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FUNÇÃO ENERGIA PARA SISTEMAS DE POTÊNCIA COM PERDAS NA 
TRANSMISSÃO: EXTENSÃO DO PRINCÍPIO DE INVARIÂNCIA 

. N.G. BRETASt ' L .F.C. ALBERTOt, H. M. RODRIGCESt 

t Escola de Engenharia de São Carlos - USP, São Carlos, SP, Brazil 

tinstit?do de Ciências Matemáticas de São Carlos, USP, São Carlos, SP, Bmzil e CDSNS, 
GeorgiaTech, Atlanta, U.S.A. 

Resumo- Em muitos problemas fisicos e de engenharia, é muito difícil encontrar uma função de Liapunov 
satisfazendo as hipóteses do Princípio de Invariância de LaSalle clássico. Este obstáculo tem sido um grande 
problema na aplicação de métodos energéticos às análises de estabilidade transitória em sistemas de potência 
com modelos mais realísticos. Neste trabalho uma extensão do Princípio de Invariância, onde não exige-se 
que a derivada da Função de Liapunov seja semi-definida negativa, fornece o embasamento teórico necessário à 
proposição de uma nova função energia para sistemas de potência considerando perdas nas linhas de transmissão. 

Abstract- In many engineering and physical problems , it. is very hard to find a Liapunov function satisfying 
the classical version of the LaSalle's Invariance Principie. This obstacle h as been a great problem in the applica­
tion of energetic methods to the stability analysis of power systems with more realistic models. In this work an 
extension of the Invariance Principie, which does not rcquirc thc Liapunov function to bc negative scmi-dcfinite, 
is used to support theoretically the proposal of a new energy function for power systems with transmission tosses. 

Key Words- imm.riance principie, transient stahility, direct methods, energetic methods, liapunov function. 

1 Introdução 

Os métodos diretos têm se mostrado adequados à 
análise de estabilidade transitória de sistemas de 
potência em tempo real. Dentre estes métodos , 
as idéias de Liapunov associadas ao Princípio de 
Invariância de LaSalle têm sido utilizadas para es­
timar a região de estabilidade ou área de atração 
dos sistemas de potência . Para isto utiliza-se uma 
função auxiliar denominada Função de Liapunov 
a qual muitas vezes está associada à energia do 
sistema; daí o nome ao método de energético. 

Nas últimas duas décadas, muitos autores 
abordaram o problema da estimativa da área de 
atração e estes estudos culminaram com o desen­
volvimeto do método BCU (Chiang et al. , 1994), 
o qual é considerado, no momento, o método di­
reto mais eficiente ao estudo de estabilidade tran­
sitória.. Embora estes avanços tenham sido sig­
nificativos, a aplicação destes métodos à análise 
de estabilidade em sistemas reais tem encontra­
do muitos obstáculos. O principal deles é que 
os métodos energéticos ainda são impróprios para 
trabalhar com modelos mais realísticos . Em ver­
dade este obstáculo está intimamente relacionado 
com o problema de encontrar uma Função de Li­
apunov associada a estes modelos. 

A função energia mais utilizada atualmente 
foi proposta por Athay et al. (1979). Esta é 
uma Função de Liapunov do tipo energia obti­
da na formulação do Centro de Ângulo( COA) co­
mo referência. Para obter tal função, as car­
gas são modeladas como impedâncias constantes 
e a rede é reduzida às barras das forças eletro­
motrizes. Um dos efeitos desta redução é que as 

condutâncias de transferência do sistema reduú­
do não são desprezíveis e conseqüentemente não é 
possível demonstrar que esta função é uma Função 
de Liapunov no senso usual . 

Em geral, para encontrar uma Função de Lia­
punov, muitas simplificações são feitas no mod­
elo do sistema de potência. As máquinas são 
usualmente modeladas como uma força eletro­
motriz constante atrás da reatância transitória, as 
cargas são modeladas como potências constantes 
e as perdas nas linhas de transmissão são de­
sprezadas. Além disto, exige-se a existência de 
um barramento infinito ou alternativamente faz­
se uma hipótese de amortecimento uniforme. 

Alguns avanços ocorreram no sentido de con­
siderar modelos mais realísticos. Tsolas et al. 
(1985) exibiu uma Função de Liapunov geral para 
um sistema de potência com a estrutura da rede 
preservada e com o modelo de urn eixo ( one­
axis-model) para os geradores, entretanto nenhum 
avanço ocorreu com relação aos modelos das car­
gas. 

Em um outro artigo Alberto and Eretas 
(1998) tentaram levar em consideração modelos 
mais realísticos para as cargas. Estes fornecer­
am uma Função de Liapunov geral para um sis­
tema de potência com a estrutura da rede preser­
vada. Naquele trabalho as cargas foram mode­
ladas com um termo de potência ativa constante 
mais um termo de potência reath·a dependente 
da tensão e um termo de potência ativa propor­
cional à variação de freqüência . Apesar destes 
avanços, as perdas nas linhas continuaram a ser 
desprezadas e ainda não se consideraram termos 
de potência ativa dependentes da tensão no mod-
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elo das cargas. 
Chiang (1989) estudou a existência de funções 

energia para sistemas de potência com perdas. 
Este provou que não existe uma Função de Li­
apunov geral para sistemas de potência quan­
do as condutâncias de transferência não são de­
sprezadas. No mesmo artigo, estes demonstram a 
existência de uma Função de Liapunov local que 
pode ser utilizada para estudos de estabilidade 
quando as condutâncias rle transferência não são 
elevadas. Entretanto, este resultado é apenas ex­
istencial e nenhuma f1mção foi proposta. 

Após os estudos de Chiang (1989), encontrar 
uma Função de Liapunov geral para sistemas rle 
potência, consideranrlo as condutâncias de trans­
ferência, parecia ser impossível até que uma ex­
tensão do Princípio de Invariância rle LaSalle foi 
proposta por Rodrigues , Alberto e Bretas (1999a). 
Neste artigo, esta extensão é utilizada como su­
porte à proposta de uma nova função energia para 
sistemas de potência em que considera-se a in­
fluência de condutâncias de transferência suficien­
temente pequenas. 

Mostrar-se-á que a função energia proposta é 
uma Função de Liapunov em um senso mais geral. 
_ este senso mais geral, não exige-se que a derivd.da 
da Função de Liapunov seja semi-definida negati­
va, podendo ser positiva em algumas regiões limi­
tadas. Todos estes conceitos são ilustrados através 
de sistemas de potência bem simples e ao final do 
artigo apresenta-se a Função de Liapunov para um 
sistema multi-máquinas geral. 

Este artigo está organizado ela seguinte 
maneira. Na Seção 2, a extensão do Princípio 
de Invariância é apresentada incluindo um exem­
plo no qual estima-se o atrator global de urn sis­
tema de Lorenz caótico. :\f a Seção 3, esta extensão 
é utilizada para esturlar-se a estabilidade de sis­
temas de potência considerando perdas nas linhas 
de transmissão. Finalmente, as conclusões são ap­
resentadas na Seção 4. 

2 O Princípio de Invariância 

Esta seção inicia com uma revisão do Princípio 
de Invariância usual (LaSalle, 1960). Considere a 
seguinte equação diferencial autônoma: 

:i; = f(x) (1) 

Teorema 2.1 : Sejam "V : JRn """"* lR e f : lRn """"* 

JRn funções de classe C1
• Seja L uma constante 

real tal que fh = {x E lRn : 1/(x) < L} Beja 
limitado. Admita q~e V(x) ~ O para todo x E 
fh e defina E := {x E fh : V(x) = 0} . Se}a 
B o mtLún· conjnnto ·i.ri:IJIL7"Í.!Lnte de {1) mntido em 
E. Então, toda solução de {1) iniciando em S1L 
converge para B quando t --* oo. 

A função 1! utilizada no Teorema 2.1 é con­
hecida por Hmção de Liap11.nov. Observe que o 

Teorema não diz nada a respeito de como encon­
trar tal função . Em verdade, não existem métodos 
sistemáticos para encontrar urna Função de Lia­
punov e encontrá-la é, sem sombra de dúvida, uma 
tarefa não trivial. 

Outro problema do Teorema 2.1 é que este 
apresenta uma condição suficiente à garantia 
da estabilidade, porém, estas condições não são 
necessárias . Portanto, se as condições do Tem·e­
ma 2.1 não são satisfeitas, nada pode-se afirmar a 
respeito do comportamento das soluções de (1). 

Neste trabalho, apresentam-se resultados 
mais gerais do que os até então apresentados. 
Estes requerem condições menos restritivas possi­
bilitando o tratamento de problemas mais gerais. 
Basicamente, permite-se que a derivada de 1! se­
ja positiva em algumas regiões. Com estas con­
dições menos restritivas, torna-se menos complexo 
encontrar a função F e algw1s problemas bastante 
complicados, tais como sistemas caóticos, podem 
ser tratados. 

Teorema 2.2 (Extensão do Princípio de 
Invariância de LaSalle). Sejam 1! : JRn """"* ~ 

e f : JRn --* R" funções de classe C1 
• Seja L E ~ 

uma constante tal que flL = {x E lRn: ll(x) <L} 
se}a limitado. Seja c := {x E nL : V(x) > 0}, 
e admita que SlLP:z:ecV(x) = l < L. Defina 
Dt = {x E S1L : V(x) ~ Z}. e E := {x E S1L : 
1/ ( x) = O} U D1. Seja B o maior conjunto invari­
ante de {1) contido em E. Então , toda solução 
de {1) iniciando em f2L converge para o conjunto 
invariante B quando t """"* ex:. 

Além disto , se x 0 E f2t, então a solv.ção 
cp(t, Xn) E Dt pam todo t 2: O e cp(t, X 0 ) tende 
pam o maior conjv,nto invariante de {1) contido 
emflt. 

A demonstração e maiores detalhes a respeito 
deste teorema podem ser encontrados em (Ro­
drigues, Alberto e Eretas 1999 e 2000). 

Observação 2.1 : O SUP:r.ec1f(x) é atingido na 
fronteira ôC de C . Se em particular C {o fecho 
de C) for um conjunto convexo e V uma função 
convexa, então a técnica de m1Lltiplicadore.9 de La­
grange é muito útil para o cálculo deste supremo. 

Observação 2.2 Admitindo-se no teorema ante-
1'i01· qne 1!: lR" """"* ll4 é tal qv.e V(x) """"* ex: ,qv.an­
do [[x[[ -+ oo, então um 1·esultado de estabilidade 
global pode ser estabelecido. 

Exemplo 2.1 Estimativa do Atrator de 
Lorenz. 

Para ilustrar a aplicação da extensão do 
Princípio ele Invariância de LaSalle, seja o seguinte 
sistema de Lorenz (Lorenz, 1984): 

{
~ = -ux + uy 
y = -y- xz + rx 
z = -bz + xy 
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onde, u = 10, r = 28 and b = 8/3. Seja 

V(x, y, z) = rx2 + 4uy2 + 4u(z- 5/4r)2 

uma Função de Liapunov associada ao sistema de 
Lorenz. Pode-se verificar que esta função satisfaz 
as condições da Observação 2.2. Logo utilizar-se-á 
a extensão do Princípio de Invariância para obter­
se uma estimativa do atrator global de Lorenz. A 
derivada de V é dada por: 

V(x, y , z) = -2u(rx2 + 4y2 + 4bz2
- 5rbz). 

O conjunto C é dado por C := { x E R3 

rx2 + y2 + bz2 
- 21·bz < O} c é fácil verificar 

que a fronteira de C é um elipsóide centrado em 
(:r = O, y = O, z = 5/Sr). Como C é um con­
junto convexo e a Função de Liapunov 11 é uma 
função convexa, o sup; ec V(x) ocorre na fronteira 
do conjunto C. Para calcular o sup de V no con­
junto C, a técnica dos multiplicadores de Lagrange 
será utilizada tendo a equação do elipsóide como 
uma equação de restrição. 

Usando a função Lagrangiana: 

.C(x, y , z) = rx2 + 4uy2 + 4u(z- ~r) 2 + 
+À(rx2 + 4y2 + 4bz2

- 5rbz) 

determina-se que o supxEC V(x) ocorre em x = 
O 5r(2-b) 2 25b2 r 2 (b-2) S b · · d 

, z = ""8Ti"=bf e y = 64 (b-l)" . u stltwn o 
estes valores na expressão de V , obtém-se: 

0 conjunto f2t é o elipsóide: {(x , y , z) E JR3 : 

1":1:2 + 4uy1 + 4u ( z - t7Y ::; 1563soo } • 

O conjunto no qual V = O está contido em 
flz e portanto, corno conseqüência da extensão do 
Princípio de Invariância, toda solução com con­
dição inicial em JR3 converge para o maior conjun­
to invariante contido em flz. o conjunto nz é uma 
estimativa do atrator. A Figura l a mostra esta 
estimativa. Neste caso, é importante notar que a 
derivada de V permanece intercambiando de sinal 
depois que a solução entra em f2t. Um gráfico de 
V(x(t), y(t) , z(t)) é mostrado na Figura lb. 

3 Função de Liapunov para Sistemas de 
Potência com Perdas na Transmissão 

3.1 Sistema de Uma M áqnina versns Barramen­
to Infinito 

Seja o sistema de uma máquina versus barramento 
infinito da Figura 2 onde uma máquina síncrona 
está conectada ao barramento infinito através de 
uma linha de transmissão com perdas. 

Modelando o gerador como uma força eletro­
motriz constante atrás da reatância transitória, 

100 

BO 

60 

•o 

20 

o 
! 00 

- o.s 

-1 

-1 .5 

-2 

-2.5 

50 60 

(a) 

-Jo~~--~--~~---1~0--~12---1~ • . --~1 6---1~.~20 

(b) 

Figura l. Sistema de Lorenz (a) Estimativa do Atrator 
(b) Derivada da Energia 

Pm Elo_ 
"' 

jB 

Figura 2. Sistema de Uma Máquina versus Barramento 
Infinito 

pode-se descrever este sistema pelo seguinte par 
de equações diferenciais: 

{1\!L: ~"'- E~G + EEoo Bsinó + EEoo Gcosó- Tw 

onde 8 e w são respectivamente o ângulo do 
rotor e o desvio de freqüência. elo gerador com 
relação à velocidade síncrona, Pm é a potência 
mecânica injetada no gerador, E é o módulo da 
força eletromotriz, E00 é o rnóclulo da tensão no 
barramento infinito , T é o coeficiente de amortec­
imento e G + j B é a admitância rla linha de trans­
missão equivalente. Por razões de simplicidade, 
reescrever-se-ão aquelas equações diferenciais co-

1440 



Anais do XIII Congresso Brasileiro de Automática- CBA 2000 
11 a 14 de setembro de 2000- Florianópolis- SC- Brasil 

mo: 

{ 
J =w 

ivf w = P - Csin~ - Dr:os~ - Tw 

onde P = Pm - E 2 G, C = -EE00 B e D 
-EE00 G. Embora este sistema possua perdas na 
transmissão , este possui uma Funçã.o de Liapunov 
no senso usual dada por: 

'.;)2 
V(~,w) := M 2 - P~- Cms~ + Dsin~ +de 

É fácil mostrar que a derivada de V ao longo das 
órbitas é dada por 

a qual é uma função semi-definida negativa. 
Portanto, a função F satisfaz as exigências do 
Princípio de Invariância usual e pode ser utilizada 
para estudar a estabilidade deste sistema com as 
técnicas usuais. Apesar disto , uma nova função 
energia será proposta a seguir e a extensão do 
Princípio de Invariância de LaSa.lle será utilinda 
para estudar a estabilidade deste sistema. O obje­
tivo é ilustrar a aplicação da extensão do Princípio 
de Invariância c preparar a~ idéias para resolver o 
problema multi-máquina, o qual não possui uma 
Função de Liapunov geral, no senso usual, quando 
as coudutâncias de transferência são consideradas. 

Para isto , seja a seguinte fimção energia: 
2 

W (ó. w) := !vf~-P8-C cos 8-í3w (J>- Csiná + 1J cosó)+k 
2 

onde ;3 é um parâmetro a ser determinado e k 
é uma constante. O objetivo é mostrar que esta 
função satisfaz as hipóteses do Teorema 2.2. 
. Calculando a derivada de W ao longo das 
órbitas do sistema obtém-se: 

-vV := [P, (á) ]T [ {3 -i!f l [P',(,á)l 
w - ~; T- .B(Ccosó -Dsin cí ) -

+ D cos(J)w 

onde P1 ( ~) := P - C sin ~ - D cos ~. Observe que 
esta função é composta por um termo quadrático 
mais o termo D r:os(~)w. Observe que o parâmetro 
í3 pode ser escolhido de forma a tornar a parte 
quadrática definida positiva. Aplicando o Critério 
de Silvester pode-se facilmente dernonstar que isto 
é certamente garantido se 

(J T 
< C+D+ ~2 

Sendo assim,apenas o termo D cos(â)w será re­
sponsável por gerar regiões nas quais a derivada 
de W é positiva. 

Exemplo 3.1 Seja o Sistema de uma Máquina 
versus Barramento Infinito da Figura 2 com P1 = 
LO, C = 2.0 , D = 0.05, T = 0.15 and M = 0.05. 
As curvas de nível de vV estão apresentadas na 

Figura 3 para k = 2.2551 e ;3 = 0.0146. Observe 
que as regiões onde a derivada de vV é positiva 
são pequenos conjuntos limitados. Um deles está 
próximo ao ponto de equilíbrio instável. O out­
ro está próximo ao ponto de equilíbrio estável e 
este corresponde ao conjunto C do Teorema 2.2. 
O valor máximo de W em C define o conjunto Õ.1 

o qual é uma estimativa do atrator, i.e, todas as 
soluções iniciando dentro da região de estabilidade 
entrarão neste conj1mto em tempo finito . Neste 
exemplo l = 0.1051. Para estimar a região de esta­
bilidade ou área de atração deste atrator, proeura­
se pelo maior número L tal que as condições rio 
Teorema 2.2 são satisfeitas. Na prática, deve-se 
garantir que fi T, não intereepta a região, próxima 
ao ponto de equilíbrio instável, onde a derivada 
é positiva. Neste exemplo obteve-se L = 1.339. 
A Figura 3 ilustra as estimativas do atrator e da 
região de estabilidade. 

1.5 
.~.ngulo (rad) 

Figura 3. Curvas de Nível da Função W- Sist.ema de Uma 
Máquina versus Barramento Infinito 

O tempo crítico de abertura obtido por sim­
ulação para um curto sólido trifásico na barra 
do gerador pertence ao intervalo (0.458: 0.459s). 
A estimativa do tempo crítico de abertura obti­
da com esta função energia pertence ao intervalo 
(0.400; 0.401s). Como esperado, esta estimativa 
é um pouco conservadora porque a estimativa da 
região de estabilidade está contida dentro da re­
gião de estabilidade verdadeira. Entretanto, este 
tempo não é muito mais conservativo do que o 
obt ido com a Função de Liapunov convencional 
11 o qual pertence ao intervalo (0.412: 0.413s). A 
Figura 3 mostra as trajetórias do sistema em falta 
e pós-falta para um tempo de abertura de 0.400s. 

3.2 Sistema de Dnas Máquinas vers11s Barro,­
mento Infinito 

Antes de abordar o caso geral de um sistema 
multi-máquinas , considere o sistema composto por 
duas máquinas e um barramento infinito da Figu­
ra 4. 
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c 

ElL 
Figura 4. Sistema de Duas :\!Iáquinas versus Barramento 
Tnfinito 

As seguintes equações diferenciais: 

1Vhw1 = P1 - 01 sin (h - D1 cos 81-

!
81 = W1 

- 012 ~in (81 - 82) - D12 cos(81 - 8z) - T1w1 

J~ = W2 

_rvfzwz = Pz - 02 sin 82 - D2 cos 82 -
- 012 sin(8z - ó!) - D1 2 cos(ó2 - 81) - T2wz 

descrevem o comportamento dinâmico deste sis­
tema. Quando as eondutâncias de transferência 
são desprezadas (D12 = 0), existe uma Função 
de Liapunov geral, no senso usual, que pode ser 
utilizada para os estudos de estabilidade deste sis­
tema. Esta função pode ser facilmente obtida por 
um processo tradicional de integração e é dada 
por: 

V(ó, ,w, ,ó2,w2) - NI, 4- P,ó, -C, cosó, + D, sinó, + 
:"2 

_"vfz w;, - Pzó2 - Cz cos Óz + Dz sin ó2 -
- C12 cos(ó1 - ó2) + cte 

Entretanto quando D12 =J O o processo de in­
tegração gera uma integral dependente do cam­
inho, o que torna impossível demonstrar que sua 
derivada, ao longo das trajetórias, é semi-definida 
negativa. 

Para resolver este problema uma nova função 
energia será proposta e a extensão do Princípio 
de Invariância será utilizado para estudar a es­
tabilidade deste sistema. Será mostrado que es­
ta função energia é uma Função de Liapunov, 
no senso mais geral da e::-.:tensão do Prinípio de 
Invariância, quando as condutâncias de trans­
ferência D12 são suficientemente pequenas. Para 
isto, considere a seguinte função energia: 

W(ó, ,w,,ó2,w2) = M,4- P,ó, - c, cosó, + D, sinó,­
- P ! W! [P1 - C1 sin 61 - -D1 cos ó1 - C12 sin(ó1 - ó2) -

D12 cos(ó1 - ó2)] + Mz "'!-.- P2ó2- C2 cos óz + D2 sin óz­
-p2w2 [Pz - C2 sin óz - ÍJz cos 82 - C12 sin(ó2 - 81 )-
D12 cos(ó2 - ó!)] - C12 cos(ó1 - 6z) + cte 

onde p, e P2 são parâmetros a serem determina­
dos. 

Caleulando a derivada desta função ao longo 
das órbitas do sistema encontra-se: 

'1" 

[

Pll (ól , r52) l [pll (ól, ó2) l 
:.11 B Wl 

Pt2(ó,,ó2) Pt2 (ó , ,ó2) 
:.12 W2 

onde 

B22= [-~ Tz+ !h[-C~c~+D2sin6z ] 
2 -C12 cos(•h - •h) + D12 sin(6z - 61 )] 

B12 = [: ~ [C12 cos(61 - 6z) ~ D12 sin(ó1- óz)] +] 
~ (C12 cos(6z- ó,)- D12 sin(óz- 6, )] 

Observe novamente que a derivada de vV é 
composta por nma. parte qna.drática c pelo termo 
D,z cos(ó, - r\"2)(:.;, + :.12). Os parâmetros ,B, e ,62 

podem ser escolhidos de forma a tornar a parte 
quadrática definida positivd. Sendo assim, apenas 
o termo D12 cos(ó, - ó2 )(w1 +w2 ) será responsável 
por regiões na qual a derivada de -Vll poderia ser 
positiva. 

Exemplo 3.2 Seja o sistema da Figura 4 com 
P, 1.25, P2 = 1.5, c, = 1.1, c2 = 2.0, 
D, = Dz = 0.1, C12 = 0.5, D12 = 0.04, T, = 
T2 = 0.1 e l\.11 = i\.12 = 0.05 . As curvas de 
nível de n' estão apresentadas na Figura 5 onde 
(3, = 0.0111 e !32 = 0.0095. Estas curvas de nível 
foram traçadas no plano w1 = w2 = -0.4. Ob­
serve que a região onde a derivada de TiV é positiva 
é uma pequena região limitada próxima ao pon­
to de equilíbrio estável. Esta região pertence ao 
conjunto C elo Teorema 2.2. Para outros planos, 
esta região torna-se menor ou até mesmo desa­
parece o que garante que esta região é um conjunto 
limitado que está próximo ao ponto de equilibiio 
estável. Portanto, esta função pode ser utilizada 
para o estudo da estabilidade deste sistema. A 
Figura 5 mostra a projeção da estimativa do atra­
tor no plano w1 = :.;2 = -0.4. 

o 
d31ta1 ír~d) 

Figura 5. Curvas de nível da Função W - Sistema de Duas 
Máquinas versus Barramento Infinito 
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3.3 Sistemas M11,ltimáq11,ina.5 

Seja o sistema composto por n máquinas onde a n­
ésima máquina é um barramento infinito.Pode-se 
mostrar, similarmente ao caso de duas máquinas , 
que a seguinte função energia 

W = 2:::7:/ { M;':j- P;h; - G; cosh; + D ; sinh;-

- {3; :..;.; [P; -C; sin 8; - íJ; cos 8; - 2::: ;-:; 
1 

C;; sin(8;- 8; ) ­
i ;;é i 

2:::';.-.,: 1 íJ;; cos(J; - J;)] -I:j',;,'+l C;; cos(8, - 82) + cte} 
:J ::F- 1. 

é uma Função de Liapunov no senso da extensão 
do Princípio de Invariância se as condutâncias de 
transferência são suficientemente pequenas. Con­
seqüentemente, esta pode ser utilizada para es­
tudos ele estabilidade transitória em sistemas ele 
potência. 

4 Conclusões 

Neste artigo , uma versão mais geral do Princípio 
de Invariância foi utilizada para estudar a ex­
istência de Funções de Liapunov gerais para sis­
temas de potência com perdas nas linhas de trans­
missão. Nesta versão, condições menos restriti­
vas do que aquelas exigidas no Princípio de In­
variância clássico são empregadas de forma a per­
mitir a aplicação deste a uma classe maior ele 
problemas. Basicamente, permite-se que a deriva­
da da Função de Liapunov seja positiva em al­
gumas regiões limitadas. Sendo assim problemas 
mais complexos de física e engenharia, tais co­
mo sistemas com comportamento caótico, podem 
ser mais fac:ihnente manipulados. Neste artigo, 
este teorema foi utilizado com sucesso como base 
teórica para a proposta de uma nova função ener­
gia a qual é urna Função de Liapunov geral para 
sistemas de potência com perdas na transmissão. 
Isto no senso mais amplo da extensão do Princípio 
de Invariância, ou seja, sua derivada podendo ser 
positiva em algumas regiões. 

Neste trabalho, contribuiu-se com a procura 
por uma Função de Liapunov geral para sistemas 
de potência considerando perdas na transmissão. 
Entretanto as possibilidades de aplicações da ex­
tensão do Princípio de Invariância são muitas e 
espera-se que no futuro os pesquisadores consigam 
resolver outros problemas relacionarlos. Dentre 
estes destacaria a incorporação de modelos de ger­
adores mais realísticos assim como efeito de regu­
ladores. Desta forma possibilitar-se-ía a aplicação 
dos métodos energéticbs ao estudo de estabilidade 
de sistemas de potência onde os r.omponent.es são 
modelados na íntegra. 
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