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A Note on Lattice Knots
Sasha Anan’in†, Alexandre Grishkov, and Dmitrii Korshunov

Abstract. The aim of this note is to share the observation that the set of elementary operations
of Turing on lattice knots can be reduced to just one type of simple local switches.
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1. Introduction

The subject of this note is the study of knots in R
3 that can be composed out of unit intervals

that are parallel to elements of the standard basis. It can be easily shown that each tame knot can
be represented in this form (such representation is often refered to as a cubulation [1]). We will see
that any isotopy of knots carries over to a simple combinatorially defined equivalence relation on
lattice knots. Namely, the following holds.

Theorem 1. Any two cubulated knots are isotopic if and only if one can be obtained from the
other by a sequence of the folowing operations (see Fig. 1) and their inverses as soon as each step
does not create self-intersections.

Fig. 1. Elementary switches.

It is rather curious that the first-ever survey of the subject of topology, written by Dehn and
Heegaard for Klein’s Encyklopädie der mathematischen Wissenschaften [2], was partially devoted to
lattice knots. Lacking the modern language of topological spaces, they work with cubulated knots
and combinatorial equivalence from the outset.

Also, Alan Turing, in his famous article “Solvable and Unsolvable Problems” [7], addresses the
problem of algorithmic distinction of cubulated knots. It should also be noted that lattice knots is
a subject of interest of biologists as lattice models of polymers (see, e.g., [3], [8]).

Grid diagrams, which play the key role in a combinatorial description of knot Floer homology
[6], give rise to lattice knots. On the other hand, cubulation is the first step in the construction of
a grid diagram of a given knot. At last, we would like to remark that the higher dimensional analogs
of cubulated knots also generated some literature (see, e.g., [4]).

A version of the main theorem seems to be a folklore knowledge, mentioned as such, e.g., by
Turing in [7] and Przytycki. To the best of the authors’ knowledge, the first paper where its proof was
written up is [5]. However, all the aforementioned authors require more operations as elementary.
In particular, they include doubling (in the sense of our definition below) as a basic operation. The
main novelty of our paper is the establishment of the fact that doubling follows from the rest of the
operations appearing in [7] and [5].
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Consider the set N obtained as the union of all translations by integer vectors of the union of
the three coordinate lines:

Z
3 + {(x, y, z) : x = y = 0 or x = z = 0 or z = y = 0} ⊂ R

3.

Definition 1. An embedding f : S1 → R
3 such that f(S1) ⊂ N is called a lattice knot.

Remark 1. Lattice knots are also referred to as cubic knots in the literature [5]. It is easy to
show that any tame knot is isotopic to a lattice knot.

In the present paper, we will represent a lattice knot by an element of the commutator subgroup
of the free group F3 in the following way. With each lattice knot we associate a reduced word in the
alphabet

{x, y, z, x̄, ȳ, z̄},
which encodes linear embeddings of each unit-length segment of a knot.

Example 1. A lattice trefoil, depicted in Fig. 2, is represented in this notation by

T = xxzȳȳx̄x̄x̄z̄z̄xxxxzzzx̄x̄yz̄z̄xxxȳȳx̄x̄x̄x̄yy.

Fig. 2. Lattice trefoil knot T .

Definition 2. The abelianization map Ab: F3 → Z
3 is defined by the formula

Ab: w �→ (|w|x − |w|x̄, |w|y − |w|ȳ, |w|z − |w|z̄
)
,

where |w|s is the number of occurrences of the symbol s in the reduced word w.

Definition 3. A subword of a word w is a set of consecutive symbols of w. We will denote it
by w[n..m], where n is the index of the first symbol and m is the index of the last. The numbering
starts at 1, and w[n..m] is the empty word if m < n by convention.

Now, we are going to recast the definition of a lattice knot in terms of words.

Definition 4. A lattice knot is a reduced word w in the alphabet {x, y, z, x̄, ȳ, z̄} such that
(1) Ab(w) = 0;
(2) no proper subword w′ of w has the property Ab(w′) = 0.

Remark 2. These two conditions amount to the closeness and the absence of self-intersections
of a knot, respectively.

The following definition introduces the main operation of the paper.

Definition 5. The operation which takes a subword v in w and substitutes it with x̄vx or xvx̄
(analogously, for y and z), once the result (after a reduction, if necessary) is again a knot, will be
called an elementary switch. We will use the notation w[v → x̄vx], w[v → ȳvy], w[v → z̄vz], etc.
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Fig. 3. Switch xx → zxxz̄.

A typical elementary switchm corresponding to the substitution xx → zxxz̄, is depicted in
Fig. 3.

Geometrically, there can be two types of behavior, depending on whether the result is a reduced
word or not. This is illustrated by Fig. 1.

Definition 6. The operation which takes a word and substitutes each x with xx is called the
doubling in the x-direction. The operation of doubling in the directions y and z are defined likewise.

Remark 3. Doubling can be thought of as the same knot positioned in a refined lattice, see
Fig. 4.

Fig. 4. Doubling.

2. Doubling

The purpose of this section is to prove that doubling in the z-direction can be achieved by
repeated application of elementary switches.

It is done in stages depicted in the figure above for the case of the trefoil knot of Example 1.
The idea is very simple. First, we lift the uppermost layer of the knot, which is always possible since
there are no branches of the knot above it. Then, we can lift the next layer up because there are no
horizontal segments between it and the already lifted layer to cause an intersection and, eventually,
we will be able to lift all layers. The rest of the paper will be devoted to formalizing this argument.

Definition 7. The set of all entries w[m] of a word w with the property |w[1..(m − 1)]|z =

|[1..m]|z = n is called the n-th layer of w. In other words, it is the set of all entries w[m] �= z such
that |w[1..m]|z = n. Generally, a layer is some number of subwords since it need not be connected.

The n-th layer is simply the set of segments that intersect with the plane parallel to the xy-plane
and with the z-coordinate equal to n. Fig. 6 shows an example of a knot with 2 layers, the 1-layer
is displayed in red. Note that it is not connected.

Example 2. In Example 1, the zeroth layer is highlighted in bold:

xxzȳȳx̄x̄x̄z̄z̄xxxxzzzx̄x̄yz̄z̄xxxȳȳx̄x̄x̄x̄yy.
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Fig. 5. Stages of doubling.

Fig. 6. Example of a layer.

The (−1)-st level is

T = xxzȳȳx̄x̄x̄z̄z̄xxxxzzzx̄x̄yz̄z̄xxxȳȳx̄x̄x̄x̄yy,

and the second layer is
xxzȳȳx̄x̄x̄z̄z̄xxxxzzzx̄x̄yz̄z̄xxxȳȳx̄x̄x̄x̄yy.

Definition 8. We say that the n-th layer has k vacant layers above if all the layers of order
n+ 1, . . . , n+ k are empty.

Definition 9. The elevation of the n-th layer by k is the composition of the operations w[vi →
zkviz̄

k] (which clearly commute) for all subwords vi that make up the n-th layer, followed by
reduction.

Example 3. The first move of Fig. 5 is the elevation of the second layer by 3. More formally,
it is represented as

xxzȳȳx̄x̄x̄z̄z̄xxxxzzzx̄x̄yz̄z̄xxxȳȳx̄x̄x̄x̄yy

�→ xxzȳȳx̄x̄x̄z̄z̄xxxxzzzzzzx̄x̄yz̄z̄z̄z̄z̄xxxȳȳx̄x̄x̄x̄yy.
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Remark 4. The first condition of Definition 4 is automatically satisfied after an elevation is
applied because z and z̄ are added in pairs, and reduction kills pairs.

The proof of the following lemma is rather obvious from the geometric point of view. It is
essentially contained in Fig. 7.

Fig. 7. Elevation.

If, after a lifting, the n-th layer intersects another branch of the knot, then this other branch
consists of two vertical segments in the viscinity of the hypothetical intersection point. But then,
an intersection already took place in the original knot.

For the sake of completeness, we include a formal proof.
Lemma 1. If the n-th layer of a knot w has one vacant layer above, then the elevation w′ of

the layer by one is also a knot. Moreover, the n-th layer of w′ becomes vacant, the (n+ 1)-st layer
of w′ coincides with the n-th layer of w , and all other layers remain the same.

Proof. Suppose that after the elevation of the n-th layer, the new word, which we denote by w′,
does not satisfy the second condition of Definition 4. That is, there is a proper subword w′[n′

1..n
′
2]

such that Ab(w′[n′
1..n

′
2]) = 0, or, equivalently, there are two different numbers n′

1, n
′
2 such that

Ab(w′[1..n′
1]) = Ab(w′[1..n′

2]).

Let us put back all the pairs z̄z and zz̄ that were cancelled out during reduction. Let us denote
by N1 and N2 the new places of w′(n′

1) and w′(n′
2) in this new (non-reduced) word W .

Consider three complementary cases:
Case 1. Suppose N1 and N2 are such that W [N1..N2] contains equal numbers of z’s and z̄’s

added during the elevation. Then the intersection existed already in w.
Case 2. Now, consider the case when W [N1..N2] contains more added z’s than z̄’s. Since z and z̄

are added by the elevation in an alternating manner, there is exactly one more z added than the
number of z̄’s. Now,

|W [N1..N2]|z = 0,

so
|w[n1..n2]|z̄ = 1,

where w[n1..n2] is the subword of w obtained by removing all added z’s and z̄’s from W [N1..N2].
On the other hand,

|W [1..N2]|z = n+ 1,

so
|W [1..N1]|z = n+ 1.

That means that W [N1] = z or z̄; otherwise, it belonged to the (n+1)-st layer of w, which is empty.
If W [N1] were z that was added by the elevation, then |W [(N1 +1)..N2]|z = 0; thus, the statement
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gets reduced to Case 1. If W [N1] is z that was already in w, then W [N1 + 1] is necessarily z that
was already in w: otherwise, the (n + 1)-st layer in w would not be empty. If W [N1] = z̄ then
|w[(n1 + 1)..n2]|z = 0, and we, again, arrive to a contradiction.

Case 3. When there is one more added z̄ than the numeber z’s in W [n1..n2], by an argument
identical to Case 2, one proves that intersections also do not appear after the elevation. Alternatively,
one may use the fact that a cyclic permutation of a word gives the same knot, and the complement
of w′[n′

1..n
′
2] satisfying the assumption of Case 3 satisfies the assumption of Case 2.

The last statement of the lemma follows from the observation that only the n-th and (n+1)-st
layers are affected by the operation of elevation. Namely, the n-th layer dissapears and becomes the
(n+ 1)-th layer in the new knot. �

Now, from Lemma 1 we can establish the doubling in any direction by induction on the number
of layers.

Theorem 2. Let w be a knot. Then the doubling of w in any direction and w are connected by
a sequence of elementary switches.

Proof. Let m be the maximal number such that the m-th layer is nonempty. Clearly, it possesses
a vacant layer above. Hence, we can elevate it m times, ending up with a knot with 2m layers with
all the layers between (m− 1) and (2m) vacant. We can then elevate the (m− 1)-st layer by m− 1,
and so on all the way through to the zeroth level. �

3. Isotopy of knots

A theorem of Hinojosa–Verjovsky–Marcotte, [5; Theorem 1], adapted to the terminology of this
paper, states the following.

Theorem 3. Two lattice knots w1 and w2 are isotopic if and only if one can be obtained from
the other by a sequence of elementary switches, doubling, and their inverses.

Our Theorem 2 ensures that doubling follows from elementary switches. Or, in the terminology
of [5], that any (M1) move is a sequence of (M2) moves. Thus, combining two results, we arrive at
the following result.

Main theorem. A pair of lattice knots w1 and w2 are isotopic if and only if they can be
connected by a sequence of elementary switches.
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