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The spread of bacterial infections aggravated by the development of microbial resistance to antibiotics requires
the creation of protective antibacterial materials. Nanomaterials with biocides can provide antibacterial and
antibiofilm properties against Gram-positive and Gram-negative bacteria. In this work, we synthesized nano-
composites with silver nanoparticles and different polyoxometalates of Keggin-structure (phosphomolybdic,
phosphotungstic, and tungstosilicic acids) on eco-friendly nanoclay called halloysite. We found that the nano-

composite containing silver nanoparticles and phosphomolybdic acid deposited on the halloysite possesses the
best antibacterial performance of all the obtained composites, having a minimal inhibitory concentration of 0.5
g/L against S. aureus, 0.25 g/L against P. aeruginosa and A. baumannii. This composite reduces the viability of
formed biofilms at a concentration of 2.5 g/L.

1. Introduction

The development and spread of new infections lead to the resistance
of bacterial strains to existing antibiotics and antiseptics. In pandemic
time, the problem of bacterial resistance is particularly challenging [1,
2]. Advances in material chemistry must be employed as a passive
method of antibacterial protection along with the active method that is
based on pharmaceuticals. Material components, particularly biocides,
should provide both antimicrobial and antibiofilm properties to reduce
the risk of bacterial contamination.

One of the most common biocides used to obtain antibacterial
nanomaterials is silver. It is considered that silver electrostatically in-
teracts with bacterial membranes, leading to destabilization and/or
destruction of the cell wall and blocking the respiratory chain [3-5].
Colloid silver synthesized using aqueous leaf extracts showed antibac-
terial and antibiofilm activity against MRSA (methicillin-resistant
S. aureus), P. aeruginosa, H. influenzae, and S. pneumoniae. MBEC

(minimal biofilm eradication concentration) for some MRSA and
P. aeruginosa strains can reach 22-44 ppm and 3 ppm correspondingly
[6]. Another study on AgNPs green synthesis reports biofilm inhibition
activity of the best sample against pathogenic bacteria S. aureus, P.
aeruginosa, B. subtilis, and E. coli that is 85.00 %, 78.81 %, 73.04 %, and
66.69 % [7]. The strength of biofilm produced by multidrug-resistant
A. baumannii influences the action of AgNPs. The growth of weak and
moderate biofilm producers was more inhibited by nanoparticles than
that of strong biofilm producers. The percentage (assessed by the optical
density of crystal violet-stained biofilms) of preformed A. baumannii
biofilms treated with AgNPs were 85 + 12 %, 77 &+ 15 %, and 51 + 11
%, respectively [8].

To reduce the risk of developing implant-associated infections (IAI),
multicomponent surfaces with introduced AgNPs were created. Bio-
mimetic orthopedic titanium-based coating with AgNPs/gentamicin-
embedded silk fibroin showed significant inhibition of S. aureus
growth, adhesion, and biofilm formation [9]. Polymer coating was
designed consisting of hydroxyapatite film with immobilized ionic silver
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Abbreviations

MRSA  Methicillin-resistant Staphylococcus aureus
MSSA Methicillin-susceptible Staphylococcus aureus
IAI implant-associated infections

AgNPs  silver nanoparticles

MBEC  minimal biofilm eradication concentration
POM polyoxometalate

PMA phosphomolybdic acid

PTA phosphotungstic acid

STA tungstosilicic acid

TEM transmission electron microscopy

HNT halloysite nanotubes

EDX Energy-dispersive X-ray Fluorescence analysis
PTFE polytetrafluoroethylene

HNT-Ag halloysite nanotubes with silver nanoparticles

HNT-Ag-PMA halloysite nanotubes with silver nanoparticles and
phosphomolybdic acid

HNT-Ag-PTA halloysite nanotubes with silver nanoparticles and
phosphotungstic acid

HNT-Ag-STA halloysite nanotubes with silver nanoparticles and
tungstosilicic acid

MIC minimum inhibitory concentration

via inositol hexaphosphate chelation onto polyether ether ketone.
Silver-coated surface provide both antibacterial purity and antibiofilm
properties in vitro and in vivo [10].

The antibacterial activity of AgNPs can be improved by their com-
bination with polyoxometalates (POM). Polyoxometalates particularly
heteropolyanions of Keggin-structure are a well-known class of inor-
ganic nanoclusters of various sizes and compositions. Due to their wide
range of physical and chemical properties, POM are actively used in, e.
g., catalysis, photochemistry, electrochemistry, and medicine [11].
AgNPs modified with phosphomolybdic acid (PMA) and phospho-
tungstic acid (PTA) possess high antibacterial activity against
Gram-positive S. albus and Gram-negative E. coli as compared to un-
modified AgNPs [12]. Self-sterilizing hybrid phosphotungstate ormosils
loaded with AgNPs showed complete eradication of S. aureus and
P. aeruginosa [13]. Nanocomposite based on reduced graphene oxide
with AgNPs and PMA is effective against E. coli, and characterized by
minimum inhibitory concentration equal to 0.256 g/L [14]. Therefore,
the combination of silver and POM have the potential for controlling
Gram-positive and Gram-negative bacteria spreading.

Treatments against mature bacterial biofilms were recently studied
employing AgNPs embedded in Pluronic F127 hydrogel [15] and
POM-polypeptide complexes [16]. Despite the large number of studies
dedicated to the antibacterial silver-containing composites, we could
not find any published results on the antibiofilm activity of silver
nanoparticles combined with heteropolyacids, except for the
semi-quantitative crystal violet staining assay that showed mild efficacy
of AgNPs/PTA-PDA-loaded hydrogel scaffold against S. aureus (40 %
growth reduction) and E. coli (45 % growth reduction) biofilms in the
dark [17]. Thus, the quantitative study of the antibiofilm activity of
AgNPs combined with heteropolyacids is novel and highly desirable.

Porous carriers such as halloysite, sepiolite, and zeolite can be used
as supports for bactericides [18-20]. Halloysite nanotubes (HNT) are
widely used as a nanocarrier for AgNPs due to their tubular structure
and chemically active external and internal surfaces and are suitable for
antibacterial formulations [21-25]. In our previous study [26], we ob-
tained halloysite-based nanocomposite with AgNPs and PMA having a
minimum inhibitory concentration of 0.50 g/L for Gram-positive
S. aureus and Gram-negative P. aeruginosa and 0.25 g/L for
A. baumannii. The porous structure of HNT provides a prolonged release
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of PMA for about 2 h after contact with water (see Fig. 3 in Ref. [26]).
The synthesis technique was multistage including preliminary silaniza-
tion of HNT followed by deposition of the pre-synthesized AgNPs and
impregnation of PMA.

In this work, we aimed to simplify the method of nanocomposite
production. We synthesized AgNPs on HNTs in situ and loaded the
composites with various POMs. Furthermore, for the first time to our
knowledge, we systematically studied various POMs (phosphomolybdic,
phosphotungstic, and tungstosilicic acid) loaded into HNTs in combi-
nation with AgNPs and compared their action against mature bacterial
biofilms. We found that the combination of porous tubular carrier, silver
nanoparticles, and encapsulated phosphomolybdic acid reduces the
viability of mature bacterial biofilms for more than four orders of
magnitude.

2. Experimental section
2.1. Materials

Halloysite nanotubes (HNTs) and silver nitrate (99.8 %) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Phosphomolybdic acid
hydrate (80 %), phosphotungstic acid hydrate, and tungstosilicic acid
hydrate were purchased from Acros Organics (USA). Mueller—Hinton
broth and Mueller—Hinton agar were purchased from Becton Dickinson
(USA). Ethanol (96 %), heptane, and agarose were purchased from
Chimmed (Russia).

2.2. Methods

2.2.1. Synthesis of halloysite based silver/POM nanocomposites

Halloysite nanotubes without any modification were dispersed in
0.1 M silver nitrate ethanol solution, kept for 1 h with magnetic stirring,
centrifuged at 4000 g, and dried at 70 °C overnight. Then the obtained
sample was placed in 0.01 M ethanol solution of the corresponding POM
for 2 h, centrifuged, and dried at 70 °C.

2.2.2. Composites characterization

Morphology of AgNPs onto halloysite nanotubes before and after
treatment with polyoxometalates were investigated by Transmission
electron microscopy (TEM) and Energy-dispersive X-ray spectroscopy
(EDX). 5 pL of sample dispersion in heptane was dropped on a carbon/
formvar TEM grid (Ted Pella, Redding, CA, USA) and dried at room
temperature. TEM micrographs were obtained using a JEM-2100 elec-
tron microscope (JEOL, Japan) at an accelerating voltage of 200 kV.
Elemental distribution over the samples was determined by the JED-
2300 (JEOL, Japan) analysis station. The particle size distribution was
calculated by TEM-image analysis using ImageJ software. Analysis of
particle size distribution was performed by measurement of more than
500 particles.

2.2.3. Antibacterial assay

Clinical isolates of strain Staphylococcus aureus (MSSA) ATCC 29213,
Pseudomonas aeruginosa RES-2352, and Acinetobacter baumannii MAR14-
2675 were kindly provided by the Institute of Antimicrobial Chemo-
therapy (Smolensk, Russia). Antibacterial studies were carried out in 96-
well microplates using broth microdilution as described in Ref. [26].
Each well was filled with 100 pL of the sample suspension and 100 pL of
inoculum in Mueller—Hinton broth (with a bacterial density equal to
1.5 x 10° CFU/mL). The resulting concentration of composite was 1.00,
0.50, and 0.25 g/L. Microplates were incubated at 37 °C for 18 h. Ma-
terial from each well was seeded using serial 10-fold dilution series on
Mueller—Hinton agar. After incubation, the bacterial colonies were
counted, and growth inhibition was determined. All experiments in
microplates were repeated by three independent experiments.
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Fig. 1. Scheme of synthesis of the studied materials.

2.2.4. Biofilm eradication assay

Biofilm eradication assay (antibiofilm activity) was performed by
using 96-well microplates according to Ref. [27]. For in vitro cultivation
of biofilms, 4 x 4 x 4 mm polytetrafluoroethylene (PTFE) cubes were
placed in wells inoculated with 150 pL of bacterial suspension (with a
bacterial density equal to 1.5 x 10° CFU/mL) and then the microplate
was incubated in an orbital shaker at 35 °C and 110 rpm for 20 h. The
cubes with preformed biofilms were transferred to the wells of the
microplate with 200 pL of nanocomposite suspension and incubated for
18 h. The control cubes with preformed biofilm were placed in a liquid
medium without the presence of a nanocomposite. To determine the
effect of nanocomposite on biofilm viability the biofilms were destroyed
by ultrasound (Elmasonic, 37 kHz with power output of 200 W) as
described in Ref. [13]. No effect of sonication on the number of sur-
viving cells was found. The dispersed biofilms were recultivated on
nutrient agar, and the number of colony units was counted.

3. Results and discussions

Phosphomolybdic acid (PMA), phosphotungstic acid (PTA), and
tungstosilicic acid (STA) were used as polyoxometalates (POM). The
scheme of synthesis of the studied materials is presented in Fig. 1. At the
first stage, nanocomposite with halloysite and silver nanoparticles
(HNT-Ag) was obtained with AgNPs of 2.6 + 0.9 nm diameter formed
inside and outside the halloysite nanotubes (Fig. 2). The obtained HNT-
Ag was then loaded with various POMs.

After the treatment of the HNT-Ag nanocomposite with the corre-
sponding POM, particle size has increased, and particle size distribution
has broadened depending on the POM used. This effect may be

HNT-Ag-PTA
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explained by the incomplete reduction of silver nitrate by ethanol during
deposition and drying or by the Ostwald ripening of AgNPs in the
presence of POM. The nanocomposites containing AgNPs and POM were
labeled as HNT-Ag-PMA, HNT-Ag-PTA, and HNT-Ag-STA. The
morphology of nanocomposites and particle size distribution are shown
in Fig. 2.

Typically, the preparation of halloysite-based antibacterial compos-
ites requires pre-modification of halloysite with amino silanes, which is
a time-consuming operation. We focused on simplifying the obtaining
method while aiming to achieve good antibacterial properties. In the
first step, the halloysite was loaded with silver ions from ethanol solu-
tion and dried (at 70 °C) with subsequent treatment with POM ethanol
solution. After treatment of HNT-Ag with POM, AgNPs have enlarged
(from 2.6 to 3.8 nm). The increase in silver particle size after modifi-
cation with phosphomolybdic acid was also observed earlier [26]. It is
known that the heteropolyanions adsorb on the surface of silver and gold
nanoparticles in acid solutions due to the coordination of poly-
oxometalate oxygen atoms to an ordered outer layer of metal atoms [28,
29] and under certain conditions are used as both reducing and stabi-
lizing agents of noble metal nanoparticles [30,31]. In the series of ob-
tained nanocomposites, the widest particle size distribution is typical for
the composite with PTA.

According to a literature review, drying of HNT loaded with AgNO3
plays a key role in the formation of AgNPs on the nanotube surface [32].
The following treatment of the obtained composite with POM leads to
the further nucleation or Ostwald ripening of AgNPs. Increasing of
drying temperature of silver ion loaded halloysite to 100 °C resulted in
larger nanoparticles on the surface and their morphological parameters
then did not change upon treatment with POM solution. Therefore, the
presence of small nucleated AgNPs favored their subsequent interaction
with POM.

Since individual molecules of polyoxometalates adsorbed on AgNPs
cannot be identified in TEM/STEM modes of JEOL JEM-2100 UHR, the
presence of polyoxometalates was proved with EDX and the corre-
sponding elemental analysis. Fig. 3 demonstrates EDX-mapping per-
formed for Ag/POM antibacterial composites. The concentrations of the
main elements in POM-based nanocomposites are shown in Table S1 in
the Supplementary material.

As shown in Fig. 3, silver occurs as individual nanoparticles in the
scanning area. The presence of molybdenum/tungstic is observed
throughout the scanning region, with the maximum intensity occurring
on halloysite nanotubes. The treatment of the HNT-Ag composite in the
POM solution should also lead to sorption of the heteropolyanion not
only on the silver and halloysite surfaces but also inside of the tubes due
to electrostatic interactions. It is worth noting that the dynamics of
heteropolyacid release from halloysite agree with the size of Keggin
polyoxometalates (circa 1 nm) and halloysite lumen (15-20 nm); the
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Fig. 2. Morphology of nanocomposites. TEM-images (scale bar is 100 nm). Particle size distribution and percentile values of nanoparticles on HNT-Ag, HNT-Ag-PMA,

HNT-Ag-PTA, HNT-STA nanocomposites.
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1 Al+Ag+Mo

C—————1  Al+Ag+W

HNT-Ag-STA

C————1 Al+Ag+W

Fig. 3. STEM images and EDX-mapping of HNT-Ag, HNT-Ag-PMA, HNT-Ag-
PTA, HNT-Ag-STA (Al - red color, Ag — green color, Mo, W — blue color, the
resulting purple color indicates the colocalization of Al and Mo or W). (For
interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

release dynamics was described by a Korsmeyer-Peppas model [33] with
an exponent parameter of 0.4174, indicative of low screening [26].

We used the HR-TEM approach to elucidate the nature of silver-
containing particles in the obtained composites. The HR-TEM images
of AgNPs are shown in Fig. 4.

As shown in Fig. 4, the silver-containing particles in all studied
samples were revealed as AgNPs with (111) interatomic distances of
2.36 A. Neither in TEM-EDX nor in HR-TEM images, we did not observe
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silver nitrate or Ag,0O particles. The apparent absence of silver nitrate or
Ag,0 in the HNT-Ag sample favors the hypothesis that the silver nitrate
was completely reduced by ethanol, and the Ag particle size evolution is
the Ostwald ripening induced by the POM addition.

The chosen procedure allows for obtaining a POM-silver-based
composite with improved antibacterial properties. S. aureus, P. aerugi-
nosa, and A. baumannii cause many nosocomial infections [34], there-
fore, we chose these strains as model bacterial cultures. Quantitative
studies in the microplates demonstrated that the antibacterial properties
of nanocomposites at a concentration equal to 1.00 g/L decrease in the
series HNT-Ag-PMA ~ HNT-Ag-PTA>HNT-Ag-STA>HNT-Ag (Fig. 5).

The percentage of growth suppression of S. aureus, P. aeruginosa, and
A. baumannii by HNT-Ag are 35, 49, and 46 %. The nanocomposite with
STA acts only slightly better than HNT-Ag. Nanocomposites with PMA
and PTA completely suppress the growth of all bacteria. The minimum
inhibitory concentrations (MIC), determined for HNT-Ag-PMA and
HNT-Ag-PTA are 0.50 and 1.00 g/L towards S. aureus, and 0.25 and 0.50
g/L as to P. aeruginosa, A. baumannii (Table 1).

We can see from Table 1 that HNT-Ag-PMA and HNT-Ag-PTA com-
posites have remarkably higher antibacterial action than either indi-
vidual PMA or AgNPs on various carriers in the absence of POM.
Furthermore, the low antibacterial efficiency of AgNPs alone prevents
precise determination of MIC in many published studies [17,37]. The
best composite in this work (HNT-Ag-PMA) has a MIC comparable to
that of the AgNPs and PMA deposited onto reduced graphene oxide
(Ag/PMA/RGO) [14].

The antibacterial action of POM-based nanocomposites is attributed
to their ability to destroy the bacterial cell wall, leading to the leakage of
intracellular substances [11]. In the presence of silver, POM may serve
as an oxidant and as a redox catalyst, facilitating the oxidation of AgNPs
to silver ions. Furthermore, all tested POMs are strong acids [38,39] and
may accelerate the silver ions release by acidifying the water medium,
thus intensifying the antibacterial action of the composites.

Individual Keggin-type POMs demonstrate the antibacterial action in
vitro that decreases in the row PMA > PTA » STA [40], thus differing
from their relative acidity that decreases in the row PTA > STA > PMA
[41,42]. We observed the same PMA > PTA » STA ordering of
POM-based AgNPs composites by their antibacterial action as for indi-
vidual POMs. Interestingly, the encapsulated CuPOM/MOF composites
in the presence of HyO, demonstrate PMA > PTA ~ STA ordering by
antibacterial action, presumably reflecting their peroxidase-like cata-
lytic activity [43].Since all tested POMs are strong acids, their actual
acidity in the water medium is limited by the acidity of hydrated pro-
tons, and we may expect that the difference in POM antibacterial action
is due to the redox properties of Keggin-type anions or their ability to
penetrate the bacterial cell wall. Furthermore, the increase in silver
solubility in the presence of POM may explain both the observed change
in nanoparticle size caused by Ostwald ripening and the increase in
antimicrobial action due to greater Ag" ions flux from the composite.
Despite the differences in MIC, various POMs have in common better
activity against Gram-negative bacteria. The structural difference be-
tween Gram-positive and Gram-negative bacteria causes the differences
in the chemistry of formed biofilms and influences their interaction with
nanoparticles [44]. It can be related to the thicker peptidoglycan layer in
Gram-positive bacteria, which limits H" and Ag* diffusion into the cell,
resulting in higher MICs [3].

We observed a significant improvement of antibacterial action when
POM is supplemented with AgNPs, as HNT-POM composites without
silver did not show any antibacterial action at 1.00 g/L dosage (data not
shown). Despite the differences in particle size distribution, POM nature
seems to be crucial in determining the antibacterial action, because
HNT-Ag-PMA and HNT-Ag-PTA with broader AgNPs size distribution
and larger average diameter have higher antibacterial activity than
HNT-Ag and HNT-Ag-STA (see Fig. 2).

Although the HNT-Ag-PMA inhibits the growth of planktonic cells,
MIC data are not sufficient to characterize the total antibacterial
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Fig. 4. HR-TEM of nanocomposites: HNT-Ag (A), HNT-PMA (B), HNT-PTA (C), HNT-STA (D) (scale bar is 5 nm). Insets show the Fourier transforms of the images

with (111) signals indicated.
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Fig. 5. Growth inhibition of S. aureus, P. aeruginosa, and A. baumannii plank-
tonic cells by halloysite-based nanocomposites (1.00 g/L).

performance of nanocomposite. The ability of nanomaterials to combat
already-formed biofilms is of great concern, and investigation of biofilm
activity gives more relevant data about the antibacterial properties of
the materials [45]. We decided to test the potential of HNT-Ag-PMA
composite with better performance to deal with biofilms. We investi-
gated the antibacterial activity associated with the destruction of formed
biofilms (antibiofilm activity) at a nanocomposite concentration of 2.5
g/L (Fig. 6).

HNT-Ag-PMA reduces the viability of formed biofilms. Better anti-
biofilm performance is observed against Gram-negative bacteria. The
reduction of biofilm viability up to four orders of magnitude indicates
partial biofilm eradication by the composite as compared to untreated
biofilms.

Table 1
MIC of HNT-Ag-PMA and HNT-Ag-PTA against planktonic bacteria.
Organism Composite MIC, g/L Reference
S. aureus HNT-Ag-PMA 0.50 This work
P. aeruginosa HNT-Ag-PMA 0.25 This work
A. baumannii HNT-Ag-PMA 0.25 This work
S. aureus HNT-Ag-PTA 1.00 This work
P. aeruginosa HNT-Ag-PTA 0.50 This work
A. baumannii HNT-Ag-PTA 0.50 This work
S. aureus HNT-Ag-STA >1.0% This work
P. aeruginosa HNT-Ag-STA >1.0 This work
A. baumannii HNT-Ag-STA >1.0 This work
S. aureus HNT-Ag >1.0 This work
P. aeruginosa HNT-Ag >1.0 This work
A. baumannii HNT-Ag >1.0 This work
S. aureus AgNPs/PTA-PDA >0.70 [17]
E. coli AgNPs/PTA-PDA >0.70 [17]
S. aureus Naz[PMo0;5040]-nH,0 25.6 [35]
E. coli H3[PMo;504]-nH,0 3.92 [36]
E. coli Ag/PMA/RGO 0.256 [14]
S. aureus Ag@GO >0.10 [371
P. aeruginosa Ag@GO >0.10 [371

o

Values indicate the highest concentration tested; the complete growth in-
hibition was not observed.

4. Conclusions

In this work, we show a fast and simple routine to produce anti-
bacterial halloysite-based nanocomposites with silver nanoparticles and
polyoxometalates of Keggin structure. Although the nanoparticles
formed on the nanocomposites have a broad size distribution, the ob-
tained nanocomposites have dual-antibacterial performance acting on
both Gram-positive S. aureus and Gram-negative P. aeruginosa,
A. baumannii. The antibacterial action of the nanocomposites varies
depending on the type of acid. The nanocomposite based on silver
nanoparticles and phosphomolybdic acid has the best activity against
planktonic bacterial cells, with MIC of 0.5 g/L for S. aureus and 0.25 g/L
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Fig. 6. Antibiofilm activity of HNT-Ag-PMA at 2.5 g/L.

for P. aeruginosa and A. baumannii. This composite also reduces the
biofilm viability P. aeruginosa and A. baumannii for more than four or-
ders of magnitude. The resulting nanocomposites can be used as a
functional additive to paint compositions and as a component of smart
coatings for protection against airborne and waterborne bacteria.
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