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Global reports from the United Nations project significant deficits in achieving water and sanitation targets by
2030, emphasizing the need for advanced methodologies in ecosystem monitoring. This study examines the
integration of the Random Forest machine learning algorithm with freely available satellite imagery and open-
source tools to monitor Permanent Protected Areas (PPAs) in the Distrito Federal, Brazil, contributing to Sus-
tainable Development Goal (SDG) 6, which prioritizes clean water and sanitation. The research adopts a
methodological approach that classifies land use changes within PPAs, with a focus on riparian zones along
riverbanks, utilizing high-resolution Sentinel-2 satellite data processed through the Google Earth Engine plat-
form. The findings indicate a 6% increase in native vegetation within PPAs from 2015 to 2022, highlighting the
utility of machine learning technologies in environmental monitoring. The Random Forest algorithm demon-
strated robust performance, with classification accuracy rates ranging from 83% to 88% and Kappa coefficients
between 0.73 and 0.84. These results underscore the method’s ability to enhance data granularity and reliability,
supporting informed decision-making in ecosystem management. This research contributes to advancements in
environmental monitoring methodologies and aligns with international efforts to achieve SDG targets. Further
studies should investigate the incorporation of additional machine learning models to improve monitoring ac-
curacy and support sustainable development initiatives.

1. Introduction

Molinos-Senante, 2023; Miao et al., 2023; Mustafa et al., 2022).
The United Nations Sustainable Development Goals Report (2022)

In the context of global sustainability efforts, the United Nations
(UN) member states’ adoption of the Sustainable Development Goals
(SDGs) in 2015 represented a significant pledge to eliminate poverty,
protect the environment, and achieve sustainable development by the
year 2030. SDG 6 plays a pivotal role in this agenda, underlining the
essential nature of clean water and sanitation for enhancing human well-
being, driving economic and social progress, and preserving vital eco-
systems (Bebbington and Unerman, 2018; Vazquez-Brust et al., 2020).
Addressing SDG 6 is fundamental to the broader objectives of sustain-
ability, given the intricate challenges of water management and the need
to protect ecosystems critical to water security. These challenges,
heightened by the diverse nature of water-related ecosystems in various
locales, demand customised strategies for effective management and
preservation (Chen and Liu, 2019; Madrazo-Ortega and

paints a stark picture of the current trajectory towards achieving SDG 6.
At the present rate of progress, an estimated 1.6 billion individuals will
remain without access to safe drinking water, 2.8 billion will be without
safe sanitation facilities, and 1.9 billion will lack basic hand hygiene by
2030. To align with the objectives of SDG 6, the rate of improvement
must be quadrupled (Miao et al., 2023). These alarming forecasts un-
derscore the urgent need for enhanced methodologies and innovative
approaches in monitoring and improving water management and sani-
tation practices (Fuente et al., 2020; Nkiaka et al., 2021).

To expedite the implementation of SDG 6, the United Nations initi-
ated the “SDG 6 Global Acceleration Framework”, encompassing five
integral domains: finance, data and information, capacity development,
innovation, and governance. A critical examination of the data and in-
formation domain reveals a significant challenge in the collection of
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essential monitoring data (Arora and Mishra, 2022; Miao et al., 2023;
Pigolaetal., 2021; Hino et al., 2018; Jiang et al., 2024). According to the
SDG 6 Progress Summary Report (2021), although most of the 193 UN
member states have amassed two-thirds of the required SDG 6 moni-
toring data, 24 countries have yet to collect half of the necessary in-
formation. The scarcity of data is particularly pronounced in smaller
regions below the national level, underscoring the urgency of enhancing
data acquisition methods to monitor and support the achievement of
SDG 6 targets effectively.

The overarching challenge in the domain of sustainable water
management and ecosystem preservation under SDG 6 lies in the inad-
equate monitoring capabilities that hinder the effective conservation of
water-related ecosystems, especially in smaller, localized regions (Denu
et al., 2023). Despite the global commitment to sustainable develop-
ment, the lack of comprehensive, high-quality data poses a significant
barrier to assessing progress accurately and implementing targeted in-
terventions (Guo et al., 2023; Hofmann, 2021; Nilashi et al., 2023;
Sheffield et al., 2018). This gap in data collection and monitoring ca-
pabilities is particularly acute in the context of the protected areas,
where the intricate dynamics of water ecosystems require nuanced un-
derstanding and management. The inability to gather and analyse
detailed environmental data at such a granular level compromises the
global efforts towards achieving the water-related targets of SDG 6,
underscoring the need for innovative solutions that can bridge these
gaps and facilitate informed decision-making for the preservation of
vital ecosystems.

The existing literature synthesizes diverse methodologies and out-
comes in environmental sustainability, notably in water treatment and
wastewater management, underlining their significant contributions
towards achieving clean water (SDG 6) and promoting responsible
consumption (SDG 12) (K. Zhang et al., 2023; W. Zhang et al., 2023; Zhu
et al., 2023). Furthermore, the optimization of
urban-agricultural-ecological spaces (Wang et al., 2022) and the inno-
vative conversion of wet waste into energy resources (Zhu et al., 2023)
illustrate the pivotal role of machine learning (ML) in advancing sus-
tainable cities (SDG 11) and clean energy (SDG 7). Additionally, ML’s
application in monitoring poverty (Alsharkawi et al., 2021) and pre-
dicting human development indices (Ramos et al., 2018) underscores its
potential impact on eradicating poverty (SDG 1) and enhancing quality
education (SDG 4), thereby contributing to a broader understanding and
implementation of SDGs.

Despite the growing interest among scholars in studying the SDGs,
there remains a notable deficiency in adequate methods for assessing
these goals effectively (Denu et al., 2023; Yao and Li, 2023). This study
seeks to bridge this gap by leveraging the advancements in interpretable
ML, which offers enhanced transparency in the analysis. Specifically, the
Random Forest (RF) method is employed to quantify the contribution of
each variable towards the preservation of water-related ecosystems,
addressing the shortcomings related to the lack of interpretability in
traditional models (Lin et al., 2023). The interpretability of RF models
offers a substantial advantage, facilitating a comprehensive under-
standing of variable importance in land cover classification. This capa-
bility supports enhanced model transparency, enables informed
decision-making, and ensures reliability by addressing uncertainties
associated with environmental data analyses (Meyer et al., 2019; Nilashi
et al., 2023; Fisher et al., 2024). Through this approach, the research
aims to provide a more nuanced understanding and evaluation of SDG
6.6, thereby contributing to the broader field of sustainable develop-
ment research with a method that combines robustness with
interpretability.

Employing the Random Forest method to monitor the preservation of
the most relevant water-related ecosystem in the Distrito Federal (Brazil):
the riparian areas of its rivers which are strips of moisture-loving
vegetation growing along the edge of the water bodies. The Brazilian
Forest Code, Law n°. 12,651 of May 25, 2012, mandates the protection of
riparian areas. These protected areas are referred to as Permanent
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Protected Areas (PPAs). This study classified images from the Sentinel-2
satellite, observing an approximate 6% increase in native vegetation
within the PPAs of the Distrito Federal between 2015 and 2022. The
accuracy of these observations ranged between 83% and 88%, with a
Kappa coefficient between 0.73 and 0.84, both closely aligning with
values reported in the literature. This research utilised freely available
datasets, open-source software, and a cloud-based platform: Google
Earth Engine (GEE), to conduct its analysis. Through this methodology,
the study contributes to the field by providing a replicable model for
monitoring ecosystem preservation efforts, leveraging advanced statis-
tical ML techniques within an accessible technological framework.

2. Literature review
2.1. Protect and restore water-related ecosystems (SDG 6.6)

The Sustainable Development Goals (SDGs) were established in 2015
by the United Nations (UN) as a global endeavour to eradicate poverty,
protect the environment, and ensure sustainable development by the
year 2030. Among these, SDG 6, known for its focus on “Clean Water and
Sanitation”, goes beyond its primary objective to include targets aimed
at evaluating the social, environmental, and economic significance of
water resources (Diep et al., 2021; Taka et al., 2021). This goal is
detailed through eight targets and 11 indicators, providing a compre-
hensive framework for assessing progress (Madrazo-Ortega and
Molinos-Senante, 2023; Requejo-Castro et al., 2020). However, Basu
and Dasgupta (2021) have identified a disconnection between scientific
research and the practical application of SDG 6, highlighting a growing
divide between technological advancements, academic discussions, and
the actual implementation by policy practitioners. This gap underscores
the necessity for clearer integration of research findings with
policy-making processes to enhance the effectiveness of SDG 6
initiatives.

Evaluating progress and efficiency in local governance is crucial for
the achievement of SDG 6, particularly in ensuring access to clean water
and sanitation. Martinez-Cordoba et al. (2020) highlight the significant
role of Spanish local governments in this endeavour, identifying key
determinants such as water-related rates and the private management of
water services that enhance governance efficiency. The research con-
ducted by Robins et al. (2017) offers a pertinent perspective on
strengthening water governance in complex, multi-tiered arrangements,
focusing on the United Kingdom’s collective water policies and ap-
proaches. This analysis is foundational for understanding the impor-
tance of governance in water and sanitation projects. Furthermore, Ba
et al. (2022) assess the regulatory challenges faced by the Niger Basin
Authority, particularly the lack of legal instruments for effluent
discharge, which directly impacts water quality under SDG 6.3. This
evaluation underscores the critical need for robust legal frameworks to
support the objectives of SDG 6, indicating that effective governance and
comprehensive legal regulations are essential for sustainable water
management.

The significance of public awareness and community participation in
achieving SDG 6 cannot be overstated, as evidenced by the research
conducted by Mustafa et al. (2022). Their findings underscore the
impact of public awareness, alongside other factors, on advancing SDG 6
in a developing country context, advocating for enhanced strategies to
boost public engagement. This underscores the pivotal role of public
awareness in progressing towards SDG 6 (Mustafa et al., 2022).
Furthermore, the evaluation by Partzsch et al. (2021) of coffee certifi-
cation standards and their contribution to watershed sustainability light
on the environmental emphasis of such programs. However, it also
points out their shortcomings in addressing the broader needs of water
and sanitation, thereby exploring the influence of industry standards in
promoting SDG 6 (Partzsch et al., 2021).

In the domain of scientific research, collaboration, and the explora-
tion of emerging concepts are crucial for advancing SDG 6. Basu and
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Dasgupta (2021) conducted a bibliometric analysis that unveils research
trends and identifies gaps in the field of water sustainability, calling for
increased collaboration and investigation into new concepts. This
analysis illuminates the scientific community’s significant contributions
towards SDG 6. Moreover, the employment of multisource data by Miao
et al. (2023) in Lincang City and the holistic approach adopted by Ortega
and Senante (2023) in Chile for quantifying SDG 6 indicators exemplify
innovative methodologies for assessing progress. These studies under-
score the importance of comprehensive evaluations and the utilisation of
diverse data sources in effectively addressing SDG 6.

Expanding the dialogue, the exploration into private sector collab-
oration for sustainable development reveals the complexities of collab-
orative governance mechanisms. Through a systematic literature
review, the study conceptualises the core dimensions of collaborative
governance—hierarchy, formalization, centralization—and the factors
affecting the impact of governance choices on sustainable development
outcomes. The results indicate that various collaboration types act as
governance mechanisms to advance Sustainable Development Goals,
suggesting the need for combining different governance arrangements.
The effectiveness of collaborative efforts is determined not only by
governance dimensions but also by the specific SDG targeted and the
nature of the partners involved (Vazquez-Brust et al., 2020). This un-
derscores the intricacies and detailed planning required to formulate
efficient collaborative strategies for sustainable development.

Addressing the governance challenges and indicator gaps is crucial
for the effective monitoring and implementation of SDG 6 (Bhaduri
et al., 2016; Fu et al., 2019). Herrera (2019) and Guppy et al. (2019)
provide insightful analyses into the governance difficulties and the in-
adequacies within the SDG 6 indicator framework, offering potential
solutions to mitigate these issues. Their work underscores the com-
plexities involved in tracking and achieving SDG 6. Furthermore,
scholars have put forth recommendations for African countries to
intensively mobilise resources to ensure universal Water, Sanitation and
Hygiene (WASH) services by 2030, presenting a critical viewpoint on the
international efforts needed to fulfil SDG 6 (Fuente et al., 2020; Hof-
mann, 2021; Nhamo et al., 2019). This comprehensive approach high-
lights the multifaceted strategies required to address the challenges of
clean water and sanitation globally (Pereira and Marques, 2021).

The literature review underscores the necessity of a multifaceted
approach to address the challenges of ensuring clean water and sanita-
tion, as outlined in SDG 6. Key findings highlight the critical role of
integrated strategies, encompassing robust governance, comprehensive
legal frameworks, heightened public awareness, and rigorous scientific
research. These elements are indispensable for the successful achieve-
ment of SDG 6, demonstrating the complexity and interconnectivity of
efforts required to secure water and sanitation for all.

2.2. Applications with machine learning

The SDGs adopted by UN members in 2015, represent a global
commitment to end poverty, protect the planet, and ensure sustainable
development by 2030 (UN, 2015). Among these, SDG 6 focuses on
ensuring the availability and sustainable management of water and
sanitation for all, encompassing eight targets and 11 indicators. How-
ever, progress towards these goals varies significantly by income level
and location, highlighting the need for a nuanced understanding of
regional water resource management and policy design for water-
related ecological conservation. This variability underscores the
importance of contextualizing sustainable development within local
realities, as each community exists within a unique socio-economic and
geographical landscape (Madrazo-Ortega and Molinos-Senante, 2023;
Miao et al., 2023). Moreover, Basu and Dasgupta (2021) reveal that the
linkage between scientific research and SDG 6 is often ambiguous,
widening the gap between technological advancements, academic
discourse, and practical policy implementation.

ML has been recognised as a crucial technology for promoting
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sustainable development, offering innovative solutions across a range of
SDGs. The European Commission has initiated a forward-thinking plan
aimed at fostering the use of green digital technologies to benefit the
environment through systemic changes known as ‘twin transitions’
(European Commission, 2021). This approach highlights the substantial
potential of ML in facilitating environmental sustainability. For
instance, scholars have highlighted ML’s contributions towards
improving water treatment processes and enhancing construction and
demolition waste management, directly supporting goals like clean
water (SDG 6) and responsible consumption (SDG 12) (K. Zhang et al.,
2023; W. Zhang et al., 2023). Additionally, ML has been applied to
optimise urban-agricultural-ecological spaces and convert wet waste
into energy resources, showcasing ML'’s role in promoting sustainable
cities (SDG 11) and clean energy (SDG 7) (Wang et al., 2022; Zhu et al.,
2023).

Expanding upon the contributions of ML to environmental sustain-
ability, its applications also significantly impact objectives like eradi-
cating poverty (SDG 1) and enhancing quality education (SDG 4).
Research has employed ML to monitor poverty levels and forecast
human development indices, demonstrating its capacity to tackle critical
social challenges (Alsharkawi et al., 2021; Ramos et al., 2018). Addi-
tionally, studies examining generational shifts towards sustainability
underscore ML’s role in identifying societal trends in sustainable life-
styles and job-seeking behaviours, marking a notable pivot towards
sustainability across generations (Yamane and Kaneko, 2021). In the
context of sustainable urban planning, ML has been shown to support
the development of Smart Cities, improving urban management to foster
more inclusive, safe, resilient, and sustainable environments. This
approach is particularly relevant in addressing contemporary chal-
lenges, such as the COVID pandemic, illustrating ML’s broad applica-
bility in furthering the SDGs (Heras et al., 2020; Jain et al., 2023).

ML applications permeate the domains of policy formulation,
decision-making processes, and the evaluation of SDGs performance.
Research demonstrates ML’s ability to provide critical insights into
environmental sustainability and support the aggregation of evidence
for informed policy decisions (Porciello et al., 2020; Yao and Li, 2023).
Furthermore, studies highlight the significant impact of ML, particularly
Automated Machine Learning (AutoML), on the evaluation and predic-
tion of SDG achievements. This underscores its predictive power as a
crucial tool in strategic planning, essential for the successful fulfilment
of SDGs (Singpai and Wu, 2020). In hydrological assessments, machine
learning models, including Boosted Regression Tree (BRT), Classifica-
tion and Regression Tree (CART), and RF, have demonstrated consid-
erable applicability in mapping groundwater potential (Al-Obeidat
et al., 2015; Naghibi et al., 2016; Otukei and Blaschke, 2010; Phan et al.,
2020). Furthermore, the transformative potential of Deep Learning in
remote sensing applications has been highlighted, particularly its ability
to extract multiscale and multilevel features for precise environmental
mapping and prediction, thereby advancing SDG monitoring frame-
works (Yuan et al., 2020).

Following the exploration of ML pivotal role in policy and SDG
performance assessment, it’s essential to delve into the comparative
effectiveness of advanced ML techniques in sustainable development.
Techniques such as Artificial Neural Networks (ANN), LightGBM,
Automated Machine Learning (AutoML), and the Shapley additive
explanation (SHAP) technique have been employed with varying de-
grees of success across different sustainability studies (Yao and Li,
2023). These methods have demonstrated innovative applications, from
environmental sustainability to economic and social development,
underscoring ML’s versatility. The literature review consolidates the
critical role of ML in propelling sustainable development across diverse
domains, highlighting the necessity for ongoing research and innovation
in ML technologies to maximize their contribution to the SDGs. This
reiteration emphasizes the transformative potential of ML in achieving
global sustainability objectives, advocating for continued advancements
and application of ML techniques in addressing the complex challenges
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of the SDGs.
3. Material and methods
3.1. Research context

The selected research area is the Distrito Federal, one of the 27 states
of Brazil and the smallest in terms of area. Situated in the Central-West
region, it is renowned for housing the nation’s capital, Brasilia, as shown
in Fig. 1 below. The DF spans an area of 5760.784 square kilometers
(kmz), nestled between the states of Goias and Minas Gerais. The focus of
the land use classification was narrowed down to the PPAs of all water
bodies within the DF’s hydrography, excluding reservoirs and lakes,
culminating in a total study area of 208.3 km?2.

In accordance with the Brazilian Forest Code, established by Law No.
12,651 of May 25, 2012, marginal strips ranging from 30 to 500 m are
set based on the width of the rivers, designating them as PPAs. This law
defines PPAs as protected areas, whether covered by native vegetation
or not, with the environmental function of preserving water resources,
landscapes, geological stability, and biodiversity, as well as protecting
the soil, fauna, and flora, thereby ensuring the well-being of the
population.

Rivers less than 10 m in width are required to have a 30-m marginal
strip; watercourses ranging from 10 to 50 m in width should have a 50-m
strip, and so on. Given that the aim of this study is to evaluate the use of
statistical ML in monitoring SDG 6.6, all PPAs were considered with a
30-m marginal strip, aligning with the objectives of this work.

3.2. Data collection

In the methodology’s data collection section, the study primarily
utilised the 2015 Hydrography data from the Distrito Federal Environ-
mental Information System (SISDIA) - Hydrography CRH (2015), which
serves as the main public and free environmental database for the Dis-
trito Federal (SISDIA, 2023). Initially, the hydrography data from the
National Water and Sanitation Agency (ANA) and its Hydrographic
Ottocodificada Base 2013 were considered due to its comprehensive
geographic information layers, including drainage sections, hydro-
graphic contribution areas, and watercourses. However, ANA’s hydro-
graphic base, developed from hydrographic contribution areas derived
from the Shuttle Radar Topography Mission (SRTM) project’s digital
elevation models (DEM) with spatial resolutions of 90 and 30 m
depending on the region, resulted in a line-type shapefile that inaccu-
rately represented river boundaries, occasionally extending through
urban or agricultural areas outside the water bodies and PPAs. In
contrast, SISDIA’s database utilises DEMs with higher precision, spe-
cifically developed for the Distrito Federal.
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For delineating the PPAs, the multiplatform open-source geographic
information system software QGIS 3.32 was employed, using the
BUFFER tool on the line-type Hydrography feature class shapefile ob-
tained from SISDIA, as shown in Fig. 2 above. This tool generates an area
around a point, line, or polygon shapefile, allowing for the specification
of the width of the marginal strip to be created, in this case, set to 30 m.
Additionally, the 2022 states metadata for Brazil, available on the Bra-
zilian institute of Geography and Statistics (IBGE, 2023) portal, were
used to define Brazil’s, especially the boundaries of the Distrito Federal.

Regarding satellite images, this study follows previous research
(Radoux et al., 2016) and opts for the Sentinel-2 satellite images over the
commonly used Landsat images for several reasons: (i) The superior
quality of images due to the smaller pixel size of Sentinel-2, which varies
between 10 and 60 m, providing images with a resolution of 10 m for the
Distrito Federal, compared to Landsat’s 30-m pixel. (ii) The study area’s
specificity, as the analysis focuses on land use within PPAs with 30 m on
each side of water bodies, where a higher number of pixels allows for
more detailed interpretation and classification accuracy. Using Landsat
would result in only 1 pixel per 30 m of river, whereas Sentinel provides
9 pixels, i.e., 9 data/information points for the same area, instead of just
one. (iii) The period of the satellite’s launch, which coincides with the
year the SDGs were established, in 2015, enabling a comparison of the
preservation of PPAs at the start of the program between 2015 and 2016,
with the most recent data between 2022 and 2023, depending on data
availability and quality. This approach offers an overview of the pres-
ervation of water-related ecosystems in Distrito Federal since the incep-
tion of the SDGs, aligning with the objectives of this work.

3.3. Random Forest classification: model training and validation

In this study, the Random Forest algorithm was deployed to classify
the land use of the PPAs in Distrito Federal through the Google Earth
Engine (GEE) platform. The GEE classifier package facilitates supervised
classification using traditional ML algorithms, including Classification
and Regression Trees (CART), Random Forest, Naive Bayes, and Support
Vector Machine (SVM). The “Guides” section on the Google Developers
site provides examples and instructions for these algorithms. GEE is
widely used in environmental analyses at regional and global scales,
with a significant increase in studies since 2017 (Tamiminia et al.,
2020).

RF was chosen for this analysis because it is a nonparametric method
that does not depend on prior knowledge of the ecological factors or
attributes related to the prediction or classification outcomes (Menze
et al., 2009). Additionally, like other Classification and Regression Tree
(CART) methods, RF offers computational simplicity and can handle
large datasets effectively. RF and other CART methods achieved an
overall accuracy of 86% in classifying Landsat satellite images
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Fig. 1. Map of the study area and its location within Brazil.
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(Al-Obeidat et al., 2015). Similar findings were reported by Otukei and
Blaschke (2010) and Phan et al. (2020), with overall accuracies sur-
passing 85% and 84% for satellite image classification, respectively.The
algorithm employed in this research was based on models available on
the Google Developers platform, with modifications such as changing
the satellite used, selecting bands, determining the number of classes for
classification, and specifying the polygon-type feature class shapefile for
supervised classification, specifically targeting the PPAs of water bodies
in the DF.

According to Congalton and Green (2019), fifty randomly allocated
validation points are deemed sufficient for each land use class. However,
their studies typically utilised at least two hundred points per satellite
image (mosaic). For model training and validation, 60 points (markers
in GEE) were used for each land use class, comprising four categories for
the model’s classification: (i) LC_Water: Water bodies. (ii) LC_De-
gradation: Urban areas. (iii) LC_Woody: Forest/native vegetation. (iv)
LC_Agriculture: Agricultural areas, as shown in Fig. 3 below:

To guide the placement of validation points (response or output
variables) for each class, Sentinel-2 satellite images from 2015 to 2016
and 2022-2023 were compared with Airbus CNES 2023 images avail-
able on the GEE platform, positioning them only in areas where land use
remained unchanged. For the LC_Woody class, sections of the Mineral
Water National Park, a preserved area with only native vegetation, were
chosen; for the LC_Water class, wider rivers whose area tends not to
change were selected; for the LC_Degradation class, consolidated urban
areas were chosen; and for LC_Agriculture, predominantly agricultural
locations in the DF were selected, including different crops at various
stages of production, as shown in Figs. 4 and 5. After training, the model
was applied to the entire sample (a 30-m BUFFER along the margins of
water bodies in the DF), yielding the results presented in the next sec-
tion. This structured approach ensures a comprehensive and coherent
methodology for the classification and validation process, adhering to

160000E  180000E  200000E

established practices in the field of remote sensing and machine
learning.

4. Findings and discussion

To achieve the objective of monitoring SDG 6.6 through statistical
ML, focusing on the preservation of PPAs in Distrito Federal, images from
two periods were sought: shortly after the creation of the SDGs, between
2015 and 2016, and a more recent period, between 2022 and 2023.
Utilizing the GEE, it was possible to search for Sentinel-2 satellite images
by specifying only the period of interest. The Sentinel satellite was
chosen primarily for its high-resolution capabilities. In addition to
specifying the search date, filters were applied to limit the maximum
cloud coverage in the images to 20% and to remove cloud shadows
(cloud masking), resulting in a composite of images with minimal cloud
and shadow coverage for the specified area (PPAs of the DF) for the
selected periods (dry and rainy seasons).

The search for images, according to the specified filters, significantly
reduced the time and effort associated with image pre-processing, which
traditionally involves searching for images, downloading, removing
clouds and shadows, and merging images (mosaic) to obtain a single
image covering the entire study area. By using GEE, all these steps were
incorporated into the same algorithm, allowing for the construction of a
single image with all information extracted from aerial photography of
different periods stored and processed in the cloud.

For this study, images were sought for the driest and wettest periods
of the year. June to August was identified as the dry period, and
November to January as the rainy period, as shown in Table 1. Initially,
images from June to August 2015 were sought, but due to the satellite’s
launch in the same period (23 June 2015), there were no available im-
ages meeting the minimum requirements. Therefore, images from June
to August 2016 and 2022 were sought. For the rainy period, images from
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Fig. 3. Distribution of training and validation points.

Caption: Orange circles (top-left) represent the LC_Degradation: Urban areas; Blue circles (bottom-left) represent the LC_Water: Water bodies; Yellow circles (top-

right) represent the LC_Agriculture: Agricultural areas; Green circles (bottom-right)

represent the LC_Woody: Forest/native vegetation.
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Fig. 4. Land use classification map for 2016.

Caption: Orange pixels represent the LC_Degradation: Urban areas; Blue pixels represent the LC_Water: Water bodies; Yellow pixels represent the LC_Agriculture:

Agricultural areas; Green pixels represent the LC_Woody: Forest/native vegetation.

160000E  180000E

200000E  220000E  240000E

o

_$220000N  8240000N 532&30000N 8280000N

Fig. 5. Land use classification map for 2022.

Caption: Orange pixels represent the LC_Degradation: Urban areas; Blue pixels represent the LC_Water: Water bodies; Yellow pixels represent the LC_Agriculture:

Agricultural areas; Green pixels represent the LC_Woody: Forest/native vegetation.

Table 1
— Average monthly precipitation for the Distrito Federal across two periods (1961-1990 and 1991-2020).
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1961-1990 247 218 181 124 39 9 11 14 55 167 231 246
1991-2020 206 180 226 145 27 3 2 16 38 142 253 241

Source: INMET (2023).

November 2015 to January 2016, and from November 2022 to January
2023 were sought (INMET, 2023).

The dry months (June to August) yielded the best classification re-
sults, with overall accuracy between 86% and 88%, and a Kappa coef-
ficient of 81% (2016) and 84% (2022). The rainy months (November to
January) showed slightly lower results, with accuracy between 81% and
84%, and a Kappa coefficient between 73% and 79%, as shown in
Table 2. The classification accuracy observed in this study aligns with
findings from Phan et al. (2020) and Bessinger et al. (2022), reinforcing
the reliability of RF in environmental monitoring. This consistency

Table 2

across diverse geographies highlights RF’s robustness in adapting to
varying ecological conditions. The Kappa coefficient (equation below)
assesses the level of agreement between two sets of data, being a
quantitative measure of the reliability of two evaluators judging the
same dataset, corrected for the frequency with which evaluators present
the same result.

__Po—Pe

k=—_—~
1—Pe

Where Po is the observed agreement probability; Pe is the hypothetical

— Overall accuracy and Kappa coefficient for land cover classification across different periods and seasons, 2015-2023.

Jun/2016-Aug/2016 Jun/2022-Aug/2022 Nov/2015-Jan/2016 Nov/2016-Jan/2017 Nov/2022-Jan/2023
Overall accuracy 0.86 0.88 0.81 0.83 0.84
Kappa coefficient 0.81 0.84 0.73 0.76 0.79
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expected probability.

According to Landis and Koch (1977), values above 81% present
almost perfect agreement, and values between 61% and 80%, substan-
tial agreement. The classification in the dry period was almost perfect
and in the rainy period, substantial. Similar results were found by Phan
et al. (2020), which obtained overall accuracy above 84.31%, and re-
sults between 77.66% and 89.90%, according to the different strategies
for selecting the input images; and by Bessinger et al. (2022), which
obtained an average overall accuracy of 82.28%, with values between
75.33% and 86.70%, and an average Kappa coefficient equal to 0.8068,
with values between 0.7310 and 0.8550.

The reason for the difference observed in the Kappa coefficient be-
tween the rainy months (substantial agreement) and the dry months
(almost perfect agreement) is likely due to cloud cover and shadows.
Given the intensity of the rainy and dry seasons in the Distrito Federal,
with monthly precipitation exceeding 200 mm between November and
January, there’s a high likelihood of encountering clouds (and shadows)
in satellite images, even with specified filters, thus limiting the number
of images and pixels available for classification. In contrast, during the
dry period, with an average monthly precipitation of less than 15 mm,
there’s a greater probability of finding "cleaner" images with virtually no
cloud presence.

Another possible reason for the observed classification difference is
due to the change in pixel colouration of the LC_Water, LC_Degradation,
and LC_Agriculture classes, as shown in the confusion matrices Table 3
and F1 score in Table 4. As can be observed in satellite images, river
colouration tends towards brown hues during the rainy season,
complicating classification since similar tones may be found in the
LC_Agriculture and LC Degradation classes, in areas of exposed soil.
During the dry periods, rivers exhibit bluer tones, facilitating the dif-
ferentiation between the LC_Water and LC_Agriculture classes.

The confusion matrix evaluates the performance of the classification
carried out by a classification algorithm, presenting the distribution of
records in their actual classes and their predicted classes. It offers a
clearer understanding of what the classification model is getting right
and the types of errors it is making. While the F1 score measures the
model’s accuracy by combining precision and recall scores extracted
from the confusion matrix. The precision is the number of correctly
identified positive results divided by the number of all positive results,
including those not identified correctly. The recall is the number of
correctly identified positive results divided by the number of all samples
that should have been identified as positive (Wagle et al., 2020).

Another challenge presented by the algorithm was the classification
among LC_Agriculture, LC_Degradation, and LC_Woody during rainy

Table 3
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Table 4
— Producer and consumer accuracy and F1 Scores for land cover classification
across different periods and seasons, 2015-2023.

Time Period Category Producer Consumer F1
accuracy accuracy Score

Jun/ LC_WATER 0.85 0.85 0.85
2016-Aug/ LC_DEGRADATION 0.85 0.89 0.87
2016 LC_WOODY 1.00 0.86 0.92
LC_AGRICULTURE 0.77 0.83 0.80
Jun/ LC_WATER 0.93 0.76 0.84
2022-Aug/ LC_DEGRADATION 0.81 1.00 0.90
2022 LC_WOODY 0.87 0.95 0.91
LC_AGRICULTURE 0.94 0.83 0.88
Nov/ LC_WATER 0.93 1.00 0.96
2015-Jan/ LC_DEGRADATION 0.75 0.69 0.72
2016 LC_WOODY 0.91 0.71 0.80
LC_AGRICULTURE 0.40 1.00 0.57
Nov/ LC_WATER 0.83 0.71 0.77
2016-Jan/ LC_DEGRADATION  0.78 0.78 0.78
2017 LC_WOODY 0.95 0.95 0.95
LC_AGRICULTURE 0.67 0.73 0.70
Nov/ LC_WATER 0.86 0.92 0.89
2022-Jan/ LC_DEGRADATION  0.76 0.84 0.80
2023 LC_WOODY 1.00 0.79 0.88
LC_AGRICULTURE 0.79 0.85 0.81

periods, as there are green-coloured pixels in these three classes due to
agricultural production, urban gardens, and the natural vegetation of
the PPAs. In contrast, during the dry season, greener tones are usually
exhibited by agriculture, owing to irrigation, while the other classes
tend to show a drier appearance and more yellowish tones.

Producer’s Accuracy measures the likelihood that a specific land use
class within a study area is correctly classified, essentially indicating the
frequency at which actual features on the ground are accurately depic-
ted on the classified map. In opposition, User’s Accuracy reveals how
often a land use class identified on the classified map actually exists in
reality. This distinction confirms some of the challenges the algorithm
faces in classification during rainy periods, particularly for the LC_A-
griculture class, which showed the lowest values, but also for other
classes in comparison to the dry season, as shown in Table 4.

The choice of dry season results to meet the research objective-
—observing the preservation of the PPA in Distrito Federal (Brazil)—was
based on accuracy results, the Kappa coefficient, confusion matrix, and
F1 score findings, in addition to the reasons outlined above. The Figs. 4
and 5 above display the land use classification results of the PPAs, and
Table 5 lists the total areas found for each class.

As observed in Figs. 4 and 5 and the areas detailed in Table 4, there

— Confusion matrix for land cover classification across different periods and seasons, 2015-2023.

Time Period Category LC_WATER LC_DEGRADATION LC_WOODY LC_AGRICULTURE
Jun/2016-Aug/2016 - Dry LC_WATER 17 2 1 0
LC_DEGRADATION 1 17 2
LC_WOODY 0 0 12 0
LC_AGRICULTURE 2 0 1 10
Jun/2022-Aug/2022 - Dry LC_WATER 13 0 1 0
LC_DEGRADATION 0 13 3
LC_WOODY 3 0 20 0
LC_AGRICULTURE 1 0 0 15
Nov/2015-Jan/2016 - Rainy LC_WATER 13 0 1 0
LC_DEGRADATION 0 9 3 0
LC_WOODY 0 1 10 0
LC_AGRICULTURE 0 3 0 2
Nov/2016-Jan/2017 - Rainy LC_WATER 5 0 0 1
LC_DEGRADATION 2 14 0 2
LC_WOODY 0 1 21 0
LC_AGRICULTURE 0 3 1 8
Nov/2022-Jan/2023 - Rainy LC_WATER 12 0 0 2
LC_DEGRADATION 1 16 4 0
LC_WOODY 0 0 15 0
LC_AGRICULTURE 0 3 0 11
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Table 5
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- Land cover area proportions and total area across different periods and seasons, 2015-2023.

Area (%)

Jun/2016-Aug/2016 Jun/2022-Aug/2022

Nov/2015-Jan/2016 Nov/2016-Jan/2017 Nov/2022-Jan/2023

LC_WATER 19.1% 13.2%
LC_DEGRADATION 12.3% 11.7%
LC_WOODY 50.6% 56.7%
LC_AGRICULTURE 18.0% 18.4%
Total Area 164.87 184.28

4.8% 6.3% 3.5%
17.7% 6.3% 5.4%
59.2% 53.4% 60.6%
18.3% 33.9% 30.4%
103.52 151.9 164.87

was an increase in the preserved area within the DF’s PPAs (LC_Woody)
between 2015 and 2023, growing by approximately 6% in both the dry
and rainy seasons. This increase in vegetation area replaced spaces
previously occupied by urban areas (LC_Degradation), a change that can
be attributed to the DF’s policies on the irregular occupation of PPAs
lands and the spontaneous regeneration of vegetation once these areas
are vacated. Another factor potentially explaining this shift could be the
classification errors of the algorithm, as indicated in the confusion ma-
trix between LC_Water and LC_Woody, and by the Producer’s Accuracy,
where the LC_Water class scored 0.85 in 2016, justifying an approximate
6% increase in one class and a corresponding decrease in the other.

Agricultural areas (LC_Agriculture) practically did not change, which
can also be explained by the strong division between urban and agri-
cultural areas, the first being allocated further west of the DF, and the
second further east, in addition to the growth rates of the DF, which
imposes extra pressure, limiting the growth of this class.

As for the total areas classified, as shown in Table 4, the total area for
Nov/2015-Jan/2016 was the smallest of the five classifications carried
out (103.5 kmz), while the others presented values above 150 km?. The
difference is due to the availability of images that meet the established
minimum prerequisites, aiming to reduce clouds and shadows. Howev-
er, probably because the Sentinel-2 satellite was launched in June 2015,
its operation was probably not yet at full capacity during the period
evaluated, which can be seen when comparing with other periods.
Another factor that contributed to the difference was the period of
drought and rain, with the classification in the dry period in 2022 being
the one with the largest area, due to the low presence of clouds and,
therefore, the greater availability of images that meet the minimum
requirements.

In methodological terms, the decision to use high-resolution images
from Sentinel-2 to monitor specific changes in vegetation within PPAs
exemplifies a methodologically rigorous approach designed to capture
detailed environmental changes over time. This is particularly critical in
regions where minor alterations in land cover can have significant
ecological impacts. Although some studies have also opted to use
Sentinel-2 for its advantages Phan et al. (2020), there are indications of
lower spatial consistency among the results, which could diminish its
effectiveness in applications requiring high precision, such as detailed
ecological monitoring or compliance with specific environmental reg-
ulations. In other words, our study not only focuses on achieving high
classification accuracy (Radoux et al., 2016), but also contributes to
methodological advancements in the field of environmental monitoring,
with potential for broader applications in similar ecosystems globally.

The results demonstrated from the Kappa coefficient indicate a high
degree of reliability and accuracy in the classification outcomes,
essential for precise ecosystem monitoring and informed decision-
making. While similar studies have achieved competent results,
reporting an average overall accuracy of 82.28% with a range from
75.33% to 86.70% (Bessinger et al., 2022), the variability shown could
undermine confidence in some of the classification outputs, particularly
at the lower end of accuracy. Our study’s robust model, combined with
advanced machine learning techniques and comprehensive data anal-
ysis, not only enhances the granularity of environmental data analysis
but also aligns with global efforts to meet Sustainable Development
Goals through innovative technological applications. This alignment is

not merely theoretical but demonstrated through practical application
and quantifiable results, offering a significant contribution to both the
academic community and practical field applications.

In conclusion, the application of the Random Forest algorithm
through the Google Earth Engine platform has demonstrated significant
potential in monitoring the preservation of PPAs in the Distrito Federal in
alignment with SDG 6.6. The comparative analysis of satellite images
from different periods has provided valuable insights into the changes in
land use within PPAs, highlighting the effectiveness of machine learning
techniques in environmental monitoring. The findings underscore the
importance of high-resolution satellite imagery and advanced classifi-
cation algorithms in enhancing the accuracy of land use classification,
thereby contributing to the informed decision-making process for sus-
tainable development. The results bridge existing gaps highlighted by
Basu and Dasgupta (2021), providing a replicable and practical meth-
odology for monitoring SDG 6.6. By leveraging accessible ML tools, it
complements global research efforts, which advocate for the integration
of advanced technologies in sustainable development practices (Yuan
et al., 2020). This study not only reaffirms the critical role of techno-
logical advancements in achieving the SDGs but also sets a precedent for
future research in the domain of environmental sustainability through
the innovative use of machine learning.

4.1. Practical and managerial implications

The findings of this study offer significant practical and managerial
implications for the monitoring and preservation of water-related eco-
systems, essential for achieving SDG 6. Firstly, the successful application
of the Random Forest method in classifying land use within PPA in the
Distrito Federal (Brazil) underscores the effectiveness of statistical ML in
environmental management. This approach demonstrates a replicable
model for government and environmental agencies, suggesting that
adopting advanced statistical ML techniques can enhance the accuracy
and efficiency of ecosystem monitoring efforts.

The observed increase in native vegetation within PPAs, based on
Sentinel-2 satellite imagery analysis, indicates not only the effectiveness
of governmental conservation efforts but also highlights the importance
of continuous and accurate monitoring to inform policy decisions. This
increase also highlights the practical value of integrating ML tools into
policy enforcement, aligning with findings on the need for robust reg-
ulatory frameworks (Ba et al., 2022). The use of freely available datasets
and cloud-based platforms like GEE simplifies the data processing
workflow, enabling more frequent evaluations of ecosystem preserva-
tion efforts without the need for extensive pre-processing or local data
storage.

For managers and policymakers, these insights recommend a stra-
tegic focus on integrating ML tools into environmental monitoring
frameworks to ensure data-driven decision-making. Additionally, the
adaptability of the algorithm to various locales, contingent upon specific
training, advises regional adaptations of these tools to account for
ecosystem characteristics and seasonal variations.

A significant advancement of this study over similar approaches
(Bessinger et al., 2022; Noi Phan et al., 2020; Pigola et al., 2021), is the
intent to transcend more general applications that are not explicitly
linked to any specific policy or global sustainability goals. Specifically,
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this research targets the preservation of PPAs with a clear objective to
achieve SDG 6, which pertains to clean water and sanitation. By moni-
toring land cover changes, the study demonstrates effective ecosystem
management, directly supporting the preservation of water-related re-
sources crucial for achieving SDG 6. These tools enable temporal as-
sessments, ensuring accurate data for informed decision-making.
Moreover, identifying degraded areas facilitates targeted interventions
to mitigate erosion and runoff, safeguarding water bodies against
pollution and sedimentation, thereby advancing clean water and sani-
tation objectives (Mustafa et al., 2022). This direct connection to the
SDG targets adds a layer of political relevance and applicational sig-
nificance to the research, enhancing its utility for both governmental
and non-governmental organisations focused on meeting these global
objectives.

Although similar studies have underscored important ecosystems,
they tend to lack a prioritised focus on areas with immediate impact on
human health and environmental sustainability (Bessinger et al., 2022).
In this context, our choice to concentrate on PPAs, especially riparian
zones critical for water quality and biodiversity, is particularly timely.
This focused approach aligns closely with specific environmental and
conservation goals, making the research highly relevant for conserva-
tion efforts and policymaking, particularly in achieving SDG 6. Overall,
our work, by employing advanced machine learning integrated with
high-resolution satellite imagery, contributes to methodological ad-
vancements in the field and sets objective guidelines for practical
implementation or scalability. In doing so, it adds to the existing
empirical literature (Nilashi et al., 2023; Pigola et al., 2021; Requejo--
Castro et al., 2020; Jiang et al., 2024; Naghibi et al., 2016), which often
lacks specific examples of implementation as well as the outcomes such
implementations could yield.

In summary, this study advocates for the broader adoption of ML
technologies in environmental policy and management practices. It
highlights the potential of such technologies to support the global
endeavour of sustainable development and environmental stewardship,
offering a foundation for informed public policy formulation and con-
servation efforts.

Future research directions should include exploring hybrid models
combining RF and other statistical machine-learning algorithms, such as
classification or clustering. Classification algorithms, such as RF, allo-
cate objects (pixels) into classes or groups based on input variables, and
response (or output) variables are required to train the model. This
model can then be applied to test data sets that contain only the input
variables. Al-Obeidat et al. (2015) compared the performance of three
classification algorithms: (i) Decision Tree C4.5, (ii) Decision Tree ID3,
and (iii) a hybrid model with the combination of Multi-Criteria Decision
Analysis (MCDA) and Decision Tree algorithms. The overall accuracy
found was 89% (kappa = 0.8829) using the hybrid model, 86% (kappa
= 0.8572) using Decision Tree C4.5, and 82% (kappa = 0.82) using
Decision Tree ID3.

Integrating clustering algorithms would further refine classification
accuracy, thereby broadening the utility of these methods across
different ecosystems and geographical areas. Clustering algorithms are
an unsupervised learning method that does not require a training data
set. The algorithm seeks to understand the data independently, grouping
the objects according to a similarity measure. In this case, tests could be
performed, specifying the number of clusters (the same four used in this
research) or letting the algorithm estimate the number of groups as part
of the analysis. Then, apply the RF algorithm (or another classification
algorithm), comparing whether the results were better when the clusters
were selected by the clustering algorithm, instead of allocating the
validation points, as presented in this paper. Incorporating spatial
validation methods could enhance model generalisability by mitigating
overfitting risks inherent in environmental classification tasks (Meyer
et al., 2019).

Techniques such as K-Means, Density-Based Spatial Clustering of
Applications with Noise (DBSCAN), and Gaussian Mixture Models

Cleaner Production Letters 8 (2025) 100088

provide diverse methods for efficiently grouping data points. The inte-
gration of clustering algorithms with classification tasks can improve
accuracy and offer deeper insights into the relationships within the data,
presenting a promising area for future research exploration.

4.2. Social and economic implications

The findings from this research on the application of statistical ML,
particularly the Random Forest method, to monitor and preserve water-
related ecosystems, carry profound social and economic implications.
Firstly, the demonstrated increase in native vegetation within the PPA of
the Distrito Federal (Brazil) highlights the tangible benefits of employing
advanced ML techniques in environmental conservation efforts. This
growth not only signifies the recovery and preservation of ecosystems
but also suggests a positive trajectory towards achieving SDG 6, which is
vital for enhancing human well-being, driving economic and social
progress, and preserving ecosystems crucial to water security.

From a social perspective, the improvement in ecosystem preserva-
tion directly contributes to the well-being of communities by ensuring
access to clean water and sanitation facilities. It reflects an advancement
in public health standards and supports the broader objective of eradi-
cating poverty (SDG 1) and enhancing quality education (SDG 4), as
healthier ecosystems are foundational to social development and eco-
nomic prosperity.

Economically, the application of ML in environmental monitoring
can lead to more efficient use of resources, reducing the costs associated
with traditional data collection and analysis methods. The use of freely
available datasets and cloud-based platforms like GEE illustrates the
potential for cost-effective environmental management practices that
can be adopted by governmental and environmental agencies.
Leveraging increasing amounts of electronic data through such plat-
forms enhances regulatory effectiveness and supports efforts to mitigate
environmental harms (Hino et al., 2018). This approach enables a more
dynamic allocation of resources towards areas of critical need,
enhancing the effectiveness of conservation efforts and potentially
leading to economic savings.

Moreover, the study’s methodology, offering a replicable model for
ecosystem monitoring, underscores the importance of technology and
innovation in addressing global sustainability challenges. The accessi-
bility of advanced ML techniques promises to democratise the moni-
toring of SDGs, enabling developing countries to participate more
actively in global sustainability efforts. This can lead to economic
development opportunities, fostering global partnerships and collabo-
ration towards achieving the SDGs (Hofmann, 2021; Quinlivan et al.,
2020).

In summary, the social and economic implications of this study
advocate for the integration of machine learning technologies in envi-
ronmental policy and management, highlighting their potential to
contribute significantly to sustainable development, economic effi-
ciency, and social well-being. Future research should continue to
explore and refine these methodologies, expanding their application
across diverse ecosystems and geographical areas to maximize their
global impact.

5. Conclusions

This study has illuminated the potential of statistical ML as a robust
tool in supporting the monitoring of the Sustainable Development Goals
(SDGs), particularly SDG 6.6, which aims to protect and restore water-
related ecosystems. By employing classification algorithms, notably
the Random Forest method, this research has monitored the preserva-
tion of the Distrito Federal’s primary water-related ecosystem, the PPAs,
through Sentinel-2 satellite imagery analysis across two periods: the
inception of the SDGs in 2015-2016 and a more recent evaluation in
2022.

The observed increase in native vegetation within the PPAs by
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approximately 6% from 2015 to 2022 signifies progress in biodiversity
conservation, as they are home to a diverse range of flora and fauna. This
growth plays a crucial role in protecting water bodies and preventing
erosion, as PPAs function as ecological corridors, filtering sediments and
pollutants, which helps maintain both water quality and quantity.
Furthermore, this increase underscores the effectiveness of government
conservation efforts and highlights the uncertainties in the algorithm’s
classification, as demonstrated by confusion matrices and accuracy
metrics.The study’s findings, demonstrating higher accuracy during dry
periods with a near-perfect Kappa coefficient, align with existing liter-
ature on statistical ML classification methods. Utilizing free datasets,
open-source remote sensing software, and cloud-based platforms like
GEE has streamlined the data processing workflow, eliminating the need
for extensive pre-processing and local data storage. This methodology
not only facilitates rapid data analysis but also underscores the acces-
sibility and technological innovation inherent in the GEE platform,
enabling SDG monitoring in developing countries and enhancing the
frequency of such evaluations globally.

Furthermore, the adaptability of the algorithm to various locales,
contingent upon model training for specific areas, suggests a broader
applicability for monitoring PPAs beyond the DF, albeit with consider-
ations for regional ecosystem characteristics and seasonal variations.
The study’s approach, leveraging cloud-based platforms and machine
learning, offers a model for environmental preservation and public
policy formulation, providing updated data for governmental and
environmental agencies to inform decision-making and conservation
efforts. Future research should explore the integration of clustering al-
gorithms to refine classification accuracy and expand the algorithm’s
utility across diverse ecosystems and geographical contexts, thereby
contributing to the global endeavour of sustainable development and
environmental stewardship.
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