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A B S T R A C T

Global reports from the United Nations project significant deficits in achieving water and sanitation targets by 
2030, emphasizing the need for advanced methodologies in ecosystem monitoring. This study examines the 
integration of the Random Forest machine learning algorithm with freely available satellite imagery and open- 
source tools to monitor Permanent Protected Areas (PPAs) in the Distrito Federal, Brazil, contributing to Sus
tainable Development Goal (SDG) 6, which prioritizes clean water and sanitation. The research adopts a 
methodological approach that classifies land use changes within PPAs, with a focus on riparian zones along 
riverbanks, utilizing high-resolution Sentinel-2 satellite data processed through the Google Earth Engine plat
form. The findings indicate a 6% increase in native vegetation within PPAs from 2015 to 2022, highlighting the 
utility of machine learning technologies in environmental monitoring. The Random Forest algorithm demon
strated robust performance, with classification accuracy rates ranging from 83% to 88% and Kappa coefficients 
between 0.73 and 0.84. These results underscore the method’s ability to enhance data granularity and reliability, 
supporting informed decision-making in ecosystem management. This research contributes to advancements in 
environmental monitoring methodologies and aligns with international efforts to achieve SDG targets. Further 
studies should investigate the incorporation of additional machine learning models to improve monitoring ac
curacy and support sustainable development initiatives.

1. Introduction

In the context of global sustainability efforts, the United Nations 
(UN) member states’ adoption of the Sustainable Development Goals 
(SDGs) in 2015 represented a significant pledge to eliminate poverty, 
protect the environment, and achieve sustainable development by the 
year 2030. SDG 6 plays a pivotal role in this agenda, underlining the 
essential nature of clean water and sanitation for enhancing human well- 
being, driving economic and social progress, and preserving vital eco
systems (Bebbington and Unerman, 2018; Vazquez-Brust et al., 2020). 
Addressing SDG 6 is fundamental to the broader objectives of sustain
ability, given the intricate challenges of water management and the need 
to protect ecosystems critical to water security. These challenges, 
heightened by the diverse nature of water-related ecosystems in various 
locales, demand customised strategies for effective management and 
preservation (Chen and Liu, 2019; Madrazo-Ortega and 

Molinos-Senante, 2023; Miao et al., 2023; Mustafa et al., 2022).
The United Nations Sustainable Development Goals Report (2022)

paints a stark picture of the current trajectory towards achieving SDG 6. 
At the present rate of progress, an estimated 1.6 billion individuals will 
remain without access to safe drinking water, 2.8 billion will be without 
safe sanitation facilities, and 1.9 billion will lack basic hand hygiene by 
2030. To align with the objectives of SDG 6, the rate of improvement 
must be quadrupled (Miao et al., 2023). These alarming forecasts un
derscore the urgent need for enhanced methodologies and innovative 
approaches in monitoring and improving water management and sani
tation practices (Fuente et al., 2020; Nkiaka et al., 2021).

To expedite the implementation of SDG 6, the United Nations initi
ated the “SDG 6 Global Acceleration Framework”, encompassing five 
integral domains: finance, data and information, capacity development, 
innovation, and governance. A critical examination of the data and in
formation domain reveals a significant challenge in the collection of 
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essential monitoring data (Arora and Mishra, 2022; Miao et al., 2023; 
Pigola et al., 2021; Hino et al., 2018; Jiang et al., 2024). According to the 
SDG 6 Progress Summary Report (2021), although most of the 193 UN 
member states have amassed two-thirds of the required SDG 6 moni
toring data, 24 countries have yet to collect half of the necessary in
formation. The scarcity of data is particularly pronounced in smaller 
regions below the national level, underscoring the urgency of enhancing 
data acquisition methods to monitor and support the achievement of 
SDG 6 targets effectively.

The overarching challenge in the domain of sustainable water 
management and ecosystem preservation under SDG 6 lies in the inad
equate monitoring capabilities that hinder the effective conservation of 
water-related ecosystems, especially in smaller, localized regions (Denu 
et al., 2023). Despite the global commitment to sustainable develop
ment, the lack of comprehensive, high-quality data poses a significant 
barrier to assessing progress accurately and implementing targeted in
terventions (Guo et al., 2023; Hofmann, 2021; Nilashi et al., 2023; 
Sheffield et al., 2018). This gap in data collection and monitoring ca
pabilities is particularly acute in the context of the protected areas, 
where the intricate dynamics of water ecosystems require nuanced un
derstanding and management. The inability to gather and analyse 
detailed environmental data at such a granular level compromises the 
global efforts towards achieving the water-related targets of SDG 6, 
underscoring the need for innovative solutions that can bridge these 
gaps and facilitate informed decision-making for the preservation of 
vital ecosystems.

The existing literature synthesizes diverse methodologies and out
comes in environmental sustainability, notably in water treatment and 
wastewater management, underlining their significant contributions 
towards achieving clean water (SDG 6) and promoting responsible 
consumption (SDG 12) (K. Zhang et al., 2023; W. Zhang et al., 2023; Zhu 
et al., 2023). Furthermore, the optimization of 
urban-agricultural-ecological spaces (Wang et al., 2022) and the inno
vative conversion of wet waste into energy resources (Zhu et al., 2023) 
illustrate the pivotal role of machine learning (ML) in advancing sus
tainable cities (SDG 11) and clean energy (SDG 7). Additionally, ML’s 
application in monitoring poverty (Alsharkawi et al., 2021) and pre
dicting human development indices (Ramos et al., 2018) underscores its 
potential impact on eradicating poverty (SDG 1) and enhancing quality 
education (SDG 4), thereby contributing to a broader understanding and 
implementation of SDGs.

Despite the growing interest among scholars in studying the SDGs, 
there remains a notable deficiency in adequate methods for assessing 
these goals effectively (Denu et al., 2023; Yao and Li, 2023). This study 
seeks to bridge this gap by leveraging the advancements in interpretable 
ML, which offers enhanced transparency in the analysis. Specifically, the 
Random Forest (RF) method is employed to quantify the contribution of 
each variable towards the preservation of water-related ecosystems, 
addressing the shortcomings related to the lack of interpretability in 
traditional models (Lin et al., 2023). The interpretability of RF models 
offers a substantial advantage, facilitating a comprehensive under
standing of variable importance in land cover classification. This capa
bility supports enhanced model transparency, enables informed 
decision-making, and ensures reliability by addressing uncertainties 
associated with environmental data analyses (Meyer et al., 2019; Nilashi 
et al., 2023; Fisher et al., 2024). Through this approach, the research 
aims to provide a more nuanced understanding and evaluation of SDG 
6.6, thereby contributing to the broader field of sustainable develop
ment research with a method that combines robustness with 
interpretability.

Employing the Random Forest method to monitor the preservation of 
the most relevant water-related ecosystem in the Distrito Federal (Brazil): 
the riparian areas of its rivers which are strips of moisture-loving 
vegetation growing along the edge of the water bodies. The Brazilian 
Forest Code, Law nº. 12,651 of May 25, 2012, mandates the protection of 
riparian areas. These protected areas are referred to as Permanent 

Protected Areas (PPAs). This study classified images from the Sentinel-2 
satellite, observing an approximate 6% increase in native vegetation 
within the PPAs of the Distrito Federal between 2015 and 2022. The 
accuracy of these observations ranged between 83% and 88%, with a 
Kappa coefficient between 0.73 and 0.84, both closely aligning with 
values reported in the literature. This research utilised freely available 
datasets, open-source software, and a cloud-based platform: Google 
Earth Engine (GEE), to conduct its analysis. Through this methodology, 
the study contributes to the field by providing a replicable model for 
monitoring ecosystem preservation efforts, leveraging advanced statis
tical ML techniques within an accessible technological framework.

2. Literature review

2.1. Protect and restore water-related ecosystems (SDG 6.6)

The Sustainable Development Goals (SDGs) were established in 2015 
by the United Nations (UN) as a global endeavour to eradicate poverty, 
protect the environment, and ensure sustainable development by the 
year 2030. Among these, SDG 6, known for its focus on “Clean Water and 
Sanitation”, goes beyond its primary objective to include targets aimed 
at evaluating the social, environmental, and economic significance of 
water resources (Diep et al., 2021; Taka et al., 2021). This goal is 
detailed through eight targets and 11 indicators, providing a compre
hensive framework for assessing progress (Madrazo-Ortega and 
Molinos-Senante, 2023; Requejo-Castro et al., 2020). However, Basu 
and Dasgupta (2021) have identified a disconnection between scientific 
research and the practical application of SDG 6, highlighting a growing 
divide between technological advancements, academic discussions, and 
the actual implementation by policy practitioners. This gap underscores 
the necessity for clearer integration of research findings with 
policy-making processes to enhance the effectiveness of SDG 6 
initiatives.

Evaluating progress and efficiency in local governance is crucial for 
the achievement of SDG 6, particularly in ensuring access to clean water 
and sanitation. Martínez-Córdoba et al. (2020) highlight the significant 
role of Spanish local governments in this endeavour, identifying key 
determinants such as water-related rates and the private management of 
water services that enhance governance efficiency. The research con
ducted by Robins et al. (2017) offers a pertinent perspective on 
strengthening water governance in complex, multi-tiered arrangements, 
focusing on the United Kingdom’s collective water policies and ap
proaches. This analysis is foundational for understanding the impor
tance of governance in water and sanitation projects. Furthermore, Ba 
et al. (2022) assess the regulatory challenges faced by the Niger Basin 
Authority, particularly the lack of legal instruments for effluent 
discharge, which directly impacts water quality under SDG 6.3. This 
evaluation underscores the critical need for robust legal frameworks to 
support the objectives of SDG 6, indicating that effective governance and 
comprehensive legal regulations are essential for sustainable water 
management.

The significance of public awareness and community participation in 
achieving SDG 6 cannot be overstated, as evidenced by the research 
conducted by Mustafa et al. (2022). Their findings underscore the 
impact of public awareness, alongside other factors, on advancing SDG 6 
in a developing country context, advocating for enhanced strategies to 
boost public engagement. This underscores the pivotal role of public 
awareness in progressing towards SDG 6 (Mustafa et al., 2022). 
Furthermore, the evaluation by Partzsch et al. (2021) of coffee certifi
cation standards and their contribution to watershed sustainability light 
on the environmental emphasis of such programs. However, it also 
points out their shortcomings in addressing the broader needs of water 
and sanitation, thereby exploring the influence of industry standards in 
promoting SDG 6 (Partzsch et al., 2021).

In the domain of scientific research, collaboration, and the explora
tion of emerging concepts are crucial for advancing SDG 6. Basu and 
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Dasgupta (2021) conducted a bibliometric analysis that unveils research 
trends and identifies gaps in the field of water sustainability, calling for 
increased collaboration and investigation into new concepts. This 
analysis illuminates the scientific community’s significant contributions 
towards SDG 6. Moreover, the employment of multisource data by Miao 
et al. (2023) in Lincang City and the holistic approach adopted by Ortega 
and Senante (2023) in Chile for quantifying SDG 6 indicators exemplify 
innovative methodologies for assessing progress. These studies under
score the importance of comprehensive evaluations and the utilisation of 
diverse data sources in effectively addressing SDG 6.

Expanding the dialogue, the exploration into private sector collab
oration for sustainable development reveals the complexities of collab
orative governance mechanisms. Through a systematic literature 
review, the study conceptualises the core dimensions of collaborative 
governance—hierarchy, formalization, centralization—and the factors 
affecting the impact of governance choices on sustainable development 
outcomes. The results indicate that various collaboration types act as 
governance mechanisms to advance Sustainable Development Goals, 
suggesting the need for combining different governance arrangements. 
The effectiveness of collaborative efforts is determined not only by 
governance dimensions but also by the specific SDG targeted and the 
nature of the partners involved (Vazquez-Brust et al., 2020). This un
derscores the intricacies and detailed planning required to formulate 
efficient collaborative strategies for sustainable development.

Addressing the governance challenges and indicator gaps is crucial 
for the effective monitoring and implementation of SDG 6 (Bhaduri 
et al., 2016; Fu et al., 2019). Herrera (2019) and Guppy et al. (2019)
provide insightful analyses into the governance difficulties and the in
adequacies within the SDG 6 indicator framework, offering potential 
solutions to mitigate these issues. Their work underscores the com
plexities involved in tracking and achieving SDG 6. Furthermore, 
scholars have put forth recommendations for African countries to 
intensively mobilise resources to ensure universal Water, Sanitation and 
Hygiene (WASH) services by 2030, presenting a critical viewpoint on the 
international efforts needed to fulfil SDG 6 (Fuente et al., 2020; Hof
mann, 2021; Nhamo et al., 2019). This comprehensive approach high
lights the multifaceted strategies required to address the challenges of 
clean water and sanitation globally (Pereira and Marques, 2021).

The literature review underscores the necessity of a multifaceted 
approach to address the challenges of ensuring clean water and sanita
tion, as outlined in SDG 6. Key findings highlight the critical role of 
integrated strategies, encompassing robust governance, comprehensive 
legal frameworks, heightened public awareness, and rigorous scientific 
research. These elements are indispensable for the successful achieve
ment of SDG 6, demonstrating the complexity and interconnectivity of 
efforts required to secure water and sanitation for all.

2.2. Applications with machine learning

The SDGs adopted by UN members in 2015, represent a global 
commitment to end poverty, protect the planet, and ensure sustainable 
development by 2030 (UN, 2015). Among these, SDG 6 focuses on 
ensuring the availability and sustainable management of water and 
sanitation for all, encompassing eight targets and 11 indicators. How
ever, progress towards these goals varies significantly by income level 
and location, highlighting the need for a nuanced understanding of 
regional water resource management and policy design for water- 
related ecological conservation. This variability underscores the 
importance of contextualizing sustainable development within local 
realities, as each community exists within a unique socio-economic and 
geographical landscape (Madrazo-Ortega and Molinos-Senante, 2023; 
Miao et al., 2023). Moreover, Basu and Dasgupta (2021) reveal that the 
linkage between scientific research and SDG 6 is often ambiguous, 
widening the gap between technological advancements, academic 
discourse, and practical policy implementation.

ML has been recognised as a crucial technology for promoting 

sustainable development, offering innovative solutions across a range of 
SDGs. The European Commission has initiated a forward-thinking plan 
aimed at fostering the use of green digital technologies to benefit the 
environment through systemic changes known as ‘twin transitions’ 
(European Commission, 2021). This approach highlights the substantial 
potential of ML in facilitating environmental sustainability. For 
instance, scholars have highlighted ML’s contributions towards 
improving water treatment processes and enhancing construction and 
demolition waste management, directly supporting goals like clean 
water (SDG 6) and responsible consumption (SDG 12) (K. Zhang et al., 
2023; W. Zhang et al., 2023). Additionally, ML has been applied to 
optimise urban-agricultural-ecological spaces and convert wet waste 
into energy resources, showcasing ML’s role in promoting sustainable 
cities (SDG 11) and clean energy (SDG 7) (Wang et al., 2022; Zhu et al., 
2023).

Expanding upon the contributions of ML to environmental sustain
ability, its applications also significantly impact objectives like eradi
cating poverty (SDG 1) and enhancing quality education (SDG 4). 
Research has employed ML to monitor poverty levels and forecast 
human development indices, demonstrating its capacity to tackle critical 
social challenges (Alsharkawi et al., 2021; Ramos et al., 2018). Addi
tionally, studies examining generational shifts towards sustainability 
underscore ML’s role in identifying societal trends in sustainable life
styles and job-seeking behaviours, marking a notable pivot towards 
sustainability across generations (Yamane and Kaneko, 2021). In the 
context of sustainable urban planning, ML has been shown to support 
the development of Smart Cities, improving urban management to foster 
more inclusive, safe, resilient, and sustainable environments. This 
approach is particularly relevant in addressing contemporary chal
lenges, such as the COVID pandemic, illustrating ML’s broad applica
bility in furthering the SDGs (Heras et al., 2020; Jain et al., 2023).

ML applications permeate the domains of policy formulation, 
decision-making processes, and the evaluation of SDGs performance. 
Research demonstrates ML’s ability to provide critical insights into 
environmental sustainability and support the aggregation of evidence 
for informed policy decisions (Porciello et al., 2020; Yao and Li, 2023). 
Furthermore, studies highlight the significant impact of ML, particularly 
Automated Machine Learning (AutoML), on the evaluation and predic
tion of SDG achievements. This underscores its predictive power as a 
crucial tool in strategic planning, essential for the successful fulfilment 
of SDGs (Singpai and Wu, 2020). In hydrological assessments, machine 
learning models, including Boosted Regression Tree (BRT), Classifica
tion and Regression Tree (CART), and RF, have demonstrated consid
erable applicability in mapping groundwater potential (Al-Obeidat 
et al., 2015; Naghibi et al., 2016; Otukei and Blaschke, 2010; Phan et al., 
2020). Furthermore, the transformative potential of Deep Learning in 
remote sensing applications has been highlighted, particularly its ability 
to extract multiscale and multilevel features for precise environmental 
mapping and prediction, thereby advancing SDG monitoring frame
works (Yuan et al., 2020).

Following the exploration of ML pivotal role in policy and SDG 
performance assessment, it’s essential to delve into the comparative 
effectiveness of advanced ML techniques in sustainable development. 
Techniques such as Artificial Neural Networks (ANN), LightGBM, 
Automated Machine Learning (AutoML), and the Shapley additive 
explanation (SHAP) technique have been employed with varying de
grees of success across different sustainability studies (Yao and Li, 
2023). These methods have demonstrated innovative applications, from 
environmental sustainability to economic and social development, 
underscoring ML’s versatility. The literature review consolidates the 
critical role of ML in propelling sustainable development across diverse 
domains, highlighting the necessity for ongoing research and innovation 
in ML technologies to maximize their contribution to the SDGs. This 
reiteration emphasizes the transformative potential of ML in achieving 
global sustainability objectives, advocating for continued advancements 
and application of ML techniques in addressing the complex challenges 
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of the SDGs.

3. Material and methods

3.1. Research context

The selected research area is the Distrito Federal, one of the 27 states 
of Brazil and the smallest in terms of area. Situated in the Central-West 
region, it is renowned for housing the nation’s capital, Brasília, as shown 
in Fig. 1 below. The DF spans an area of 5760.784 square kilometers 
(km2), nestled between the states of Goias and Minas Gerais. The focus of 
the land use classification was narrowed down to the PPAs of all water 
bodies within the DF’s hydrography, excluding reservoirs and lakes, 
culminating in a total study area of 208.3 km2.

In accordance with the Brazilian Forest Code, established by Law No. 
12,651 of May 25, 2012, marginal strips ranging from 30 to 500 m are 
set based on the width of the rivers, designating them as PPAs. This law 
defines PPAs as protected areas, whether covered by native vegetation 
or not, with the environmental function of preserving water resources, 
landscapes, geological stability, and biodiversity, as well as protecting 
the soil, fauna, and flora, thereby ensuring the well-being of the 
population.

Rivers less than 10 m in width are required to have a 30-m marginal 
strip; watercourses ranging from 10 to 50 m in width should have a 50-m 
strip, and so on. Given that the aim of this study is to evaluate the use of 
statistical ML in monitoring SDG 6.6, all PPAs were considered with a 
30-m marginal strip, aligning with the objectives of this work.

3.2. Data collection

In the methodology’s data collection section, the study primarily 
utilised the 2015 Hydrography data from the Distrito Federal Environ
mental Information System (SISDIA) - Hydrography CRH (2015), which 
serves as the main public and free environmental database for the Dis
trito Federal (SISDIA, 2023). Initially, the hydrography data from the 
National Water and Sanitation Agency (ANA) and its Hydrographic 
Ottocodificada Base 2013 were considered due to its comprehensive 
geographic information layers, including drainage sections, hydro
graphic contribution areas, and watercourses. However, ANA’s hydro
graphic base, developed from hydrographic contribution areas derived 
from the Shuttle Radar Topography Mission (SRTM) project’s digital 
elevation models (DEM) with spatial resolutions of 90 and 30 m 
depending on the region, resulted in a line-type shapefile that inaccu
rately represented river boundaries, occasionally extending through 
urban or agricultural areas outside the water bodies and PPAs. In 
contrast, SISDIA’s database utilises DEMs with higher precision, spe
cifically developed for the Distrito Federal.

For delineating the PPAs, the multiplatform open-source geographic 
information system software QGIS 3.32 was employed, using the 
BUFFER tool on the line-type Hydrography feature class shapefile ob
tained from SISDIA, as shown in Fig. 2 above. This tool generates an area 
around a point, line, or polygon shapefile, allowing for the specification 
of the width of the marginal strip to be created, in this case, set to 30 m. 
Additionally, the 2022 states metadata for Brazil, available on the Bra
zilian institute of Geography and Statistics (IBGE, 2023) portal, were 
used to define Brazil’s, especially the boundaries of the Distrito Federal.

Regarding satellite images, this study follows previous research 
(Radoux et al., 2016) and opts for the Sentinel-2 satellite images over the 
commonly used Landsat images for several reasons: (i) The superior 
quality of images due to the smaller pixel size of Sentinel-2, which varies 
between 10 and 60 m, providing images with a resolution of 10 m for the 
Distrito Federal, compared to Landsat’s 30-m pixel. (ii) The study area’s 
specificity, as the analysis focuses on land use within PPAs with 30 m on 
each side of water bodies, where a higher number of pixels allows for 
more detailed interpretation and classification accuracy. Using Landsat 
would result in only 1 pixel per 30 m of river, whereas Sentinel provides 
9 pixels, i.e., 9 data/information points for the same area, instead of just 
one. (iii) The period of the satellite’s launch, which coincides with the 
year the SDGs were established, in 2015, enabling a comparison of the 
preservation of PPAs at the start of the program between 2015 and 2016, 
with the most recent data between 2022 and 2023, depending on data 
availability and quality. This approach offers an overview of the pres
ervation of water-related ecosystems in Distrito Federal since the incep
tion of the SDGs, aligning with the objectives of this work.

3.3. Random Forest classification: model training and validation

In this study, the Random Forest algorithm was deployed to classify 
the land use of the PPAs in Distrito Federal through the Google Earth 
Engine (GEE) platform. The GEE classifier package facilitates supervised 
classification using traditional ML algorithms, including Classification 
and Regression Trees (CART), Random Forest, Naive Bayes, and Support 
Vector Machine (SVM). The “Guides” section on the Google Developers 
site provides examples and instructions for these algorithms. GEE is 
widely used in environmental analyses at regional and global scales, 
with a significant increase in studies since 2017 (Tamiminia et al., 
2020).

RF was chosen for this analysis because it is a nonparametric method 
that does not depend on prior knowledge of the ecological factors or 
attributes related to the prediction or classification outcomes (Menze 
et al., 2009). Additionally, like other Classification and Regression Tree 
(CART) methods, RF offers computational simplicity and can handle 
large datasets effectively. RF and other CART methods achieved an 
overall accuracy of 86% in classifying Landsat satellite images 

Fig. 1. Map of the study area and its location within Brazil.
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(Al-Obeidat et al., 2015). Similar findings were reported by Otukei and 
Blaschke (2010) and Phan et al. (2020), with overall accuracies sur
passing 85% and 84% for satellite image classification, respectively.The 
algorithm employed in this research was based on models available on 
the Google Developers platform, with modifications such as changing 
the satellite used, selecting bands, determining the number of classes for 
classification, and specifying the polygon-type feature class shapefile for 
supervised classification, specifically targeting the PPAs of water bodies 
in the DF.

According to Congalton and Green (2019), fifty randomly allocated 
validation points are deemed sufficient for each land use class. However, 
their studies typically utilised at least two hundred points per satellite 
image (mosaic). For model training and validation, 60 points (markers 
in GEE) were used for each land use class, comprising four categories for 
the model’s classification: (i) LC_Water: Water bodies. (ii) LC_De
gradation: Urban areas. (iii) LC_Woody: Forest/native vegetation. (iv) 
LC_Agriculture: Agricultural areas, as shown in Fig. 3 below:

To guide the placement of validation points (response or output 
variables) for each class, Sentinel-2 satellite images from 2015 to 2016 
and 2022–2023 were compared with Airbus CNES 2023 images avail
able on the GEE platform, positioning them only in areas where land use 
remained unchanged. For the LC_Woody class, sections of the Mineral 
Water National Park, a preserved area with only native vegetation, were 
chosen; for the LC_Water class, wider rivers whose area tends not to 
change were selected; for the LC_Degradation class, consolidated urban 
areas were chosen; and for LC_Agriculture, predominantly agricultural 
locations in the DF were selected, including different crops at various 
stages of production, as shown in Figs. 4 and 5. After training, the model 
was applied to the entire sample (a 30-m BUFFER along the margins of 
water bodies in the DF), yielding the results presented in the next sec
tion. This structured approach ensures a comprehensive and coherent 
methodology for the classification and validation process, adhering to 

established practices in the field of remote sensing and machine 
learning.

4. Findings and discussion

To achieve the objective of monitoring SDG 6.6 through statistical 
ML, focusing on the preservation of PPAs in Distrito Federal, images from 
two periods were sought: shortly after the creation of the SDGs, between 
2015 and 2016, and a more recent period, between 2022 and 2023. 
Utilizing the GEE, it was possible to search for Sentinel-2 satellite images 
by specifying only the period of interest. The Sentinel satellite was 
chosen primarily for its high-resolution capabilities. In addition to 
specifying the search date, filters were applied to limit the maximum 
cloud coverage in the images to 20% and to remove cloud shadows 
(cloud masking), resulting in a composite of images with minimal cloud 
and shadow coverage for the specified area (PPAs of the DF) for the 
selected periods (dry and rainy seasons).

The search for images, according to the specified filters, significantly 
reduced the time and effort associated with image pre-processing, which 
traditionally involves searching for images, downloading, removing 
clouds and shadows, and merging images (mosaic) to obtain a single 
image covering the entire study area. By using GEE, all these steps were 
incorporated into the same algorithm, allowing for the construction of a 
single image with all information extracted from aerial photography of 
different periods stored and processed in the cloud.

For this study, images were sought for the driest and wettest periods 
of the year. June to August was identified as the dry period, and 
November to January as the rainy period, as shown in Table 1. Initially, 
images from June to August 2015 were sought, but due to the satellite’s 
launch in the same period (23 June 2015), there were no available im
ages meeting the minimum requirements. Therefore, images from June 
to August 2016 and 2022 were sought. For the rainy period, images from 

Fig. 2. Workflow diagram.

Fig. 3. Distribution of training and validation points. 
Caption: Orange circles (top-left) represent the LC_Degradation: Urban areas; Blue circles (bottom-left) represent the LC_Water: Water bodies; Yellow circles (top- 
right) represent the LC_Agriculture: Agricultural areas; Green circles (bottom-right) represent the LC_Woody: Forest/native vegetation.
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November 2015 to January 2016, and from November 2022 to January 
2023 were sought (INMET, 2023).

The dry months (June to August) yielded the best classification re
sults, with overall accuracy between 86% and 88%, and a Kappa coef
ficient of 81% (2016) and 84% (2022). The rainy months (November to 
January) showed slightly lower results, with accuracy between 81% and 
84%, and a Kappa coefficient between 73% and 79%, as shown in 
Table 2. The classification accuracy observed in this study aligns with 
findings from Phan et al. (2020) and Bessinger et al. (2022), reinforcing 
the reliability of RF in environmental monitoring. This consistency 

across diverse geographies highlights RF’s robustness in adapting to 
varying ecological conditions. The Kappa coefficient (equation below) 
assesses the level of agreement between two sets of data, being a 
quantitative measure of the reliability of two evaluators judging the 
same dataset, corrected for the frequency with which evaluators present 
the same result. 

k=
Po − Pe
1 − Pe 

Where Po is the observed agreement probability; Pe is the hypothetical 

Fig. 4. Land use classification map for 2016. 
Caption: Orange pixels represent the LC_Degradation: Urban areas; Blue pixels represent the LC_Water: Water bodies; Yellow pixels represent the LC_Agriculture: 
Agricultural areas; Green pixels represent the LC_Woody: Forest/native vegetation.

Fig. 5. Land use classification map for 2022. 
Caption: Orange pixels represent the LC_Degradation: Urban areas; Blue pixels represent the LC_Water: Water bodies; Yellow pixels represent the LC_Agriculture: 
Agricultural areas; Green pixels represent the LC_Woody: Forest/native vegetation.

Table 1 
– Average monthly precipitation for the Distrito Federal across two periods (1961–1990 and 1991–2020).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1961–1990 247 218 181 124 39 9 11 14 55 167 231 246
1991–2020 206 180 226 145 27 3 2 16 38 142 253 241

Source: INMET (2023).

Table 2 
– Overall accuracy and Kappa coefficient for land cover classification across different periods and seasons, 2015–2023.

Jun/2016–Aug/2016 Jun/2022–Aug/2022 Nov/2015–Jan/2016 Nov/2016–Jan/2017 Nov/2022–Jan/2023

Overall accuracy 0.86 0.88 0.81 0.83 0.84
Kappa coefficient 0.81 0.84 0.73 0.76 0.79
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expected probability.
According to Landis and Koch (1977), values above 81% present 

almost perfect agreement, and values between 61% and 80%, substan
tial agreement. The classification in the dry period was almost perfect 
and in the rainy period, substantial. Similar results were found by Phan 
et al. (2020), which obtained overall accuracy above 84.31%, and re
sults between 77.66% and 89.90%, according to the different strategies 
for selecting the input images; and by Bessinger et al. (2022), which 
obtained an average overall accuracy of 82.28%, with values between 
75.33% and 86.70%, and an average Kappa coefficient equal to 0.8068, 
with values between 0.7310 and 0.8550.

The reason for the difference observed in the Kappa coefficient be
tween the rainy months (substantial agreement) and the dry months 
(almost perfect agreement) is likely due to cloud cover and shadows. 
Given the intensity of the rainy and dry seasons in the Distrito Federal, 
with monthly precipitation exceeding 200 mm between November and 
January, there’s a high likelihood of encountering clouds (and shadows) 
in satellite images, even with specified filters, thus limiting the number 
of images and pixels available for classification. In contrast, during the 
dry period, with an average monthly precipitation of less than 15 mm, 
there’s a greater probability of finding "cleaner" images with virtually no 
cloud presence.

Another possible reason for the observed classification difference is 
due to the change in pixel colouration of the LC_Water, LC_Degradation, 
and LC_Agriculture classes, as shown in the confusion matrices Table 3
and F1 score in Table 4. As can be observed in satellite images, river 
colouration tends towards brown hues during the rainy season, 
complicating classification since similar tones may be found in the 
LC_Agriculture and LC_Degradation classes, in areas of exposed soil. 
During the dry periods, rivers exhibit bluer tones, facilitating the dif
ferentiation between the LC_Water and LC_Agriculture classes.

The confusion matrix evaluates the performance of the classification 
carried out by a classification algorithm, presenting the distribution of 
records in their actual classes and their predicted classes. It offers a 
clearer understanding of what the classification model is getting right 
and the types of errors it is making. While the F1 score measures the 
model’s accuracy by combining precision and recall scores extracted 
from the confusion matrix. The precision is the number of correctly 
identified positive results divided by the number of all positive results, 
including those not identified correctly. The recall is the number of 
correctly identified positive results divided by the number of all samples 
that should have been identified as positive (Wagle et al., 2020).

Another challenge presented by the algorithm was the classification 
among LC_Agriculture, LC_Degradation, and LC_Woody during rainy 

periods, as there are green-coloured pixels in these three classes due to 
agricultural production, urban gardens, and the natural vegetation of 
the PPAs. In contrast, during the dry season, greener tones are usually 
exhibited by agriculture, owing to irrigation, while the other classes 
tend to show a drier appearance and more yellowish tones.

Producer’s Accuracy measures the likelihood that a specific land use 
class within a study area is correctly classified, essentially indicating the 
frequency at which actual features on the ground are accurately depic
ted on the classified map. In opposition, User’s Accuracy reveals how 
often a land use class identified on the classified map actually exists in 
reality. This distinction confirms some of the challenges the algorithm 
faces in classification during rainy periods, particularly for the LC_A
griculture class, which showed the lowest values, but also for other 
classes in comparison to the dry season, as shown in Table 4.

The choice of dry season results to meet the research objective
—observing the preservation of the PPA in Distrito Federal (Brazil)—was 
based on accuracy results, the Kappa coefficient, confusion matrix, and 
F1 score findings, in addition to the reasons outlined above. The Figs. 4 
and 5 above display the land use classification results of the PPAs, and 
Table 5 lists the total areas found for each class.

As observed in Figs. 4 and 5 and the areas detailed in Table 4, there 

Table 3 
– Confusion matrix for land cover classification across different periods and seasons, 2015–2023.

Time Period Category LC_WATER LC_DEGRADATION LC_WOODY LC_AGRICULTURE

Jun/2016–Aug/2016 - Dry LC_WATER 17 2 1 0
LC_DEGRADATION 1 17 0 2
LC_WOODY 0 0 12 0
LC_AGRICULTURE 2 0 1 10

Jun/2022–Aug/2022 - Dry LC_WATER 13 0 1 0
LC_DEGRADATION 0 13 0 3
LC_WOODY 3 0 20 0
LC_AGRICULTURE 1 0 0 15

Nov/2015–Jan/2016 - Rainy LC_WATER 13 0 1 0
LC_DEGRADATION 0 9 3 0
LC_WOODY 0 1 10 0
LC_AGRICULTURE 0 3 0 2

Nov/2016–Jan/2017 - Rainy LC_WATER 5 0 0 1
LC_DEGRADATION 2 14 0 2
LC_WOODY 0 1 21 0
LC_AGRICULTURE 0 3 1 8

Nov/2022–Jan/2023 - Rainy LC_WATER 12 0 0 2
LC_DEGRADATION 1 16 4 0
LC_WOODY 0 0 15 0
LC_AGRICULTURE 0 3 0 11

Table 4 
– Producer and consumer accuracy and F1 Scores for land cover classification 
across different periods and seasons, 2015–2023.

Time Period Category Producer 
accuracy

Consumer 
accuracy

F1 
Score

Jun/ 
2016–Aug/ 
2016

LC_WATER 0.85 0.85 0.85
LC_DEGRADATION 0.85 0.89 0.87
LC_WOODY 1.00 0.86 0.92
LC_AGRICULTURE 0.77 0.83 0.80

Jun/ 
2022–Aug/ 
2022

LC_WATER 0.93 0.76 0.84
LC_DEGRADATION 0.81 1.00 0.90
LC_WOODY 0.87 0.95 0.91
LC_AGRICULTURE 0.94 0.83 0.88

Nov/ 
2015–Jan/ 
2016

LC_WATER 0.93 1.00 0.96
LC_DEGRADATION 0.75 0.69 0.72
LC_WOODY 0.91 0.71 0.80
LC_AGRICULTURE 0.40 1.00 0.57

Nov/ 
2016–Jan/ 
2017

LC_WATER 0.83 0.71 0.77
LC_DEGRADATION 0.78 0.78 0.78
LC_WOODY 0.95 0.95 0.95
LC_AGRICULTURE 0.67 0.73 0.70

Nov/ 
2022–Jan/ 
2023

LC_WATER 0.86 0.92 0.89
LC_DEGRADATION 0.76 0.84 0.80
LC_WOODY 1.00 0.79 0.88
LC_AGRICULTURE 0.79 0.85 0.81

M. Carvalho Marques et al.                                                                                                                                                                                                                  Cleaner Production Letters 8 (2025) 100088 

7 



was an increase in the preserved area within the DF’s PPAs (LC_Woody) 
between 2015 and 2023, growing by approximately 6% in both the dry 
and rainy seasons. This increase in vegetation area replaced spaces 
previously occupied by urban areas (LC_Degradation), a change that can 
be attributed to the DF’s policies on the irregular occupation of PPAs 
lands and the spontaneous regeneration of vegetation once these areas 
are vacated. Another factor potentially explaining this shift could be the 
classification errors of the algorithm, as indicated in the confusion ma
trix between LC_Water and LC_Woody, and by the Producer’s Accuracy, 
where the LC_Water class scored 0.85 in 2016, justifying an approximate 
6% increase in one class and a corresponding decrease in the other.

Agricultural areas (LC_Agriculture) practically did not change, which 
can also be explained by the strong division between urban and agri
cultural areas, the first being allocated further west of the DF, and the 
second further east, in addition to the growth rates of the DF, which 
imposes extra pressure, limiting the growth of this class.

As for the total areas classified, as shown in Table 4, the total area for 
Nov/2015–Jan/2016 was the smallest of the five classifications carried 
out (103.5 km2), while the others presented values above 150 km2. The 
difference is due to the availability of images that meet the established 
minimum prerequisites, aiming to reduce clouds and shadows. Howev
er, probably because the Sentinel-2 satellite was launched in June 2015, 
its operation was probably not yet at full capacity during the period 
evaluated, which can be seen when comparing with other periods. 
Another factor that contributed to the difference was the period of 
drought and rain, with the classification in the dry period in 2022 being 
the one with the largest area, due to the low presence of clouds and, 
therefore, the greater availability of images that meet the minimum 
requirements.

In methodological terms, the decision to use high-resolution images 
from Sentinel-2 to monitor specific changes in vegetation within PPAs 
exemplifies a methodologically rigorous approach designed to capture 
detailed environmental changes over time. This is particularly critical in 
regions where minor alterations in land cover can have significant 
ecological impacts. Although some studies have also opted to use 
Sentinel-2 for its advantages Phan et al. (2020), there are indications of 
lower spatial consistency among the results, which could diminish its 
effectiveness in applications requiring high precision, such as detailed 
ecological monitoring or compliance with specific environmental reg
ulations. In other words, our study not only focuses on achieving high 
classification accuracy (Radoux et al., 2016), but also contributes to 
methodological advancements in the field of environmental monitoring, 
with potential for broader applications in similar ecosystems globally.

The results demonstrated from the Kappa coefficient indicate a high 
degree of reliability and accuracy in the classification outcomes, 
essential for precise ecosystem monitoring and informed decision- 
making. While similar studies have achieved competent results, 
reporting an average overall accuracy of 82.28% with a range from 
75.33% to 86.70% (Bessinger et al., 2022), the variability shown could 
undermine confidence in some of the classification outputs, particularly 
at the lower end of accuracy. Our study’s robust model, combined with 
advanced machine learning techniques and comprehensive data anal
ysis, not only enhances the granularity of environmental data analysis 
but also aligns with global efforts to meet Sustainable Development 
Goals through innovative technological applications. This alignment is 

not merely theoretical but demonstrated through practical application 
and quantifiable results, offering a significant contribution to both the 
academic community and practical field applications.

In conclusion, the application of the Random Forest algorithm 
through the Google Earth Engine platform has demonstrated significant 
potential in monitoring the preservation of PPAs in the Distrito Federal in 
alignment with SDG 6.6. The comparative analysis of satellite images 
from different periods has provided valuable insights into the changes in 
land use within PPAs, highlighting the effectiveness of machine learning 
techniques in environmental monitoring. The findings underscore the 
importance of high-resolution satellite imagery and advanced classifi
cation algorithms in enhancing the accuracy of land use classification, 
thereby contributing to the informed decision-making process for sus
tainable development. The results bridge existing gaps highlighted by 
Basu and Dasgupta (2021), providing a replicable and practical meth
odology for monitoring SDG 6.6. By leveraging accessible ML tools, it 
complements global research efforts, which advocate for the integration 
of advanced technologies in sustainable development practices (Yuan 
et al., 2020). This study not only reaffirms the critical role of techno
logical advancements in achieving the SDGs but also sets a precedent for 
future research in the domain of environmental sustainability through 
the innovative use of machine learning.

4.1. Practical and managerial implications

The findings of this study offer significant practical and managerial 
implications for the monitoring and preservation of water-related eco
systems, essential for achieving SDG 6. Firstly, the successful application 
of the Random Forest method in classifying land use within PPA in the 
Distrito Federal (Brazil) underscores the effectiveness of statistical ML in 
environmental management. This approach demonstrates a replicable 
model for government and environmental agencies, suggesting that 
adopting advanced statistical ML techniques can enhance the accuracy 
and efficiency of ecosystem monitoring efforts.

The observed increase in native vegetation within PPAs, based on 
Sentinel-2 satellite imagery analysis, indicates not only the effectiveness 
of governmental conservation efforts but also highlights the importance 
of continuous and accurate monitoring to inform policy decisions. This 
increase also highlights the practical value of integrating ML tools into 
policy enforcement, aligning with findings on the need for robust reg
ulatory frameworks (Ba et al., 2022). The use of freely available datasets 
and cloud-based platforms like GEE simplifies the data processing 
workflow, enabling more frequent evaluations of ecosystem preserva
tion efforts without the need for extensive pre-processing or local data 
storage.

For managers and policymakers, these insights recommend a stra
tegic focus on integrating ML tools into environmental monitoring 
frameworks to ensure data-driven decision-making. Additionally, the 
adaptability of the algorithm to various locales, contingent upon specific 
training, advises regional adaptations of these tools to account for 
ecosystem characteristics and seasonal variations.

A significant advancement of this study over similar approaches 
(Bessinger et al., 2022; Noi Phan et al., 2020; Pigola et al., 2021), is the 
intent to transcend more general applications that are not explicitly 
linked to any specific policy or global sustainability goals. Specifically, 

Table 5 
– Land cover area proportions and total area across different periods and seasons, 2015–2023.

Area (%)

Jun/2016–Aug/2016 Jun/2022–Aug/2022 Nov/2015–Jan/2016 Nov/2016–Jan/2017 Nov/2022–Jan/2023

LC_WATER 19.1% 13.2% 4.8% 6.3% 3.5%
LC_DEGRADATION 12.3% 11.7% 17.7% 6.3% 5.4%
LC_WOODY 50.6% 56.7% 59.2% 53.4% 60.6%
LC_AGRICULTURE 18.0% 18.4% 18.3% 33.9% 30.4%
Total Area 164.87 184.28 103.52 151.9 164.87
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this research targets the preservation of PPAs with a clear objective to 
achieve SDG 6, which pertains to clean water and sanitation. By moni
toring land cover changes, the study demonstrates effective ecosystem 
management, directly supporting the preservation of water-related re
sources crucial for achieving SDG 6. These tools enable temporal as
sessments, ensuring accurate data for informed decision-making. 
Moreover, identifying degraded areas facilitates targeted interventions 
to mitigate erosion and runoff, safeguarding water bodies against 
pollution and sedimentation, thereby advancing clean water and sani
tation objectives (Mustafa et al., 2022). This direct connection to the 
SDG targets adds a layer of political relevance and applicational sig
nificance to the research, enhancing its utility for both governmental 
and non-governmental organisations focused on meeting these global 
objectives.

Although similar studies have underscored important ecosystems, 
they tend to lack a prioritised focus on areas with immediate impact on 
human health and environmental sustainability (Bessinger et al., 2022). 
In this context, our choice to concentrate on PPAs, especially riparian 
zones critical for water quality and biodiversity, is particularly timely. 
This focused approach aligns closely with specific environmental and 
conservation goals, making the research highly relevant for conserva
tion efforts and policymaking, particularly in achieving SDG 6. Overall, 
our work, by employing advanced machine learning integrated with 
high-resolution satellite imagery, contributes to methodological ad
vancements in the field and sets objective guidelines for practical 
implementation or scalability. In doing so, it adds to the existing 
empirical literature (Nilashi et al., 2023; Pigola et al., 2021; Requejo-
Castro et al., 2020; Jiang et al., 2024; Naghibi et al., 2016), which often 
lacks specific examples of implementation as well as the outcomes such 
implementations could yield.

In summary, this study advocates for the broader adoption of ML 
technologies in environmental policy and management practices. It 
highlights the potential of such technologies to support the global 
endeavour of sustainable development and environmental stewardship, 
offering a foundation for informed public policy formulation and con
servation efforts.

Future research directions should include exploring hybrid models 
combining RF and other statistical machine-learning algorithms, such as 
classification or clustering. Classification algorithms, such as RF, allo
cate objects (pixels) into classes or groups based on input variables, and 
response (or output) variables are required to train the model. This 
model can then be applied to test data sets that contain only the input 
variables. Al-Obeidat et al. (2015) compared the performance of three 
classification algorithms: (i) Decision Tree C4.5, (ii) Decision Tree ID3, 
and (iii) a hybrid model with the combination of Multi-Criteria Decision 
Analysis (MCDA) and Decision Tree algorithms. The overall accuracy 
found was 89% (kappa = 0.8829) using the hybrid model, 86% (kappa 
= 0.8572) using Decision Tree C4.5, and 82% (kappa = 0.82) using 
Decision Tree ID3.

Integrating clustering algorithms would further refine classification 
accuracy, thereby broadening the utility of these methods across 
different ecosystems and geographical areas. Clustering algorithms are 
an unsupervised learning method that does not require a training data 
set. The algorithm seeks to understand the data independently, grouping 
the objects according to a similarity measure. In this case, tests could be 
performed, specifying the number of clusters (the same four used in this 
research) or letting the algorithm estimate the number of groups as part 
of the analysis. Then, apply the RF algorithm (or another classification 
algorithm), comparing whether the results were better when the clusters 
were selected by the clustering algorithm, instead of allocating the 
validation points, as presented in this paper. Incorporating spatial 
validation methods could enhance model generalisability by mitigating 
overfitting risks inherent in environmental classification tasks (Meyer 
et al., 2019).

Techniques such as K-Means, Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN), and Gaussian Mixture Models 

provide diverse methods for efficiently grouping data points. The inte
gration of clustering algorithms with classification tasks can improve 
accuracy and offer deeper insights into the relationships within the data, 
presenting a promising area for future research exploration.

4.2. Social and economic implications

The findings from this research on the application of statistical ML, 
particularly the Random Forest method, to monitor and preserve water- 
related ecosystems, carry profound social and economic implications. 
Firstly, the demonstrated increase in native vegetation within the PPA of 
the Distrito Federal (Brazil) highlights the tangible benefits of employing 
advanced ML techniques in environmental conservation efforts. This 
growth not only signifies the recovery and preservation of ecosystems 
but also suggests a positive trajectory towards achieving SDG 6, which is 
vital for enhancing human well-being, driving economic and social 
progress, and preserving ecosystems crucial to water security.

From a social perspective, the improvement in ecosystem preserva
tion directly contributes to the well-being of communities by ensuring 
access to clean water and sanitation facilities. It reflects an advancement 
in public health standards and supports the broader objective of eradi
cating poverty (SDG 1) and enhancing quality education (SDG 4), as 
healthier ecosystems are foundational to social development and eco
nomic prosperity.

Economically, the application of ML in environmental monitoring 
can lead to more efficient use of resources, reducing the costs associated 
with traditional data collection and analysis methods. The use of freely 
available datasets and cloud-based platforms like GEE illustrates the 
potential for cost-effective environmental management practices that 
can be adopted by governmental and environmental agencies. 
Leveraging increasing amounts of electronic data through such plat
forms enhances regulatory effectiveness and supports efforts to mitigate 
environmental harms (Hino et al., 2018). This approach enables a more 
dynamic allocation of resources towards areas of critical need, 
enhancing the effectiveness of conservation efforts and potentially 
leading to economic savings.

Moreover, the study’s methodology, offering a replicable model for 
ecosystem monitoring, underscores the importance of technology and 
innovation in addressing global sustainability challenges. The accessi
bility of advanced ML techniques promises to democratise the moni
toring of SDGs, enabling developing countries to participate more 
actively in global sustainability efforts. This can lead to economic 
development opportunities, fostering global partnerships and collabo
ration towards achieving the SDGs (Hofmann, 2021; Quinlivan et al., 
2020).

In summary, the social and economic implications of this study 
advocate for the integration of machine learning technologies in envi
ronmental policy and management, highlighting their potential to 
contribute significantly to sustainable development, economic effi
ciency, and social well-being. Future research should continue to 
explore and refine these methodologies, expanding their application 
across diverse ecosystems and geographical areas to maximize their 
global impact.

5. Conclusions

This study has illuminated the potential of statistical ML as a robust 
tool in supporting the monitoring of the Sustainable Development Goals 
(SDGs), particularly SDG 6.6, which aims to protect and restore water- 
related ecosystems. By employing classification algorithms, notably 
the Random Forest method, this research has monitored the preserva
tion of the Distrito Federal’s primary water-related ecosystem, the PPAs, 
through Sentinel-2 satellite imagery analysis across two periods: the 
inception of the SDGs in 2015–2016 and a more recent evaluation in 
2022.

The observed increase in native vegetation within the PPAs by 
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approximately 6% from 2015 to 2022 signifies progress in biodiversity 
conservation, as they are home to a diverse range of flora and fauna. This 
growth plays a crucial role in protecting water bodies and preventing 
erosion, as PPAs function as ecological corridors, filtering sediments and 
pollutants, which helps maintain both water quality and quantity. 
Furthermore, this increase underscores the effectiveness of government 
conservation efforts and highlights the uncertainties in the algorithm’s 
classification, as demonstrated by confusion matrices and accuracy 
metrics.The study’s findings, demonstrating higher accuracy during dry 
periods with a near-perfect Kappa coefficient, align with existing liter
ature on statistical ML classification methods. Utilizing free datasets, 
open-source remote sensing software, and cloud-based platforms like 
GEE has streamlined the data processing workflow, eliminating the need 
for extensive pre-processing and local data storage. This methodology 
not only facilitates rapid data analysis but also underscores the acces
sibility and technological innovation inherent in the GEE platform, 
enabling SDG monitoring in developing countries and enhancing the 
frequency of such evaluations globally.

Furthermore, the adaptability of the algorithm to various locales, 
contingent upon model training for specific areas, suggests a broader 
applicability for monitoring PPAs beyond the DF, albeit with consider
ations for regional ecosystem characteristics and seasonal variations. 
The study’s approach, leveraging cloud-based platforms and machine 
learning, offers a model for environmental preservation and public 
policy formulation, providing updated data for governmental and 
environmental agencies to inform decision-making and conservation 
efforts. Future research should explore the integration of clustering al
gorithms to refine classification accuracy and expand the algorithm’s 
utility across diverse ecosystems and geographical contexts, thereby 
contributing to the global endeavour of sustainable development and 
environmental stewardship.
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