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elo das cargas.

Chiang (1989) estudou a existéncia de fungdes
energia para sistemas de poténcia com perdas.
Este provou que nido existe uma Fungdo de Li-
apunov geral para sistemas de poténcia quan-
do as condutincias de transferéncia nio sio de-
sprezadas. No mesmo artigo, estes demonstram a
existéncia de uma Func¢io de Liapunov local que
pode ser utilizada para estudos de estabilidade
quando as condutancias de transferéncia nio sio
elevadas. Entretanto, este resultado é apenas ex-
istencial e nenhuma funcio foi proposta.

Apés os cstudos de Chiang (1989), cncontrar
uma Funcdo de Liapunov geral para sistemas de
poténcia, considerando as condutancias de trans-
feréncia, parecia ser impossivel até que uma ex-
tensdo do Principio de Invaridncia de LaSalle foi
proposta por Rodrigues, Alberto e Bretas (1999a).
Neste artigo, esta extensdo é utilizada como su-
porte & proposta de umna nova fungdo energia para
sistemas de poténcia em que considera-se a in-
fluéncia de conduténcias de transferéncia suficien-
tenlente pequenas.

Mostrar-se-a que a fungdo energia proposta é
uma Funco de Liapunov em wm senso mais geral.
Neste senso mais geral, ndo exige-se que a derivada
da Funcdo de Liapunov seja semi-definida negati-
va, podendo ser positiva em algumas regides limi-
tadas. Todos estes conceitos sao ilustrados através
de sistemas de poténcia bem simples e ao final do
artigo apresenta-se a Funcéo de Liapunov para um
sistema multi-mdquinas geral.

Este artigo estd organizado da seguinte
maneira. Na Sec¢fo 2, a extensdo do Principio
de Invaridncia é apresentada incluindo um exem-
plo no qual estima-se o atrator global de wm sis-
tema de Lorenz caético. Na Se¢do 3, esta extensdo
é utilizada para estudar-se a estabilidade de sis-
temas de poténcia considerando perdas nas linhas
de transmissdo. Finalmente, as conclusées sdo ap-
resentadas na Sec¢do 4.

2 O Principio de Invariiancia

Esta secdo inicia com uma revisio do Principio
de Invaridncia usual (LaSalle, 1960). Considere a
seguinte equacdo diferencial autdénoma:

&= f(x) (1)

Teorema 2.1 : Sejam V :R* 5 Re f:R" -
R™ fungdes de classe C'. Sejo L uma constante
real tal que 0, = {r € R* : V(z) < L} seja
limitado. Admita que V(z) < 0 para todo z €
Q7. e defina E := {z € Q : V(z) = 0}. Seja
B o maior conjunto invariante de (1) contido em
E. Entdo, toda solugdo de (1) iniciando em
converge para B quando t = 0.

A funcao V utilizada no Teorema 2.1 é con-
hecida por Fungao de Liapunov. Observe que o

Teorema nao diz nada a respeito de como encon-
trar tal funcdo. Em verdade, néo existem métodos
sistematicos para encontrar uina Funcio de Lia-
punov e encontra-la é, sem sombra de dvivida, uma
tarefa n3o trivial.

Outro problema do Teorema 2.1 é que este
apresenta uma condicdo suficiente & garantia
da estabilidade, porém, estas condi¢bes nio sao
necessérias. Portanto, se as condigbes do Teore-
ma 2.1 ndo sdo satisfeitas, nada pode-se afirmar a
respeito do comportamento das solugdes de (1).

Neste trabalho, apresentam-se resultados
mais gerais do que os até entdo apresentados.
Estes requerem condi¢bes menos restritivas possi-
bilitando o tratamento de problemas mais gerais.
Basicamente, permite-se que a derivada de V se-
ja positiva em algumas regides. Com estas con-
digdes menos restritivas, torna-se menos complexo
encoutrar a fungio V e alguns problemas bastante
complicados, tais como sistemas cadéticos, podem
ser tratados.

Teorema 2.2 : (Extensio do Principio de
Invaridncia de LaSalle). Sejam V : R* —» R
e f:R* - R" funcbes de classe C'. Seju L € R
uma constante tal que Qp = {x € R" : V(z) < L}
seja limitado. Seja C = {x € Qr : V(z) > 0},
e admita que sup,.-V(z) = 1 < L. Defina
QIZ{:L‘GQL:V(:L‘)SI}. e E:={r € N :
V(z) =0} USk. Seja B o maior conjunto invari-
ante de (1) contido em E. Entdo, toda solucdo
de (1) iniciando em Qp converge para o conjunto
invariante B quando t — oc.

Além. disto, se =, € y, entdo a solugdo
@0(t, 7o) € Qq para todo t > 0 e p(t,z,) tende
para o maior conjunto invariante de (1) contido
em Qz.

A demonstrac¢do e maiores detalhes a respeito
deste tcorema podem ser encontrados em (Ro-
drigues, Alberto e Bretas 1999 e 2000).

Observagao 2.1 : O sup,ecV(z) ¢ atingido na
fronteira 3C de C. Se em particular C (o fecho
de C) for um conjunto convezo e V uma fungdo
conveza, entio a téenica de multiplicadores de La-
grange € muito itil para o cdlculo deste supremo.
Observagao 2.2 Admitindo-se no teorema ante-
rior que V : R* — Ry € tal que V(z) - oc ,quan-
do |[z]| = o0, entdo um resultado de estabilidade
global pode ser estabelecido.
Exemplo 2.1 Estimativa do Atrator de
Lorenz.

Para ilustrar a aplicacdo da extensdo do
Principio de Invaridncia de LaSalle, seja o seguinte
sistema de Lorenz (Lorenz, 1984):

T =—-0x+0y
y=-y-—zz+rI
z=—-bz+uzy
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onde, o = 10,7 = 28 and b = 8/3. Seja
V(z,y,2) = rz* + 4oy* + 40(z — 5/4r)®

uma Fungdo de Liapunov associada ao sistema de
Lorenz. Pode-se verificar que esta funcéo satisfaz
as condicoes da Observacido 2.2. Logo utilizar-se-4
a extensdo do Principio de Invariincia para obter-
se uma estimativa do atrator global de Lorenz. A
derivada de V é dada por:

V(z,y,2) = =20(rz® + 4y® + 4b2* — 5rbz).

O conjunto C ¢ dado por C := {z € R® :
rz? + y? + bz® — 2rbz < 0} ¢ é fAcil verificar
que a fronteira de C é um elipsdide centrado em
(r = 0,y = 0,2 = 5/8r). Como C é um con-
junto convexo e a Fun¢io de Liapunov V é uma
funcdo convexa, o sup, ¢ V() ocorre na fronteira
do conjunto C. Para calcular o sup de V no con-
junto C, a técnica dos multiplicadores de Lagrange
serd utilizada tendo a equagio do elipséide conio
nma equacio de restri¢do.

Usando a funcdo Lagrangiana:

5

L(z,y,z) =rz® +4oy® + 4o(z — 2r)*+

+A(rz? + 4y® + 4bz® — 5rbz)

determina-se que o sup,c- V(z) ocorre em x =

. _ 5r(2-b) 2 _ 250377 (b—2) aiit
0,4 = R0 ey = W. Substituindo
estes valores na expressdo de V', obtém-se:

95b2r2¢ 156800
- = 52267,
BG-1_ 3

1 = suprecV(x)

O conjunto ; é o elipséide: {(z,y,2) € R® :
ra? + doy? + do(z — §r)? < 128800}

O conjunto no qual V = 0 est4 contido em
Q) e portanto, como conseqiiéncia da extensio do
Principio de Invaridncia, toda solu¢do com con-
dicdo inicial em E® converge para o maior conjun-
to invariante contido em §;. O conjunto Q, éuma
estimativa do atrator. A Figura la mostra esta
estimativa. Neste caso, é importante notar que a
derivada de V permanece intercambiando de sinal
depois que a solugdo entra em . Um gréfico de
V(x(t),y(t), (t)) é mostrado na Figura 1b.

3 Fungao de Liapunov para Sistemas de
Poténcia com Perdas na Transmissao

3.1 Sistema de Uma Mdquina versus Barramen-
to Infinito

Seja o sistema de uma maquina versus barramento
infinito da Figura 2 onde uma mdéquina sincrona
estd conectada ao barramento infinito através de
nma linha de transmissdo com perdas.
Modelando o gerador como uma forga eletro-
motriz constante atras da reatincia transitoria,

x 10

-1 4

-2

(b)

Figura 1. Sistema de Lorenz (a) Estimativa do Atrator
(b) Derivada da Energia

Pm E'@ G Em ﬁ
TN

( o
jB

Figura 2. Sistemna de Uma Madaquina versus Barramento
Infinito

pode-se descrever este sistema pelo seguinte par
de equagdes diferenciais:

§ =w
{]\/Id} = P,, — E*G + EE,Bsiné + PEGcosé — Tw

onde 6 e w sdo respectivamente o angulo do
rotor € o desvio de freqiiéncia do gerador com
relacdo & velocidade sincrona, P, é a poténcia
mecénica injetada no gerador. E é o médulo da
forca eletromnotriz, Eo é 0 modulo da tensio no
barramento infinito, T é o coeficiente de amortec-
imento e G + jB é a admitancia da linha de trans-
missdo equivalente. Por razdes de simplicidade,
reescrever-se-a0 aquelas equagbes diferenciais co-
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mo:

0 =w
Mo =P —Csind — Dcosd — Tw

onde P = P, — E*G, C = —EE.B e D =
—EE . G. Embora este sistema possua perdas na
transmissao, este possui uma Fungao de Liapunov
no senso usual dada por:

2
V(§w) = Mijz— — P§ — Ccosd + Dsind + cte

E facil mostrar que a derivada de V ao longo das
6rbitas é dada por

2}

V = —Tw?
a qual é uma funcio semi-definida negativa.
Portanto, a funcdo V satisfaz as exigéncias do
Principio de Invaridncia usual e pode ser utilizada
para estudar a estabilidade deste sistema com as
técnicas usuais. Apesar disto, uma nova funcio
energia serd proposta a seguir e a extensdo do
Principio de Invaridncia de LaSalle serd utilizada
para estudar a estabilidade deste sistema. O obje-
tivo é ilustrar a aplicagio da extensao do Principio
de Invaridncia ¢ preparar as idéias para resolver o
problema multi-mdquina, o qual ndo possui uma
Funcao de Liapunov geral, no senso usual, quando
as condutancias de transferéncia sdo consideradas.

Para isto, seja a seguinte func¢ao energia:

2

W(dw) = M“_le—yé—c €08 6= Fuw (P = Csind -+ D cos §)+k

onde 5 é um parimetro a ser determinado e k
é uma constante. O objetivo é mostrar que esta

funcao satisfaz as hipéteses do Teorema 2.2.
Calculando a derivada de W ao longo das
6rbitas do sistema obtém-se:

e [P® T[ 3 -2z ][Pz(ﬁ)]
= w — &L T — 3(C'cos d — Dsind) w

+Dcos(8)w

onde Py(6) :== P~ Csind ~ D cosd. Observe que

esta funcio é composta por um termo quadratico
mais o termo D cos(d)w. Ohserve que o parametro
3 pode ser escolhido de forma a tornar a parte
quadrética definida positiva. Aplicando o Critério
de Silvester pode-se facilinente dernonstar que isto
é certamente garantido se

T
B ——=
Sendo assim.apenas o termo D cos(§)w serd re-
sponséavel por gerar regides nas quais a derivada
de W é positiva.

Exemplo 3.1 Seja o Sistema de uma M4équina
versus Barramento Infinito da Figura 2 com P, =
1.0, C =2.0, D = 0.05, T = 0.15 and M = 0.05.
As curvas de nivel de W estdo apresentadas na

Figura 3 para k = 2.2551 e 8 = 0.0146. Observe
que as regides onde a derivada de W é positiva
s40 pequenos conjuntos limitados. Um deles estd
préoximo ao ponto de equilibrio instdvel. O out-
ro estd préximo ao ponto de equilibrio estdvel e
este corresponde ao conjuunto C do Teorema 2.2.
O valor maximo de W em C define o conjunto
o qual é uma estimativa do atrator, i.e, todas as
solucdes iniciando dentro da regido de estabilidade
entrarao neste conjunto em tempo finito. Neste
exemplo ! = 0.1051. Para estimar a regido de esta-
bilidade ou drea de atracdo deste atrator, procura-
se pelo maior mimero L tal que as condigbes do
Teorema 2.2 sdo satisfeitas. Na pratica, deve-se
garantir que Q. ndo intercepta a regidon, proxima
ao ponto de equilibrio instdvel, onde a derivada
é positiva. Neste exemplo obteve-se L = 1.339.
A Figura 3 ilustra as estimativas do atrator e da
regido de estabilidade.

- Grbina do Sis-
Jtema ez Falta - -

. Orbina do Sis-
tema P'és-Falta -

e p e )

Velncidade {ralis)

-,_:iree. d;!-.h':céo:‘:- S

-1 0% 0 [ 15 2 2% a
Angulo {rad}

Figura 3. Curvas de Nivel da Fungdo W - Sistema de Uma
Madquina versus Barramento Infinito

O tempo critico de abertura obtido por sim-
ulacdo para um curto sélido trifasico na barra
do gerador pertence ao intervalo (0.458;0.459s).
A estimativa do tempo critico de abertura obti-
da com esta fungao energia pertence ao intervalo
{0.400;0.401s). Como esperado, esta estimativa
é um pouco conservadora porque a estimativa da
regido de estabilidade estd contida dentro da re-
gidao de estabilidade verdadeira. Entretanto, este
tempo nao é muito malis conservativo do que o
obtido com a Funcdo de Liapunov convencional
V o qual pertence ao intervalo (0.412:0.413s). A
Figura 3 mostra as trajetdrias do sistema em falta
e pés-falta para um tempo de abertura de 0.400s.

3.2 Sistemn de Duas Mdguinas versus Borro-
mento Infinito

Antes de abordar o caso geral de um sistema
multi-maquinas, considere o sistema composto por
duas maquinas e um barramento infinito da Figu-
ra 4.

1441



Anais do XIII Congresso Brasileiro de Automdtica — CBA 2000
11 a 14 de setembro de 2000 — Floriandpolis — SC — Brasil

E 5 _

Figura 4. Sistema de Duas Madquinas versus Barramento
Infinito

As seguintes equacdes diferenciais:

& =
.7\/[1(:01 = P1 — C1 sin (51 - D1 Cos 51—
— Chr2sin(d1 — 82) — Diacos(dy — &2) — Thun
b =
.7\/[2[;)2 =P — C-z sin 52 - D2 Ccos 52—
—_ Clz 5111(52 - 51) — Dlz COS(52 - 51) — Tzwz

descrevem o comportamento dinamico deste sis-
tema. Quando as condutdncias de transferéncia
sao desprezadas SDlg = 0), existe uma Fungio
de Liapunov geral, no senso usual, que pode ser
utilizada para os estudos de estabilidade deste sis-
tema. Esta funcdo pode ser facilmente obtida por
um processo tradicional de integracio e é dada
por:
2
V{61.w1,82,w2) — M1+ — P18y — Cy cosdy + Drsindr+
M2%2 — Pyda — Cy cos 6z + Do sinbz—
—C12 cos(dy — d2) + cte
Entretanto quando D;» # 0 o processo de in-
tegragdo gera uma integral dependente do cam-
inho, 0 que torna impossivel demonstrar que sua
derivada, ao longo das trajetdrias, é semi-definida
negativa.

Para resolver este problema uma nova funcao
energla sera proposta e a extensdo do Principio
de Invariancia serd utilizado para estudar a es-
tabilidade deste sistema. Sera mostrado que es-
ta funcao energia é uma Fungdo de Liapumnov,
no sensc mais geral da extensao do Prinipio de
Invaridncia, quando as condutdncias de trans-
feréncia D, sac suficientemente pequenas. Para
isto, cousidere a seguinte func¢ao energia:

W (d1,wr,82,w2) = M15E — Pydy — C1 cosdy + Di sindy—
—/310.)1 [Pl - Cl sin 51 — Dl Ccaos 51 — Clg Sil‘l(dl - 52)—-
Dj3cos(d; — 52)] + 1\/[21;-'- — Pada — Co cos bz + Dasindz—~
—Bows [Py — Casindy — Dacosda — C12 sin{dy — d1)—
D1z cos(d2 — 01)] — Crz cos(d1 — d2) + cte
onde 3, e B> sdo pardmetros a serem determina-
dos.

Calculando a derivada desta func¢do ao longo
das 6rbitas do sistema encontra-se:

Pi1(d1,02) b Pp1(61,02)
. Wi wh
W= Y B
' Py2(01,82) Pi4(81,02)
Wa W

+D1s cos(8y — da)(wr +wa)

onde
B = Bri|Di2
B13|Bas
&
B | -&n
By — 5T T; + B1[—C1cosdy + D1sindy
2 —Ch» COS(51 -— 62) + D12 sin(61 - 52)]

T> + B2 |-Cacosdz + Dasindy

_BuTy
2]
—C12 COS(§2 — (51) + Dya Sin(ﬁg - 51)] J

0
%]- [C12 COS(J] - (52) — Dj2 Sin((51 - 52)] -+ }

%2 [Cr2 cos(da — 01) — D12 sin(dz — 1))

Observe novamente que a derivada de W ¢
composta por nma parte quadratica ¢ pelo termo
Dnscos(dy — 62)(wr + we). Os parAmetros 81 e B
podem ser escolhidos de forma a tornar a parte
quadréitica definida positiva. Sendo assim, apenas
o termo Dis cos(b — d2)(wq +we) seré responsavel
por regies na qual a derivada de W poderia ser
positiva.

Exemplo 3.2 Seja o sistema da Figura 4 com
P] = 1.25, Pg = 1.5, C] = 1.7, Gg = 2.0,
D1 = D;z = 0.1, 012 = 0.5, D]g = 0.04, T] =
T, = 01 e M; = My = 0.056. As curvas de
nivel de W estdo apresentadas na Figura 5 onde
3y = 0.0111 e 3, = 0.0095. Estas curvas de nivel
foram tragadas no plano w; = wy = —04. Ob-
serve que a regido onde a derivada de W é positiva
é uma pequena regido limitada préxima ao pon-
to de equilibrio estdvel. Esta regido pertence ao
conjunto C do Teorema 2.2. Para ontros planos,
esta regifio torna-se menor ou até mesmo desa-
parece o que garante que esta regido é um conjunto
limitado que estd proximo ao pouto de equilibrio
estavel. Portanto, esta fungdo pode ser utilizada
para o estudo da estabilidade deste sistema. A
Figura 5 mostra a projegdo da estimativa do atra-
tor no plano wy = ws = —0.4. '

3 - O\ . 3]
\.\ N hY Y
\\ 1"\51\; y
SRR B
l | | Projecic da Esu-
| | mativa do Aator

N
|

(]
——

dalta2{rad)

3 2 -1 i} 1 2 2
daltat{rad)

Figura 5. Curvas de nivel da Fungdo W - Sistema de Duas
Méquinas versus Barramento Infinito
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3.3 Sisternas Multimdquinas

Seja o sistema composto por n méquinas onde a n-
ésima maquina é um barramento infinito.Pode-se
mostrar, similarmente ao caso de duas maquinas,
que a seguinte funcdo energia

i=1

W=yl {M,»:';L — P;§; — C; cos b; + D; sin §;—

—Biw; [P; = Cisind; — Dicosd; — 52", Cijsin(8: ~ 6;)~
i

=}, Dijcos(8; — 6_7')} — XM Cijcos(8r — 82) + cte}
ol

é uma Funcdo de Liapunov no senso da extensao
do Principio de Invariancia se as condutancias de
transferéncia sio suficientemente pequenas. Con-
seqilientemente, esta pode ser utilizada para es-
tudos de estabilidade transitéria em sistemas de
poténcia.

4 Conclusades

Neste artigo, uma versdo mais geral do Principio
de Invaridncia foi utilizada para estudar a ex-
isténcia de Funcgdes de Liapunov gerais para sis-
temas de poténcia com perdas nas linhas de trans-
missdo. Nesta versao, condi¢bes menos restriti-
vas do que aquelas exigidas no Principio de In-
varidncia cldssico sdo empregadas de forma a per-
mitir a aplicagdo deste a wma classe maior de
problemas. Basicamente, permite-se que a deriva-
da da Funcio de Liapunov seja positiva em al-
gumas regides limitadas. Sendo assim problemas
mais complexos de fisica e engenharia, tais co-
mo sistemas com comportamento cadtico, podem
ser mais facilmente manipulados. Neste artigo,
este teorema foi utilizado com sucesso como base
tedrica para a proposta de uma nova fungdo ener-
gla a qual é uma Fungdo de Liapunov geral para
sistemas de poténcia com perdas na transmissdo.
Tsto no senso mais amplo da extensdo do Principio
de Invariancia, ou seja, sua derivada podendo ser
positiva em algwnas regides.

Neste trabalho, contribuiu-se com a procura
por uma Funcio de Liapunov geral para sistemas
de poténcia considerando perdas na transmissao.
Entretanto as possibilidades de aplicagdes da ex-
tensdo do Principio de Invaridncia sdo muitas e
espera-se que no futuro os pesquisadores consigam
resolver outros problemas relacionados. Dentre
estes destacaria a incorporagéo de modelos de ger-
adores mais realisticos assim como efeito de regn-
ladores. Desta forma possibilitar-se-ia a aplicagdo
dos métodos energéticos ao estudo de estabilidade
de sistemas de poténcia onde os componentes sao
modelados na integra.
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