November

2014

IgM capture ELISA and IgG

capture ELISA

a. IgM positive.

b. IgM and IgG positives.

c. IgM negative and IgG positive, only if the ratio of Panbio units obtained in the measurement from

August to November 2014 and those obtained between August 2011 and March 2012 were greater

than 1.37

2 February to May

2015

IgG Indirect ELISA in

seronegative participant

a. Seroconversion of IgG antibodies: negative in survey 1 and positive in survey 2

IgM capture ELISA and IgG

capture ELISA

b. IgM and/or IgG positive in survey 2, but without infection in survey 1

3 August to November

2015**
IgG Indirect ELISA in

seronegative participant

a. Seroconversion of IgG antibodies: negative in survey 2 and positive in survey 3

IgM capture ELISA b. IgM positive survey 3, but negative in survey 2

4 February to May

2016**
IgG Indirect ELISA in

seronegative participant

a. Seroconversion of IgG antibodies: negative in survey 3 and positive in survey 4

IgM capture ELISA b. IgM positive survey 4, but negative in survey 3

5 August to November

2016**
IgG Indirect ELISA in

seronegative participant

a. Seroconversion of IgG antibodies: negative in survey 4 and positive in survey 5

IgM capture ELISA b. IgM positive survey 5, but negative in survey 5

* Indeterminate results were considered negative. The indeterminate results were 1�0% in IgG Indirect ELISA, 1�4% in IgM capture ELISA, and 8�8% in IgG capture

ELISA.

**The capture IgG test was not considered in these latter periods because it cross-reacts with the Zika virus, which started circulating in Mexico in November 2015.

https://doi.org/10.1371/journal.pone.0302025.t001
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humidity because these variables influence the microclimate and could modify the vector pop-

ulation. Also, household characteristics were evaluated as independent variables.

A univariable multilevel Poisson regression analysis was performed to calculate the crude

Prevalence Ratio (PR), considering the household as the first level unit and the hexagon to

which the household belonged as the second level unit. Subsequently, a multilevel Poisson

regression was performed with the two microclimatic variables (LST and soil humidity), and

this model was adjusted for the housing variables with a p<0�20 in the univariable analysis.

An adjustment was made for the number of the survey (1 to 5) to estimate the total effect of

the two exposures of interest (Environmental model). In addition, a multiple regression model

was built, adjusting by some household characteristics, to determine the direct effects of the

two climatic variables (Complete model). The analysis was performed using STATA 15�11.

Results

Recent DENV infections and characteristics of the study population

Five surveys were conducted between August 2014 and November 2016, 480, 560, 534, 518,

and 435 participants were evaluated between the first and the fifth surveys, respectively. In

Axochiapan, 152 households were monitored in the first survey and 135 in the fifth survey,

and in Tepalcingo, 86 and 83 homes were monitored, respectively. In all surveys, recent

DENV infections were detected, 50% of these (n = 88) were observed at the first survey

(August-November/2014), and 22% (n = 38) were seen at the last follow-up (August-Novem-

ber/2016). The frequency of recent DENV infections varied between 1�5% and 18% across the

surveys (S2 Fig).

Demographic characteristics were similar in both towns, with 57�1% to 61% female and the

most frequent occupations being student and housewife. Also, 50% of the participants were

between 13 and 41 years old, with a median age of 24 (S1 Table). Regarding the availability and

waste of water in the dwellings in all surveys, most households had drains connected to the

public network (>90%), and more than 69% had a public water network inside the dwellings.

About 24% of households are supplied with water from wells, and more than 56% do not have

mosquito nets on access doors or windows (S2 Table).

Recent DENV infections in clusters and hotspots

In Axochiapan, in surveys 1, 3, and 5 (August-November 2014, 2015 and 2016), 32 hotspots of

recent DENV infection were observed predominantly in the southeastern area of the town. In

Axochiapan surveys 2 and 4 (February-May 2015 and 2016), 14 hotspots were observed (S3

and S4 Figs). However, autocorrelation analysis only identified significant clusters of recent

DENV infection in six polygons in three neighborhoods in survey 1 (Vista Hermosa to the

northwest and El Carmen and El Progreso to the southeast, with infection frequencies between

10% and 100%) and four polygons of two neighborhoods in survey 3 (El Carmen and El Pro-

greso with infection frequencies between 5�6% and 33�3%) (Figs 1 and 2, S3 Table). The hot-

spots identified in surveys 2, 4, and 5 in this town did not consolidate as clusters of the burden

of DENV infection (S3–S5 Figs).

In Tepalcingo, in surveys 1 and 2 (August/2014 and May/2015), a high frequency of recent

DENV infection was observed in the northwestern (11 hotspots) and southeastern (4 hotspots)

areas in survey 1, while 4 and 5 hotspots were found in survey 2, respectively. However, auto-

correlation analysis only identified significant clusters of infection in 1 polygon of each neigh-

borhood in each survey (S6 and S7 Figs, S4 Table). On the other hand, in survey 3, although

ten hotspots were identified, none were burden clusters (S8 Fig). Moreover, in survey 4 (Feb-

ruary/2016), seven hotspots were observed in a single neighborhood (San Francisco), of which
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two were identified as burden clusters (S9 Fig), while in survey 5 (November/2016), 11 hot-

spots were observed in four neighborhoods, of which only two were identified as burden clus-

ters (one in each neighborhood, San Francisco and Palo Revuelto, S10 Fig).

In Axochiapan, 4 out of 6 polygons identified as burden clusters in survey 1 were also clus-

ters in survey 3 (S3 Table). Although in Tepalcingo, only one polygon repeated the condition

of being a cluster of recent DENV infection in the same season of the year (surveys 2 and 4),

the other identified burden clusters were neighbors of the cluster detected in survey 1 (S7–S9

Figs, S4 Table). In addition, it is striking that most of the clusters are adjacent to the cemeteries

of the towns (S11 and S12 Figs).

Description of microclimate variables

Using remote sensing techniques, the micro-climatic variables of soil humidity and LST were

calculated from satellite images. In Axochiapan, the highest soil humidity was observed in sur-

vey 1 (Fig 3A), while in surveys 2 and 4, low humidity predominated throughout the town

Fig 1. Spatial distribution and burden clusters of recent DENV infections in Axochiapan, first survey. a. Spatial distribution of the participants (Red dots:

Positive for recent DENV infection; Green dots: Negative for recent DENV infection). b. Percentage of recent DENV infection. c. Hot Spots of recent DENV

infection. d. Clusters (Autocorrelation, Anselin local Moran’s I). Sources: Esri module of ArcGIS, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus

DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.

https://doi.org/10.1371/journal.pone.0302025.g001
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(S13 Fig). Although humidity was higher in the second half of the year (surveys 1, 3, and 5)

compared to the first half of the year, a decrease in moisture was observed over the years (Fig

3A and 3B, and S13 Fig). Regarding the LST in Axochiapan, in the three surveys of the second

half of the year, the temperature ranged between 32�8˚C and 41�5˚C, with a similar pattern in

surveys 1 and 3, where the center of the town was warmer (Fig 3C and 3D). In contrast, in the

surveys of the first half of the year (surveys 2 and 4), LST ranged from 41�2˚C to 53�8˚C. Still, a

differential pattern was observed because the center of the town was warmer in survey 2, while

this area was less warm in survey 4 (S14 Fig).

In Tepalcingo, survey 2 showed the lowest humidity of the period compared to survey 5,

which was the wettest. In surveys 1 and 3 (second half of the year), the behavior was similar,

with the lowest humidity in the center of the town. In addition, a significant difference was

observed in the behavior of this variable in the first half of 2015 compared to 2016, with the

first half being less humid (S15 Fig). Regarding the LST in Tepalcingo, in surveys 1 and 3, the

LST ranged between 30�8˚C and 44�2˚C, with a similar pattern where the center of the town

was warmer. In contrast, in the surveys of the first half of the year, the LST ranged between

32�7˚C and 46�3˚C, with a similar pattern where the center of the town was less warm than the

periphery (S16 Fig). It is noteworthy that survey 5 had the lowest LST of the period (-1�6˚C to

30�2˚C), which coincides with the high humidity observed (S15 and S16 Figs).

Fig 2. Spatial distribution and burden clusters of recent DENV infections in Axochiapan, third survey. a. Spatial distribution of the participants (Red dots:

Positive for recent DENV infection; Green dots: Negative for recent DENV infection). b. Percentage of recent DENV infection. c. Hot Spots of recent DENV

infection. d. Clusters (Autocorrelation, Anselin local Moran’s I). Sources: Esri module of ArcGIS, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus

DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.

https://doi.org/10.1371/journal.pone.0302025.g002
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Microclimatic factors associated with clusters of recent DENV infections

The hexagon LST was negatively associated with households belonging to a DENV burden

cluster, while high soil humidity had a positive association with this outcome (Table 2). These

associations held even when adjusting for housing variables related to the outcome in the uni-

variable analysis and for the survey time (Table 2 and S5 Table). To our knowledge, this is the

first report demonstrating a point association between a burden cluster of DENV infections

and climatic variables in a sublocal area. We will discuss this finding in more detail, but it

should be noted that until now, the relationship between dengue and climatic factors has been

Fig 3. Spatial distribution of soil humidity and land surface temperature in Axochiapan, first and third surveys. Red or blue dots: Positive for recent

DENV infection; Green dots: Negative for recent DENV infection. a. Soil humidity in survey 1. b. Soil humidity in survey 3. c. Land surface temperature in

survey 1. d. Land surface temperature in survey 3. Sources: Esri module of ArcGIS, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA,

USGS, AeroGRID, IGN, and the GIS User Community.

https://doi.org/10.1371/journal.pone.0302025.g003

PLOS ONE Microclimate factors related to dengue virus burden clusters

PLOS ONE | https://doi.org/10.1371/journal.pone.0302025 June 6, 2024 8 / 18

https://doi.org/10.1371/journal.pone.0302025.g003
https://doi.org/10.1371/journal.pone.0302025


studied based on case reports and at the relatively aggregated spatial scale of the city [29]. We

demonstrate a relationship between DENV infections, including asymptomatic infections

[21], at a spatial scale smaller than the neighborhood scale (200-meter polygons) that allows

dengue surveillance in endemic populations and rationalization of vector control measures to

increase their efficiency.

Discussion

This spatial and temporal analysis showed burden clusters of recent DENV infection during

two and a half years of follow-up in two endemic towns in Mexico that coincided with the

same seasons of the year and with the very well know cyclical rate incidence describe in many

studies in dengue endemic cities [30, 31]. Moreover, in 2014, more dengue cases were reported

by the surveillance system in Morelos than in the following two years. In particular, Tepalcingo

had the state’s second-highest number of dengue cases. Furthermore, the study showed that

burden clusters occurred in these dengue endemic areas repeatedly at localized points and spe-

cific periods. In addition, the household belonging to these DENV burden clusters was associ-

ated with the microclimatic variables of LST and soil humidity, independently of household

characteristics.

Due to their number of inhabitants, Axochiapan (18,659) and Tepalcingo (12,895) are classi-

fied as rural-urban towns; they have more than 60% of the population living in poverty and the

level of marginalization is high to very high. In addition, 30�1% of the population of Axochiapan

and 46�2% of the population of Tepalcingo live in houses lacking basic services. In this study we

determine that about 30% of the cohort participants’ households lack piped water in their homes

(S2 Table) and that in fact, households with public network water supply were associated with less

probability to belong to burden clusters (S5 Table: PR 0�44; 95%CI 0�21–0�88; p = 0�022). Regard-

ing climate characteristics, these populations share a warm sub-humid climate [18, 19].

In terms of exposure to DENV, most of the participants in each house were seropositive (S2

Table: median 100%; IQR 80–100), and the overall seroprevalence in the population during

follow-up increases from 86�9% in 2014 to 90�5% in 2016 [21]. It could be said that these popu-

lations are vulnerable from a socio-economic point of view, with a tropical climate and very

high exposure to DENV. Although the results presented here represent only these towns, the

localities with the highest historical incidence of dengue in Mexico share some characteristics

with those studied here. However, some of them are larger and more densely populated [32,

33]. We believe that, regardless of the particularities of each endemic town, the main findings

of this work can be applied in dengue epidemiological surveillance systems to rationalize vec-

tor control measures.

Even though DENV transmission in the town is heterogeneous, we identified burden clus-

ters that repeat over time or are associated with adjacent clusters, which would allow the

Table 2. Microclimatic variables related to burden clusters of DENV infection.

Variable n/n˚ Groups/ Hexagons Univariate model PR (95%

CI)

Environmental model aPR

(CI95%)

Complete modela aPR (95%

CI)

p

Land Surface

temperature

1153/266/84 0.929 (0.885–0.975) 0.954 (0.909–1.002) 0.945 (0.895–0.996) 0.037

High soil humidity 1153/266/84 4.228 (1.731–10.324) 3.348 (1.253–8.944) 3.018 (1.013–8.994) 0.047

Number of surveys 0.550 (0.433–0.698) 0.542 (0.419–0.700) <0.001

aThe model was adjusted for the household variables: Poor housing maintenance, computer, refrigerator, piped water, and household infestation with larvae and pupae.

PR: Prevalence Ratio. aPR: Adjusted Prevalence Ratio.

https://doi.org/10.1371/journal.pone.0302025.t002
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implementation of prevention measures in specific areas of both towns at specific times of the

year. Knowledge of the climatic factors associated with recent DENV infection clusters is a

necessity both for the environment and for health policy planning, particularly in urban areas.

This case aggregation could be due to micro-climatic factors favoring transmission [9] and the

accumulation of individuals with a neutralizing immune response against DENV [34]. For

example, in previous research conducted by our group in this study area, we determined that

the neutralizing multitypic response is predominant from 10 years of age onwards [22]. Fur-

thermore, we determined the seroprevalence against DENV (indirect IgG, Panbio, that

assesses having had at least one DENV infection at any time in life) was 90�5% in 2016 [21].

Together, these two findings explain why no association was found between seroprevalence

and burden clusters of recent infection DENV.

Dengue transmission is determined by human factors, vector biology and climate [35];

these interact in a complex manner resulting in heterogeneous patterns of transmission [36].

An additional element that introduces heterogeneity is the scale of observation when analyzing

the interactions between the aforementioned factors. Steven Stoddard and collaborators

emphasize the fact that chains of transmission are established at a minimum neighborhood

level, while Henrik Salje and collaborators have determined for dengue transmission in Thai-

land that 60% of dengue cases living within 200 m distance come from the same chain of trans-

mission, compared to 3% of cases between 1 and 5 km; using a different approach we

determined that the risk of infection frequency decreases about by half between the house of

an index case and neighboring houses within 50-m radius [5, 8, 33].

In general, in dengue endemic communities, climatic conditions can vary appreciably

depending on the constructed area, vegetation and the way water is managed in the area, for

example, in this study we found differences of up to 10˚C in polygons (S14 and S16 Figs).

According to Winberly and collaborators, the areas of highest risk for dengue transmission are

those surrounded by impervious areas, adjacent to densely treed areas with high population

densities [37]. In this study we demonstrate that areas of higher humidity and the diminished

LST are associated with the infection incidence and recurrence over time of dengue cases

(Table 2). Considering that chains of transmission are established in discrete areas of the town

and that climatic variations are associated with incidence, it can be hypothesized that the het-

erogeneity of dengue transmission is determined by local changes in population density,

urbanization, and the impact that these two factors have on climate at the sub-neighborhood

level.

The towns studied have interface characteristics between the drier north of the country

with a predominantly dry grassland to desert vegetation and the humid south of Mexico with a

very diverse vegetation that includes jungle and extensive wetlands. Nevertheless, the seroprev-

alence against DENV in the study towns, which are located at the center of Mexico, is approxi-

mately 40% in the population aged 6 to 17 years, which is similar to the northern region of the

country in this age group; while in the south-southeast of the country the seroprevalence

against DENV in the same age group is just over 70% [5]. These differences underline the role

of climate in dengue transmission, but also explain why the north of the country has not devel-

oped a hyperendemic state as the south of the country clearly has.

As Lessler and collaborators point out, the concept of a transmission cluster or hotspot is

used at various spatial and temporal scales and the differences in the data from which clusters

are constructed have consequences for the mechanics of transmission and hence the informa-

tion that is generated for decision-makers [38]. Clustering of recent DENV infections has been

reported in the literature. It supports the hypothesis that the incidence of mosquito-borne dis-

eases is highly focal [39], which is possibly influenced by different local densities of Aedes
aegypti and the short-distance flight of the vector. The latter is consistent with the results of
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Acharya and collaborators, who mapped the district-level spatiotemporal distribution of den-

gue incidence and excess risk in Nepal between 2010 and 2014, finding that the distribution of

dengue in that population has significant spatiotemporal clustering [40]. However, similar

studies have found a heterogeneous pattern of disease transmission; for example, Sharif and

collaborators found no significant associations between dengue case densities and densities of

immature forms of the vector in Dhaka city [41].

In addition, it has been observed that at the local spatial level, associations between trans-

mission and the different factors vary from place to place [34, 39, 42–46]. This study identified

associations of two microclimatic variables with clusters of recent DENV infection in two

Mexican endemic towns. In this regard, the influence of meteorological factors such as tem-

perature, precipitation, and humidity on vector development and survival, vector density, and

mosquito oviposition rate has been observed. These factors have also been associated with

DENV infection [47]. However, a limitation observed in previous studies is that the resolution

of the climate or humidity image is meager [48].

Although DENV circulates throughout the year in tropical and subtropical areas, dengue

transmission is highly correlated with temperature, rainy seasons, and seasonal fluctuation of

the vector. This relationship between dengue transmission and climatic factors has been previ-

ously evaluated in Mexico. For example, Hurtado and collaborators demonstrated that

increases in sea surface temperature, minimum temperature, and precipitation were associated

with increased dengue transmission cycles in coastal municipalities in the Gulf of Mexico [49].

Similarly, Dzul-Mancilla and collaborators have recently studied transmission cluster distribu-

tion in Mexico using aggregated epidemiological surveillance data [50]. The results are robust

to the country scale and 8-year time series. However, a significant limitation is that they do not

include climate information that could be used to stratify transmission areas using a GIS inter-

face such as the one used for vector surveillance in Mexico [14]. In this study, we applied a

method that allowed us to increase the resolution of the LST and soil humidity analysis to 30

m, which is considered a very high resolution. Therefore, it is relatively simple to use this

methodology to stratify risk regions, which is one of the strengths of this study.

This study identified recent DENV infections because subjects were followed up and sero-

logically tested every six months. It is not common to have this type of information that allows

evidence of the actual burden of the virus and the magnitude of endemic DENV transmission

through the detection of both symptomatic and asymptomatic infections. This is the first study

in Mexico to use follow-up data from a population cohort to assess DENV transmission and

calculate climatic variables with satellite imagery with a high-resolution scale. There is a high

frequency of asymptomatic infections in these towns, representing about 60% of the cases [5,

51] and a significant under-reporting of symptomatic infections [52, 53]. This is another

strength, as the analysis of only cases reported to the surveillance system underestimates the

incidence of infection, making it challenging to identify areas at high risk of transmission

within cities [40]. Despite the above, unfortunately, as Brady and collaborators pointed out,

the ability to predict dengue outbreaks is inherently unlikely [54]. However, platforms estab-

lished by the Mexican health system, together with open collaborative information systems

and sub-local meteorological information, could streamline vector control activities in a pre-

ventive manner, focusing on areas with microenvironmental determinants associated with

burden clusters of dengue.

WHO has emphasized the importance of vector surveillance in a comprehensive frame-

work that includes climatic, socioeconomic/cultural and, of course, epidemiological factors

where community involvement is important [7, 55]. Efforts have been made to include data

science in the analysis of dengue behavior by Google Dengue Trends [56]. However, those

who have the operational capacity to interrupt transmission in a preventive manner at the

PLOS ONE Microclimate factors related to dengue virus burden clusters

PLOS ONE | https://doi.org/10.1371/journal.pone.0302025 June 6, 2024 11 / 18

https://doi.org/10.1371/journal.pone.0302025


community scale are ministries of health that do not necessarily possess integrated real-time

information platforms with sufficient elements to assess the specific risks of an endemic popu-

lation. This study allows for a better understanding of the spatiotemporal patterns of DENV

burden in endemic Mexican towns for dengue and contributes to the identification of areas

and periods of time where the disease occurs to intensify surveillance and event control mea-

sures. Another strength of the spatial analysis is the regular and similar shape of both towns,

which allowed the construction of a symmetrical polygon grid, respecting geographical bound-

aries. In addition, using novel sources of information to estimate microclimates within towns

allowed us to evaluate these factors for the first time in Mexico.

A limitation of the study is the lack of processing of slightly less than 50% of the cohort sam-

ples, since the processing was defined by the objective for the second phase of the study pri-

mary in which the present research was nested, the young people were higher represented in

the cohort. Furthermore, the study design was based on a population-cohort defined by the

dengue case reported to the surveillance system in 2011 rather than a spatial cohort with ran-

dom sampling. Another possible limitation is that we could detect 8 infections on survey 4;

however, there is a small number of infections; it was enough to determine one cluster with

neighbor polygons in Tepalcingo. In conclusion, the spread of dengue over time and space is

complex and justifies investigations on different spatial scales over extended periods and

includes not only cases detected by passive surveillance [57]. Therefore, we consider that this

analysis provides insights into burden clusters of recent DENV infection associated with

microclimatic factors such as soil humidity and LST, which directly affect the burden of infec-

tion. This highlights the importance of using information from alternative sources to deter-

mine microclimatic variations in towns to target dengue control measures.
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Funding acquisition: José Ramos-Castañeda.
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