
 | Environmental Microbiology | Research Article

Benzoxazinoids stimulate chemotaxis and act as a signaling 
molecule in Azospirillum brasilense Ab-V5, while showing minor 
effects on Pseudomonas protegens Pf-5
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ABSTRACT Root colonization by plant growth-promoting bacteria (PGPB) involves 
recruiting beneficial partners from the rhizosphere. Among well-studied PGPB, 
Azospirillum brazilense Ab-V5 and Pseudomonas protegens Pf-5 are two well-known 
bacterial strains renowned for their growth-enhancing capacity and extensively used 
as bio-inputs. Many cereals, such as maize, produce indole-derived benzoxazinoids (BXs), 
specialized metabolites that shape root-associated microbiomes to promote colonization 
by plant-growth-promoting bacteria (PGPB). Although the mechanisms by which BXs 
recruit PGPB remain unclear, we hypothesize that BXs directly facilitate root colonization 
by favoring bacteria adapted to these metabolites in the soil environment. In this study, 
we investigated the impact of the relatively stable lactam BX-derivative, 6-methoxy-2-
benzoxazolinone (MBOA), on two PGPB strains: Azospirillum brasilense Ab-V5 and 
Pseudomonas protegens Pf-5. Transcriptomic analysis revealed that MBOA had minimal 
effects on Pf-5, but triggered extensive gene expression changes in Ab-V5, particularly in 
pathways related to energy metabolism, chemotaxis, and biofilm formation. Subsequent 
assays confirmed that MBOA acts as a chemoattractant for Ab-V5 and, at moderate 
concentrations, enhances both biofilm formation and colonization of Arabidopsis roots. 
We propose that the chemotactic property of MBOA on Ab-V5 can enhance its establish­
ment in the rhizosphere and that this metabolite can trigger the metabolic transition 
required for root colonization.

IMPORTANCE In this paper, we studied the impact of benzoxaziniods on root coloniza­
tion mechanisms of two potent plant-growth- promoting bacterial strains. We explored 
these mechanisms by an RNA sequencing experiment and by microscopy. The paper 
highlights how biofilm is particularly affected and reports on chemotactic responses. 
Most of the results we obtained we could validate with phenotypic assays. We show that 
benzoxazinoids, produced by many cereals, profoundly affect bacterial behavior related 
to plant-bacterial interactions. The bacteria in this study are known for their ecological 
roles in the soil, being either in plant protection or as biofertilizers. Thus, this work holds 
significant socio-economic value for society.

KEYWORDS PGPB MBOA, chemotaxis, biofilms, peroxidases, symbiosis, transcriptom­
ics, SEM, root colonization

B enzoxazinoids (BX) are specialized metabolites produced by many grasses includ­
ing rye (Secale cereale L.), wheat (Triticum aestivum L.), and maize (Zea mays L.) 

(1). Released in the soil by roots, they strongly affect the composition of the rhizo­
microbiome, thereby stimulating a vast array of positive features attributed by plant 
growth-promoting bacteria (PGPB), ranging from nutrient acquisition to plant defense 
(1–10) Azospirillum brasilense is among the best-studied PGPB, reportedly granting 
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growth-promoting properties predominantly by the production of plant hormones 
(11–13) and biological nitrogen fixation (BNF) (14). A. brasilense exhibits extraordi­
nary genome plasticity characterized by numerous repetitive sequences and origins of 
replications (15), and its genome harbors several genes associated with rhizosphere 
adaptation (15). Biosynthesis of plant hormones by A. brasilense, including strain Ab-V5, 
stimulates the development of lateral roots and root hairs (16, 17) leading to improved 
water and mineral uptake (18, 19). In addition to yield increase of maize, wheat, and 
pastures with brachiarias (Urochloa spp.) (20, 21), inoculation with Ab-V5 confers stress 
tolerance by stimulation of jasmonic acid (JA) and salicylic acid (SA) pathways and 
peroxidase activity (22, 23). For these reasons, A. brasilense strain Ab-V5 is widely used in 
commercial inoculants in Brazil (24).

Regarding biocontrol, the PGPB Pseudomonas protegens strain Pf-5 (formerly 
Pseudomonas fluorescens Pf-5), is well known for producing a wide array of antimicrobial 
specialized metabolites, notably pyoluterin and 2,4-diacetylphloroglucinol, two potent 
antimicrobial components (25). Therefore, P. protegens Pf-5 is of special interest as a 
biocontrol strain and for conferring disease tolerance (26–30). The P. protegens species 
colonizes a wide variety of plant hosts (31–33) demonstrating a remarkable metabolic 
flexibility, with some strains even possessing the capacity to use insects as vectors for 
dispersal (34, 35).

Recruitment of bacteria is a crucial step in root colonization and is key for the 
introduction of superior PGPB strains. Chemoattraction of PGPB toward root exudates 
has been extensively studied (6, 36–39) and is an inextricable part of recruitment in 
the rhizosphere. Conversely, specific studies on chemotaxis to BX-derivatives are limited 
to a single study by Neal and collaborators on chemoattraction of P. putida to 2,4-dihy­
droxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) (6). In the soil, BXs degrade spontane­
ously, primarily converting into 6-methoxy-2-benzoxazolinone (MBOA) (40), which exerts 
a lasting influence on microbiome structuring, persisting into the next generation of 
maize plants (7). Interestingly, once root colonization has been initiated, A. brasilense 
and P. fluorescens establish a positive feedback loop by stimulating BX metabolism of 
the plant upon root colonization (41, 42). Consequently, the exudation of BX derivatives 
potentially influences the chemoattraction of PGPB, promoting rhizospheric coloniza­
tion. This process, in turn, stimulates plant BX metabolism, demonstrating a sophistica­
ted plant-bacteria signaling dialog.

Despite substantial research done on the impact of BXs on microbial structuring 
(7–10, 43–45), how specific mechanisms are affected by BX in individual PGPB is poorly 
understood. Thus, both Ab-V5 and Pf-5 serve as compelling study subjects for analyz­
ing the influence of MBOA on their respective transcriptomes to clarify the intricate 
mechanisms underlying plant-soil feedback. In addition, given their natural occurrence 
being either in association with BX-producing cereals or in predominantly BX-free soil 
environments, respectively, Ab-V5 and Pf-5 make a keen comparison and may provide 
insights on how bacteria are adapted to MBOA exposure.

Given the positive influence of BXs on the whole root microbiome (7–10, 43–45), 
we hypothesized that root colonization mechanisms of individual PGPB are likely to be 
manipulated. Therefore, we carried out RNA sequencing of Ab-V5 and Pf-5 RNA extracts 
to unravel what cell-physiological processes are influenced by MBOA treatment. We 
found evidence on a molecular level showing how MBOA affects bacterial behavior and 
colonization mechanisms of Ab-V5 and Pf-5 validated with microbiological, biochemical,
and microscopic assays. To the best of our knowledge, this study represents the first 
transcriptomic analysis conducted on individual PGPB to investigate the direct impact of 
BXs on RNA profiles.
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MATERIALS AND METHODS

Bacterial strain and growth conditions

For this study, we used the strain A. brasilense Ab-V5 (20) which was isolated from the 
maize (Zea mays L.) rhizosphere and P. protegens strain Pf-5 originally isolated from 
the rhizosphere of cotton (Gossypium hirsutum L) seedlings (26). Strain Ab-V5 (CNPSo 
2083) was provided from the “Diazotrophic and Plant Growth-Promoting Bacteria Culture 
Collection” (WFCC collection #1213, WDCM Collection #1054), Londrina-PR, Brazil, and 
strain Pf-5 was provided by Dra. Joyce E. Loper from Horticultural Crops Research 
Laboratory, United States Department of Agriculture, Agricultural Research Service. 
Bacterial cultures were stored in 20% glycerol at −80°C. At the onset of the experiment, 
Ab-V5 precultures were grown in DYGS liquid medium (46) and Pf-5 in Luria-Bertani (LB) 
medium (47) shaking at 28°C, replicated from bacterial stock until early log-phase, and 
diluted to optical density at 600 nm (OD600) of 0.05. From a start OD600 of 0.05, the 
bacteria were used in in vitro experiments or for infecting plant roots as described in item 
2.7.

Effect of MBOA on bacterial growth

First, the tolerance of PGPB to MBOA (cat. no. 532-91-2, Sigma-Aldrich, Saint Louis, USA) 
was assessed by obtaining growth curves from bacteria grown in DYGS and LB liquid 
culture medium supplemented with increasing concentrations of MBOA. To that end, 
pre-cultures were freshly prepared at the onset of the experiment from bacterial stocks 
and grown until the early logarithmic phase in the PGPBs’ respective growth medium. 
The OD600 was adjusted to 0.05 in 100 mL Erlenmeyer flasks containing 20 mL liquid 
growth medium amended with 0.05 mM, or 0.50 mM MBOA from a 100 mM MBOA 
stock solution prepared in acetone. The control treatment contained 0.5% acetone which 
equals the amount of MBOA solution in the other treatments. Over the time course of 
24 h, cultures were grown at 120 rpm and 28°C, and every 3 h, after 16 h and 24 h, 
the OD600 of 1 mL of each culture was measured by spectrophotometry with a Genesys 
50 UV-Vis spectrophotometer (Thermo Scientific, Massachusetts), while the other flasks 
remained incubated under constant agitation. The experiment was performed with four 
biological replicates per treatment and was carried out twice.

To study the impact of MBOA on bacterial population dynamics after longer 
incubation times, Ab-V5 and Pf-5 start cultures were grown from a preculture; diluted 
until OD600 of 0.05 and treated with 0.00 mM containing 0.5% acetone, 0.05 mM MBOA
and 0.50 mM MBOA in triplicate. At the timepoints 0 h, 24 h, 48 h, and 72 h, cultures were 
diluted and plated out to determine the colony-forming units (CFU) by enumeration on 
solid bacterial culture medium.

RNA extraction and sequencing

Based on the results of the growth curve, each bacterial inoculum was grown in 0.00 mM, 
0.05 mM, and 0.50 mM MBOA for 72 h at 28°C statically in order to promote biofilm 
formation at the air-liquid interface. Each treatment was performed with six biological 
replicates. RNA of bacterial cultures was stabilized by adding two times the culture 
volume of RNA protect bacterial reagent (Qiagen, Venlo, Netherlands), directly into 
15 mL glass tubes containing 1 mL of bacterial cultures. RNA was isolated using an 
RNeasy RNA purification kit (Qiagen, Venlo, Netherlands) according to the manufactur­
er’s instructions, including a cell lysis step with 15 mg mL−1 lysozyme (cat. no. L6876, 
Sigma-Aldrich, Saint Louis, USA) and 10 mg mL−1 proteinase K (cat. no. RP103B, Qiagen, 
Venlo, Netherlands) in TE buffer of pH 8 for 10 min at room temperature. Additionally, we 
performed an on-column DNA digestion step with an RNase-free DNase set (Qiagen, 
Venlo, Netherlands). RNA was eluted in two steps with 50 µL RNase-free water in 
RNase-free microcentrifuge tubes and stored at −80°C. Quality control of the samples 
was carried out by an Agilent 2100 Bioanalyzer (Agilent, Barueri, Brazil), to select the 
three best biological repeats per treatment for cDNA library preparation with Illumina 

Research Article mBio

September 2025  Volume 16  Issue 9 10.1128/mbio.01414-25 3

https://doi.org/10.1128/mbio.01414-25


Stranded Total RNA prep, and ribosomal depletion with Ribo-Zero plus (Illumina, San 
Diego, USA). Sequencing of the samples was carried out by an Illumina NextSeq 550 
system (Illumina, San Diego, USA) with a read depth of on average 13 million clusters or 
26 million paired-end reads at NGS Soluções Genômicas (Piracicaba, Brazil).

RNAseq data analysis

Initially, the raw read quality was determined using FastQC v0.12.0 (48), a commonly 
used tool for assessing the quality of data generated by RNA sequencing (RNA-seq). After 
assessing sample quality, Trimmomatic v0.39 (49) was employed to filter out low-quality 
reads and remaining sequencing adapters applying a cut-off for Phred quality scores 
below 25 and removal of Nextera – PE adapters. The filtering of rRNAs from the samples 
was carried out using RiboDetector v0.2.7 (50), a specialized tool designed to identify 
ribosomal RNA (rRNA) sequences and filter them from RNAseq data which can consti­
tute a significant proportion of the reads obtained during RNAseq and complicate the 
analysis of gene expression by misalignment. From the Ab-V5 reads, we aligned the 
trimmed and filtered reads with STAR v2.7.10 (51) to the Ab-V5 genome (GenBank 
accession: GCA_002940725.1) and Pf-5 reads were aligned to the Pf-5 genome (Genbank 
accession: CP000076), while gene quantification was carried out with HTSeq-count 
v0.11.1 (52). The R package edgeR v4.2.0 (53) was used to filter out samples with low 
expression, considering genes that had at least one count per million in at least three 
samples. The same package was used to normalize the data and analyze it for differential 
expression among treatments. The differential expression analysis used the 0.00 mM 
MBOA treatment as a reference level. For each comparison, we tested the null hypothesis H0:LogFC = 0 at a significance level of P = 0.05. In this context, LogFC represents the 
logarithm of the fold change expression value. For functional annotation, DIAMOND 
v2.1.7 (54) was performed with the non-redundant (nr) NCBI database. Blast2GO suite 
(55) was used to categorize the annotated genes via DIAMOND v2.1.7 (54) into functional 
Gene Ontology (GO) terms. Non-annotated and hypothetical proteins we classified as 
“unknown gene function” and were not further considered in the analysis.

Effect of MBOA on bacterial chemotaxis

Chemotaxis responses of strains Ab-V5 and Pf-5 were assessed by a modified capillary 
assay (56). Briefly, sterile syringes of 0.5 mL with needles of 0.25 µm aperture were filled 
with MBOA or a 0.5% acetone equivalent in phosphate-buffered saline (PBS, 8 g L−1 NCL, 
0.2 g L−1 KCl, 1.44 g L−1 Na2HPO4, 0.24 g L−1 KH2PO4) of pH 7.4. The syringes were inserted 
into 15 mL Falcon tubes containing 5 mL of washed bacteria in PBS with an OD600 
of 0.05. After incubation at room temperature for 15 min, syringes were ejected and 
100 µL of Ab-V5 or Pf-5 was directly plated on 15% agar DYGS or LB plates, respectively, 
rendering five plates per syringe. Colony-forming units (CFU) were counted digitally 
using ImageJ software (Scion Corporation, Maryland). For every treatment, at least four 
biological replicates were used, and the experiment was carried out three times.

For validating the results from the capillary assay, chemotaxis and motility were 
assessed with a swim plate assay and gradient plate assay based on Mukherjee et al. 
2016 (57). In short, liquid precultures were grown in liquid medium until an OD600 of 
around 0.4 was reached, adjusted to OD600 0.4, and the bacterial cultures were washed 
three times in chemotaxis buffer (50 mM K2HPO4, 10 µM EDTA, 0.05% glycerol, pH 7). 
In the meanwhile, for the swim plate assay, either malate-salt medium (MSM) or M9 
minimal medium plates for Ab-V5 or Pf-5, respectively, containing 0.3% agar, 1 mM 
glycerol, and amended with 0.00 mM, 0.05 mM, or 0.50 mM MBOA, were prepared. Fifty 
microliters of Ab-V5 culture was applied on the swim plate and incubated for 48 h before 
recordings. Ten microliters of OD600 0.4 of Pf-5 culture was applied and recorded after 
8 h of incubation. For the gradient assay, the 0.3% agar plates did not contain MBOA but 
were provided with a 1.5% agar plug containing 0.00 mM, 0.05 mM or 0.50 mM MBOA, 
placed 2 cm from either 50 µL of Ab-V5 or 10 µL of Pf-5 cultures.
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Effect of MBOA on bacterial biofilm

To determine the influence of MBOA on the production of biofilm by Ab-V5 and Pf-5, 
a microtiter plate biofilm assay was carried out, using sterile polystyrene 96-well plates 
as described in Merritt et al. (58) Briefly, overnight bacterial cultures were diluted until 
OD600 of 0.05 (approximately 108 bacteria) in DYGS for Ab-V5 or in liquid LB for Pf-5 
and supplemented with 0.00 mM, 0.05 mM, or 0.50 mM MBOA. Microtiter plates were 
filled with 100 µL of bacterial culture using at least eight replicates of each treatment 
including non-inoculated controls for 72, 96, 120, and 144 h of stationary incubation at 
28°C. The microtiter plates were then rinsed to remove planktonic bacteria. Biofilm was 
stained with 125 µL 0.01% (wt/vol) crystal violet per well for 20 min. After removal of 
the unbound crystal violet, each well was filled with 150 µL of 100% ethanol for 15 min 
which was then transferred to an optically clear microtiter plate and analyzed with a 
Multiskan FC Microplate Photometer (Thermo Scientific, Massachusetts) at OD590.

Plant growth conditions

Seeds of Arabidopsis thaliana Col-0 were surface sterilized by suspending the seeds in 
70% ethanol for 2 min and in 50% hypochlorite for 10 min followed by rinsing three 
times with sterile deionized water. Sterile seeds were placed on half strength Murashige 
and Skoog medium (½ MS) (cat. no. M5519, Sigma-Aldrich, Saint Louis, USA) plates 
containing 0.8% agar and 1% sucrose. After an incubation period in the dark for 3 days, 
plates were placed vertically in an incubation room at 22°C under a 16 h/8 h light/dark 
regime in order for the roots to grow on the surface of the ½ MS agar plates. After 2 
weeks of incubation, seedlings were inoculated with an MBOA-treated bacterial culture 
of OD600 of 0.05 and were tested for peroxidase activity (59) of Ab-V5 to the root surface 
or analyzed by microscopy, as described in the Section “Epifluorescence Microscopy and 
Scanning Electron Microscopy.”

Epifluorescence microscopy and scanning electron microscopy

Two-week-old A. thaliana seedlings were inoculated 96 h before analysis with washed 
Ab-V5 or Pf-5 cultures with OD600 of 0.05 with or without addition of 0.05 mM MBOA, 
or with the same amount of sterile deionized water as the control treatment. Prior 
to epifluorescence microscopy, A. thaliana seedlings were supplemented with 3 mL of 
2 µg mL−1 NileRed solution (9-diethylamino-5H-benzo[a]phenoxazine-5-one) (cat. no. 
7385-67-3, Sigma-Aldrich; Saint Louis, USA); incubated at room temperature for 1 h 
at 120 rpm; rinsed with sterile Milli-Q (Merck, Germany) purified water; and carefully 
transferred on microscopic slides and sealed. Nile Red is a lipophilic stain that has an 
emission wave length of around 540 nm when bound to neutral lipids and around 
650 nm when bound to polar lipids (60–62). Epifluorescent microscopic analysis was 
carried out using an Axiophot II microscope (Zeiss, Germany) with magnifications within 
the range of 100–400 times, and with the following excitation (Ex) and emission (Em) 
filter settings: Ex 365–Em 397 (blue channel), Ex 450–Em 515 (green channel), Ex 546–Em 
590 (red channel). Images were captured through a PCO CCD camera operated by ISIS 
Metasystems.

Preparation of samples for scanning electron microscopy (SEM) included a primary 
fixation step with 2.5% glutaraldehyde in 0.2 M cacodylate; secondary fixation with 2% 
osmium tetroxide overnight; dehydration in a series of ethanol solutions in increasing 
concentration (10%, 20%, 30%, 50%, 70% 10 min per step and three times in 100% 
ethanol); drying with a Baltec EM CPD 300 (Baltec, Lichtenstein) critical point drying 
machine and gold coating with a Baltec SCD 050 (Baltec, Lichtenstein) gold coater. After 
mounting the samples on stubs, they were analyzed by a JEOL JSM-IT300LV (JEOL, Japan) 
located at the Phytopathology Department at ESALQ/USP (Piracicaba, Brazil) using an 
accelerating voltage of 20 kV and magnifications varying between 1,400 and 7,500 times, 
during SEM image analysis.

The microscopic analysis by SEM was carried out three times, every time analyzing 
three samples per treatment of one square cm of excised A. thaliana seedling roots from 
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the surface of agar plates. From those samples, we scored the biofilm formation and 
estimated the percentage of the root surface covered by biofilm, as well as colonization 
patterns.

Peroxidase assay

Peroxidase activity was evaluated by measuring the oxidation of guaiacol (2-metoxifenol) 
(cat. no. G5502, Sigma-Aldrich, Saint Louis, USA) by spectrophotometry based on Mika et 
al. (59). A. thaliana Col-0 seedlings grown on 0.8% agar, 1% sucrose, ½ MS medium were 
harvested 2 weeks after germination in samples of approximately 0.5 g. Seventy-two 
hours before analysis, A. thaliana Col-0 seedlings were inoculated with washed Ab-V5 or 
Pf-5 bacteria treated with 0.00 mM, or 0.50 mM, or without bacteria but with 0.50 mM 
MBOA as a control treatment. The seedlings were homogenized in 0.5 mL 10 mM sodium 
acetate of pH 5 and centrifuged for 25 min at 15,000 × g and 4°C, and the supernatant 
was used as protein extract for the peroxidase activity measurement. The measurements 
were started by mixing in a cuvette: 970 µL sodium acetate, 2.5 µL guaiacol 0.25% (vol/
vol), 6.0 µL hydrogen peroxide 30% (wt/vol), and 20 µL protein extract. The absorbance 
of tetraguaiacol was then measured every 10 s along the timespan of 1 min in a Genesys 
30 spectrophotometer (Thermo Scientific, Waltham, USA) at 470 nm wavelength. From 
the data, normalized per gram of tissue, the coefficients of the regression lines were used 
to calculate the peroxidase activity expressed in absorbance per minute per gram.

Statistical analysis

Data obtained from digital analysis of pictures from plates using the ImageJ software 
(Scion Corporation, Maryland) for counting colony- forming units (CFU), and all other 
quantitative data were statistically analyzed using the R software (63). Data were first 
tested for normality via the Shapiro-Wilk normality test (P = 0.05). Normally distributed 
data were subjected to a one-way ANOVA and a subsequent Tukey multiple compari­
son of means or a Welch Two Sample t-test for testing two groups (P = 0.05). The 
data without normal distribution were analyzed with a Kruskal-Wallis rank sum test or 
Wilcoxon rank sum test with continuity correction (a.k.a. Mann–Whitney U test) (P = 0.05).

RESULTS

Ab-V5 is perceptible to MBOA which potentially acts as a signaling molecule, 
while the Pf-5 transcriptome is little affected

The impact of a low (0.05 mM) and a high dose (0.50 mM) on bacterial growth of Ab-V5 
and Pf-5 liquid cultures was explored by obtaining a growth curve during the first 24 h of 
inoculation. (Fig. S1). Ab-V5, which in general grows slower than Pf-5, showed a stronger 
reduction in bacterial growth than Pf-5. From 9 h onward, in contrast to 0.05 mM, 
0.50 mM significantly reduced bacterial growth compared to the control treatment, 
demonstrating a strong effect on bacterial behavior. However, no significant differences 
between MBOA and control treatments were found in the number of CFU after liquid 
cultures were plated 24, 48, and 72 h post-inoculation (Table S1) (Fig. S2). Therefore, we 
used the lowest concentration tested (0.05 mM) and a relatively high concentration of 
0.50 mM MBOA in the RNAseq assay. In this way, we could discern dynamically regulated 
genes that mark relevant mechanisms manipulated by MBOA.

The transcriptome of Pf-5 underwent few alterations (Fig. 1b). Besides the 0.05 mM 
MBOA treatment that rendered no DEGs, 0.50 mM MBOA inflicted a significant change 
in the expression levels of only eight DEGs relative to the control (Table S3). Remarkably, 
DEGs were mainly categorized as belonging to the cellular respiration protein class and 
have positive logFC values, albeit with no DEGs surpassing the logFC threshold value of 2 
or −2.

Introducing an environmental concentration of 0.50 mM MBOA to A. brasilense Ab-V5, 
however, resulted in a wide-scale reprogramming of metabolic regulation. The 0.50 mM
MBOA treatment, which rendered 285 genes to be differentially expressed, caused more 
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extensive alterations in the Ab-V5 transcriptome than 0.05 mM MBOA, rendering 109 
Differentially Expressed Genes (DEGs), including 80 DEGs in common (Fig. 1a). The 109 
DEGs from 0.05 mM MBOA counted 19 upregulated and 90 downregulated DEGs, while 
0.50 mM MBOA consisted of 105 upregulated and 180 downregulated DEGs (Fig. 1b). 
Despite deploying several annotation strategies, 109 out of 314 unique genes could not 
be identified (Table S2). Because of the scarcity of bacterial transcriptomics studies 
involving MBOA treatment, part of the genes that were not annotated are likely related 
to this condition.

Upon exposure to MBOA, the transcriptomic profile of Ab-V5 exhibited pronounced 
alterations primarily in the domains of gene regulation, transport, primary metabolism,
and signal transduction, sequentially (Fig. 2) (Fig, S4). This impact suggests that MBOA is 
perceived by Ab-V5, substantiated by the noteworthy number of DEGs identified under 
the categories of both signal transduction and gene regulation, thereby implying a 
potential role for MBOA as a signaling molecule. A complete list of the DEGs from the 
Ab-V5 RNAseq is available in Supplementary Data (Table S4).

In Ab-V5, most upregulated genes are related to gene regulation and meta­
bolic processes, while DEGs related to plant-microbe interactions are mainly 
downregulated

In concert with significant changes in gene expression within the primary metabolism 
category, it is noteworthy that the majority of the relatively upregulated DEGs are 
associated with gene regulation and cellular respiration (Fig. 2a and c). Most notable 
DEGs displaying the highest logFC values within this category are “Ldh family oxidore­
ductas” (AHNNBFGK_03305); “SDR family oxidoreductase” (AHNNBFGK_02025) and “NAD 
+ synthase” (AHNNBFGK_00885) along the other 11 upregulated cellular respiration 
classified DEGs. The direct positive relationship observed between gene expression 
levels and MBOA concentration of AHNNBFGK_03305 and AHNNBFGK_00885 catego­
rized under cellular respiration underscores the activation of energy metabolism within 
the cell (Fig. 3) (Fig. S3a and b).

In our investigation, we grouped DEGs associated with plant-microbe interactions, 
recognizing the complexity of plant-microbe interactions as a phenomenon governed by 
intricate interplays. Therefore, we considered DEGs previously categorized under 
extracellular polymeric substance (EPS) biosynthesis, nitrogen metabolism, auxin 
homeostasis, and chemotaxis (Fig. 4) (Fig. S3c and d). The chemotaxis regulator CheZ 
(AHNNBFGK_04641), which exhibited a logFC of 2.29, is a specific phosphatase for 

FIG 1 Organization of DEGs found in 0.05 and 0.50 mM MBOA treatments of Azospirillum brasilense Ab-V5. (a) Venn diagram showing unique and common DEGs 

(P = 0.05) among Ab-V5 treatments. (b) Bar plot displaying the number of up- and downregulated DEGs from Ab-V5 and Pf-5. No DEGs were identified from the 

Pf-5 transcriptome with 0.05 mM MBOA.
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CheY-P and plays a pivotal role in modulating the flagellar motor complex. Interestingly, 
our study reveals that the expression of nitrogen accessory proteins (AHNNBFGK_00521) 
is increasingly suppressed with a rise in MBOA concentration from 0.05 to 0.50 mM, with 
logFC values of −2.98 and −4.13, respectively (Fig. 4). Notably, only in the 0.50 mM 
treatment, the gene expression of “TAT-dependent nitrous-oxide reductase” 
(AHNNBFGK_05842) exhibits a logFC of 2.15 (Fig. 4). This enzyme catalyzes the final step 
in denitrification, reducing nitrous oxide (N2O) to dinitrogen (N2). Furthermore, we found 
that both the 0.05 and 0.50 mM MBOA treatments significantly repressed the gene 
expression of the “auxin efflux carrier protein” (AHNNBFGK_02785), with logFC values of 
−5.07 and −4.82, respectively (Fig. 4).

It’s noteworthy that the majority of the DEGs associated with plant-microbe interac­
tions displayed downregulation. This includes the “Flp family type IV pilin” 

FIG 2 Principal functional classes of Differentially Expressed Genes (DEGs). (a, c) Upregulated DEGs; (b, d) 

downregulated DEGs identified in Azospirillum brasilense strain Ab-V5, according to the protein category. 

The percentage indicates the proportion of total annotated DEGs within each treatment (0.05 or 0.50). 

Blast2GO suite (55) was used to categorize the annotated genes via DIAMOND v2.1.7 (54) into functional 

Gene Ontology (GO) terms.
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(AHNNBFGK_03152) and the enzyme responsible for processing precursor subunits for 
pilin assembly, known as “prepilin peptidase” (AHNNBFGK_03151) (64) with logFC values 
of −3.44 and −7.17 in 0.05 mM and the logFC values −8.16 and −3.06 in the 0.50 mM 
treatment, respectively (Fig. 4).

Biofilm in Ab-V5 is transcriptionally regulated by MBOA according to a 
non-linear dose response

In both the 0.05 mM and 0.50 mM treatment, an EPS biosynthesis protein transcript 
(AHNNBFGK_05273) exhibited a slight relative downregulation with a logFC of −1.86 
and −1.60, respectively (Fig. 4), while in the 0.50 mM MBOA treatment, an additional 
EPS biosynthesis protein transcript (AHNNBFGK_05278) with a logFC value of −2.61 was 
differentially expressed (Fig. 4). In summary, MBOA treatment does not directly promote 
plant-microbe interaction-related mechanisms other than chemotaxis based on the 
annotated DEGs. Noteworthy, other less characterized or unknown mechanisms related 
to plant-microbe interactions may yet be affected by genes that were not annotated.

The relative downregulation of EPS biosynthesis-related DEGs, that contribute to 
biofilm formation, was confirmed by in vitro biofilm assays, demonstrating a negative 
influence of MBOA treatment on biofilm formation in both Ab-V5 and Pf-5 (Fig. 5). Ab-V5 
samples for RNAseq were collected after 72 h of inoculation, but the physiological effect 
of the gene transcripts may require some time to be established. Therefore, we started 
measuring biofilm at the same timepoint as the samples for RNAseq were collected and 
measured biofilm with intervals of 24 h. In other studies, A. brasilense biofilm reaches the 
highest amount of biofilm after 96–120 h, corresponding to the time it takes to develop 
a mature biofilm, and diminishes slowly in the days after (65, 66); at 72 hpi, the biofilm 
formation, measured by in vitro assays, decreased as MBOA concentration increased, 
corresponding to the amount of downregulated EPS biosynthesis genes observed in the 
RNAseq data (Fig. 4). Additionally, the in vitro assays showed that the maximum amount 

FIG 3 Common DEGs (P = 0.05) in treatments 0.05 and 0.50 of Azospirillum brasilense Ab-V5. DEGs displayed in the bar plot exhibit either positive or negative 

correlations with MBOA concentration. Downregulated DEGs were selected with a cut-off logFC value of −3 while no threshold was applied on common 

upregulated DEGs. The x-axis gives the expression values per gene for each gene with a description displayed on the y-axis. Blast2GO suite (55) was used to 

categorize the annotated genes via DIAMOND v2.1.7 (54) into functional Gene Ontology (GO) terms.
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of biofilm produced by Ab-V5 did not coincide among treatments, as it did with Pf-5 
(Fig. 5A). In Ab-V5, the maximum amount of biofilm production was shifted 72 hpi from 
the control treatment to the 0.05 mM treatment after 120 hpi (Fig. 5B). Contrarily, strain 
Pf-5, which was less affected by MBOA (Fig. S1), displayed a strong decline in biofilm 
accumulation when treated with MBOA, while no DEGs related to biofilm were identified 
(Table S2).

Ab-V5 is attracted to MBOA

To validate the RNAseq results regarding the relative upregulation of cheZ, we performed 
a modified capillary assay for chemotaxis. We used the MBOA concentration of 0.50 mM 
which had a significant and moderate effect on the OD of Ab-V5 and Pf-5 cultures, 
respectively, in MBOA growth curves recorded over 12 h (Fig. S1). Ab-V5 was the only 
strain that exhibited a chemotactic response by accumulating a significantly higher 
number of CFU collected in the assay compared to the control (Fig. 6). Next, we analyzed 
chemotaxis in intermediate (0.05 mM) and high (0.50 mM) levels of MBOA using the 
same experimental setup, only with Ab-V5. Again, we observed a significant chemotactic 
response of Ab-V5, independent of the MBOA concentration used in the assay (Fig. S5).

To test whether the positive result in the capillary assay was not caused by an 
increased motility of the bacteria, additional swim plate and gradient plate assays were 
carried out with Ab-V5 and Pf-5 on semi-solid minimal medium. With Pf-5, in both assays,
no significant differences were detected (P = 0.05). In the case of Ab-V5, the swim plate 
assays did not indicate any differences among MBOA and control treatments (P = 0.05). 
However, the gradient assay showed that the distance was smaller between the Ab-V5 
cultures and the 0.05 mM agar plug than the distance to the 0.00 mM MBOA containing 
agar plugs (P = 0.05) (Fig. 7). We can, thus, conclude that Ab-V5 is attracted to 0.05 mM 
MBOA while Pf-5 is not, and that the results observed from the capillary assay are likely 
not caused by improved motility, based on the results from the swim plate assays, but by 
chemoattraction.

FIG 4 Plant-microbe interaction- related differentially expressed genes (DEGs) (P = 0.05) identified in Azospirillum brasilense Ab-V5, with logFC values for the 

treatments 0.05 mM and 0.50 mM MBOA. The x-axis gives the expression values in logFC per gene for each gene with description displayed on the y-axis. 

Blast2GO suite (55) was used to categorize the annotated genes via DIAMOND v2.1.7 (54) into functional Gene Ontology (GO) terms.
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MBOA treatment improves biofilm formation by Ab-V5 on Arabidopsis 
thaliana roots

To complement the transcriptomics and biofilm data, we carried out live-cell imaging via 
epifluorescence microscopy and by scanning electron microscopy (SEM) on A. thaliana 
roots inoculated for 96 h with Ab-V5 and Pf-5. We observed that root samples treated 
with 0.05 mM MBOA showed a thicker and denser biofilm in Ab-V5, resulting in a 
greater coverage of the root surface than in the control treatment. Substantial amounts 
of biofilm were found in untreated samples, though not to the same extent as in the 
MBOA-treated roots (Fig. 8) (Fig. S6). In those samples, the surface area of biofilm-covered 
roots was approximately double that of the untreated roots. Pf-5 inoculated roots did 
not exhibit significant differences in the amount of bacterial biofilm on the root surfaces 
among treatments (Fig. S6). Both Ab-V5 and Pf-5 demonstrated ample colonization of 
root hairs and crevices in the root surface, independent of the MBOA treatment (Fig. S7).

Peroxidase activity is unaffected by MBOA treatment

Colonization of A. thaliana roots by Ab-V5 caused an increase of one and a half times in 
the activity of peroxidases, both with and without the MBOA treatment. Thus, despite 
the effect of Ab-V5 inoculation, MBOA treatment did not influence A. thaliana peroxidase 
activity (Fig. 9a). Inoculation with Pf-5 resulted in a significantly elevated peroxidase 
activity compared to the sterile seedlings, albeit not as pronounced as the increase 
achieved with Ab-V5 inoculation. Interestingly, this augmentation was strictly observed 
in MBOA- treated A. thaliana as opposed to Pf-5 without MBOA, which did not show 
increased peroxidase activity compared to control (Fig. 9b).

DISCUSSION 

MBOA triggers a chemotactic response in Ab-V5

Given the overwhelming number of metabolites secreted from plant roots into the 
soil, recruitment of specific microorganisms is not straightforward. Attraction of bacteria 
to primary metabolites such as sugars and amino acids is short-lived and unspecific
because they can be metabolized by a broad range of microorganisms (67, 68). MBOA,
however, is a relatively stable compound (69) with a sustained release in the soil (5, 7). 
Intriguingly, exclusively in the lower concentration (0.05 mM) evaluated, the chemo­
taxis regulatory gene cheZ was relatively upregulated in Ab-V5 (Fig. 4), a result also 

FIG 5 Biofilm formation in microtiter plates and gene expression levels of biofilm biosynthesis genes. (a) Biofilm production of Pseudomonas protengens Pf-5 

and (b) Azospirillum brasilense Ab-V5 biofilm between 72 and 144 h post inoculation (hpi). Error bars in the charts represent standard deviation, different letters 

indicate significance at the level of 0.05 within each time point, calculated by a Kruskal-Wallis rank sum test. (c) Relative expression levels (logFC) of the genes 

AHNNBFGK_05273 (exopolysaccharide biosynthesis protein) and AHNNBFGK_05278 (exopolysaccharide biosynthesis polyprenyl glycosylphosphotransferase) 

calculated from 0.05 mM and 0.50 mM treated Ab-V5 RNA extracts after 72 hpi.
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obtained from the gradient plate assay while the in vitro chemotaxis assay showed 
that both 0.05 and 0.50 mM MBOA inflicted chemoattraction of Ab-V5 (Fig. 6 and Fig. 
7). This possibly indicates a concentration-dependent signaling mechanism regulating 
chemotaxis. Since Ab-V5 will first encounter lower concentrations when moving along 
an MBOA gradient towards the root, chemotaxis-related proteins have been expressed, 
and the chemotaxis machinery will be established before reaching higher concentrations 
such as 0.50 mM, abolishing the need for further upregulation of chemotaxis genes. 
Furthermore, chemotaxis responses by the 0.50 mM dose can be regulated by different 
regulatory mechanisms than the 0,05 mM dose, such as by post-translational regulation 
of protein activity (70).

The cheZ gene product, CheZ, modulates the flagellar motor complex by dephosphor­
ylation and inactivation of CheY which in its turn interacts with the switch domain of 
the flagellar motor, reverting the rotational direction of the flagellum (71, 72). Hence, 
Ab-V5 seems to be more sensitive to lower concentrations of MBOA, which possibly 
enables the strain to be attracted over longer distances. This enhanced sensitivity of 
MBOA in bacteria enables plants to reach more potential beneficial PGPB, since the 
number of bacteria in the soil multiplies by the third power with distance from the 
source, considering the soil environment as a homogeneous three-dimensional space.

MBOA acts as a signaling molecule and stimulates energy metabolism

Our findings suggest that MBOA acts as a signaling molecule in Ab-V5 and causes 
substantial genetic reprogramming when exposed to MBOA-enriched environments 
(Fig. 2), with physiological implications that were evident in biofilm assessments and 
chemotaxis experiments. In contrast, alterations of the Pf-5 transcriptome were limited in 
the 0.50 mM MBOA treatment and undetected when subjected to the lowest concentra­
tion of MBOA (0.05 mM) (Table S2). These results of Pf-5 are in agreement with the 
responses to MBOA in the growth curves (Tables S1 and S2, Fig. S2), chemotaxis (Fig. 6 
and 7), and biofilm assays (Fig. 5a).

The contrasting effects of the 0.05 mM and 0.50 mM MBOA treatments on Ab-V5 
are evident in their impact on cellular respiration and energy metabolism. The 0.50 mM 
treatment notably stimulated cellular respiration, through glycolysis and by promot­
ing oxidoreductases involved in the electron transport chain, substantiated by the 
positive correlation between the MBOA concentration and expression values of an 

FIG 6 Chemotaxis assay with Azospirillum brasilense Ab-V5 and Pseudomonas protegens Pf-5 with 

0.50 mM MBOA. Ab-V5 pre-cultures were washed and diluted in PBS to a final OD600 of 0.05 and used 

in a modified capillary assay. After 15 min of incubation at room temperature, the collected bacteria in 

0.5 mL syringes were plated out and counted. P-values in the graph were calculated by a Wilcoxon rank 

sum exact test. NS, not significant (P = 0.05).
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“Ldh family oxidoreductase” gene (AHNNBFGK_03305) and an “NAD + synthase” gene 
(AHNNBFGK_00885) (Fig. 3). AHNNBFGK_03305 is an L-lactate dehydrogenase which is 
an enzyme known for its role in glycolysis, where it converts pyruvate to L-lactate, while 
AHNNBFGK_00885 is involved in NAD+ biosynthesis (73, 74). NAD + is known to play 
crucial roles in mediating redox reactions, electron transport, and as a substrate for 
poly-ADP-ribose polymerases (75). The absence of upregulated chemotaxis genes in the 
0.50 mM treatment and results from the swim plate assays (Fig. 7) suggest that the 
increased energy generated through cellular respiration is likely not allocated to bacterial 
locomotion. Thus, investigating bioenergetics in this context would be an interesting 
avenue for future research.

Mechanisms involving plant-microbe interactions are downregulated

We found that properties related to plant-microbe interactions were relatively inactive 
under MBOA regime (Fig. 4). Notably, biofilm biosynthesis-related genes were negatively 
correlated with MBOA concentration, and auxin release was diminished by relative 
downregulation of auxin efflux carriers. Therefore, the results suggest that the export 
of auxins produced by Ab-V5, which has a pivotal role in plant growth-promotion (76), is 
reduced under these conditions when compared to the control treatment.

Another hallmark of diazotrophic bacteria in plant-microbial interactions, is nitrogen 
fixation. A. brasilense is able to fix atmospheric nitrogen in the form of ammonium under 
micro-aerobic conditions. We found that in 0.50 mM MBOA, TAT-dependent nitrous-oxide 
reductase (AHNNBFGK_05842) was relatively upregulated, enhancing the conversion 
of nitrous-oxide to dinitrogen (N2). At the same time, a nitrogenase accessory factor 
(AHNNBFGK_00521) was relatively downregulated in both 0.05 and 0.50 mM MBOA, 
diminishing the reduction of N2 to ammonium (Fig. 4). Consequently, in 0.50 mM MBOA, 
this may lead to a local buildup of N2. N2, however, is unreactive and safe for the cell to 

FIG 7 Swim plate and gradient plate assays with A. brasilense Ab-V5 and P. protegens Pf-5. a and b 

gradient plate and swim plate assays of Ab-V5, respectively. c and d gradient and swim plate assays 

of Pf-5. In the gradient plate assays (a and c), the distance of the bacterial culture to the agar plug is 

displayed in cm; in the swim plate assays (b and d), the diameter of the culture is given in cm. P-values 

indicated in the graph were calculated by ANOVA tests. NS, not significant (P = 0.05).
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store in large amounts (77) and, typically in the form of ammonium, is often a limiting 
nutrient for plant growth (78).

To exert growth promoting properties, many PGPB effectively require colonization of 
the roots from the interacting plant. By differences in root exudation patterns accord­
ing to root zones and because of distinct chemotaxis and quorum sensing responses 
of bacteria, roots are occupied in a non-uniform distribution (79–82). Ab-V5 and Pf-5 
showed preference for root hairs and crevices as primary colonization sites (Fig. S7). The 
colonization pattern of Pf-5 is comparable with P. fluorescens WCS365 which forms a 
thin biofilm localized around fissures, while P. putida produces a thick continuous biofilm 
spreading over the entire root (81, 83). After colonizing the root surface, endophytic 
bacteria internalize the plant tissue granting the advantage of a steady supply of 
nutrients in a protected environment. Penetration, however, does not necessarily require 
active mechanisms (84), but involves a range of bacterial traits (85), and may occur 
passively via entering through cracks and sites of lateral root emergence (86). Interest­
ingly, once root colonization has been initiated, A. brasilense and P. fluorescens establish 
a positive feedback loop by stimulating BX metabolism of the plant (41, 42). Coloniza­
tion by A. brasilense renders a species-specific readout of BX derivatives (41, 87), while 
inoculation of maize plants with P. fluorescens MZ05 causes induction of BX2 and GLU2, 
two genes related to BX metabolism, augmenting BX content in leaves (42).

Our transcriptomic results suggest that plant MBOA exudation may stimulate 
recruitment more clearly than promoting direct root colonization mechanisms such as 
biofilm formation.

We observed that the MBOA treatment imposed a delay in biofilm formation by in 
vitro crystal violet assays (Fig. 5b), demonstrating the maximum amount of biofilm after 
120 h of inoculation when treated with 0.05 mM, while after 72 h, the control treatment 
caused more biofilm to form by Ab-V5.

This delay in biofilm measured by the absorbance of crystal violet is likely to stem 
from different bacterial population dynamics of Ab-V5 when grown in in vitro conditions 
without agitation and by the lack of nutrients after 72 h of growth. Likewise, a delay in 
population growth was observed in bacterial cultures grown in statical conditions over 
the time span of 72 h (Table S1) (Fig. S2). This corroborates with the negative correlation 

FIG 8 Scanning electron microscopy of Arabidopsis thaliana Col-0 roots inoculated with Azospirillum 

brasilense Ab-V5. Seedlings were grown on ½ MS agar medium for 14 days and incubated for 96 h with 

Ab-V5 cultures of OD600 0.05, prior to sample preparation. (a and c) Control treatment of Arabidopsis 

thaliana Col-0 roots containing 0.5% acetone as a substitute for MBOA. (b and d) 0.05 mM MBOA treated 

Arabidopsis thaliana Col-0 roots. Scale bars indicate 100 µm (a and b) or 20 µm (c and d).
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between MBOA concentration and the number of DEGs related to biofilm biosynthesis 
that were identified by RNAseq (Fig. 5) carried out on RNA isolated from statically grown 
cultures after 72 h, coinciding with the amount of biofilm measured by crystal violet 
staining after 72 h (Fig. 5b). Microscopy assays in our study revealed that more biofilm 
formed on 0.05 mM MBOA-treated roots when inoculated with Ab-V5. In contrast to in 
vitro bacterial growth, bacterial growth on the root surface can be sustained by release 
of primary metabolites by the root. Host factors can, therefore, explain why results from 
microscopy investigations did not exactly match with the in vitro experiments.

In contrast to Ab-V5, in Pf-5, we could not identify any DEGs related to biofilm 
synthesis and biofilm measured by in vitro assays showed a linear correlation with 
MBOA concentration. Hence, in this case, MBOA treatment might have affected surface 
properties or the extracellular matrix composition of the biofilm, thereby changing 
the adherence and aggregation. Alternatively, MBOA can have influenced proteins 
involved in biofilm formation by direct interaction or interfered with signaling molecules 
regulating biofilm without changing gene expression. Hence, this all lead us to conclude 
that possibly, during early root colonization, Ab-V5 biofilm production is suppressed 
by MBOA on a transcriptional level. Furthermore, two DEGs related to pilin biosyn­
thesis (AHNNBFGK_03151 and AHNNBFGK_03152) which are proteinaceous, polymeric 
appendages distinct from flagella, involved in the first steps of bacteria-host interactions 
(88), were in both conditions severely downregulated (Fig. 4). Hence, both transient 
absorption and permanent anchoring of the Ab-V5 were relatively downregulated by the 
MBOA treatment.

Concurrently, transcriptomics data of Ab-V5 showed that the highest number of 
upregulated DEGs in 0.50 mM MBOA was associated with cellular respiration (Fig. 
2c). This underpins that MBOA treatment stimulates the motile bacterial lifestyle 
by diminishing the growth rate yet increasing cellular respiration. Thus, we surmise 
that energy spent on growth and duplication events is possibly allocated instead to 
chemotaxis and metabolic rewiring, depending on the MBOA concentration that was 
applied.

After 72 hpi with Ab-V5 and Pf-5, A. thaliana seedlings showed elevated peroxi­
dase activity (Fig. 9). Since peroxidases keep ROS levels in check and protect cellular 

FIG 9 Peroxidase activity of Arabidopsis thaliana roots is enhanced when plants were inoculated with Azospirillum brasilense 

Ab-V5 (a) and with Pseudomonas protegens Pf-5 (b). Roots of Arabidopsis seedlings inoculated with either Ab-V5 or Pf-5 for 72 h 

were weighed, ground, and used for protein extraction. P-values indicated in the graph were calculated by ANOVA tests.
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homeostasis (89–91), results may be indicative of a plausible indirect defense mechanism 
against phytopathogens (86). Fukami et al. (23) showed that treatment of maize plants 
with A. brasilense Ab-V5 stimulated jasmonic acid (JA) and salicylic acid (SA) pathways, 
leading to the activation of induced systemic resistance (ISR) as well as the expression of 
defense-related genes (22, 23), while ISR by Pf-5 is independent of SA signaling (92) and 
marked by increased peroxidase activity (93, 94), corroborating our results. Nevertheless, 
this effect was independent of the MBOA treatment.

Physiological responses to MBOA may be linked to the ecological function of 
the bacteria

We surmise that the negative effect on bacterial growth, biofilm, and some related 
features of Ab-V5 most likely stem from applying relatively high concentrations of MBOA 
rather than being a limiting factor for Ab-V5-plant interaction. BXs are produced by many 
plants of the Poacea family and by some other dicotyledonous plants (1, 95, 96), but 
not in A. thaliana (97), which was used for our microscopy study. The BX concentration 
can vary considerably among plant tissue and between species. The grains of wheat 
and rye can contain around 4.8 µg g−1 dry weight (DW) (= 0.029 mM) and 95 µg g−1 

DW (= 0.575 mM), respectively (98). In rye, shoots can accumulate 1,900 µg g−1 DW (= 
11.505 mM) (99), while maize shoots may contain several mg g−1 DW (= 6.055 mM) (100, 
101). Inside maize roots, around 2 µg g−1 fresh weight (FW) (= 0.005 mM) of HDMBOA-glc 
and around 1 µg g−1 FW (= 0.003 mM) of DIMBOA-glc accumulate between 2 and 3 weeks 
after germination (5), which spontaneously degrade into MBOA in the soil environment. 
Compared to the above-mentioned quantities of total BX extracts which were calculated 
per gram of DW plant tissue, the latter are expressed in µg g−1 of FW which will naturally 
be much lower because of the water content of fresh tissue. In the soil environment of 
maize plants, Hu et al. (7) measured 10 µg MBOA per 300 mL of soil (= 0.0002 mM), 
during the first 7 weeks after germination (7). Nonetheless, A. brasilense is frequently 
associated with BX-producing grass species and hence may be expected to be tolerant 
to MBOA (80, 102–104). Interestingly, Ab-V5 at the same time displayed a chemotactic 
response, facilitating rhizospheric establishment. In contrast, Pf-5, which was isolated 
from the cotton rhizosphere, supposedly free of BX, was little affected in terms of in vitro 
growth, chemotaxis, biofilm production, and transcriptome. One way to interpret these 
results could be that the sensitivity of Ab-V5 to MBOA enables recruitment of these PGPR 
by the plant through MBOA production. While Ab-V5 might be recruited from the bulk 
soil, MBOA release by cereal roots does not aid in Pf-5 establishment in the rhizosphere. 
Thus, considering the frequent occurrence of Ab-V5 with BX producing cereals, Ab-V5 
is likely better adapted to BX content in the soil environment and might exploit MBOA 
signaling as a cue for localizing cereal roots.

In addition, the ecological function of the two strains may explain their differences 
in adaptation to BX production of the host plant. Since Ab-V5 fulfills a role as a growth
promoting strain by nitrogen fixation (14) and plant hormone production (11–13), this 
strain is likely to exhibit a more precise and regulated interaction with its host plant, 
which has a narrower host range compared to the diverse plant hosts colonized by Pf-5 
(31–33). Pf-5 provides an indirect benefit for plants by its biocontrol function (26–30), 
which suppresses a broad spectrum of pathogens and hence many plants profit from 
rhizosphere colonization by this strain. Thus, the more specific interaction of Ab-V5 with 
cereals creates the necessity of identifying the right plant host in the environment by 
chemical sensing and chemoattraction, a role that may be provided by BXs from cereal 
roots, in contrast to Pf-5, that is able to colonize the roots of many different plant species.

Conclusion

Our results clearly show how MBOA acts in the first stages of Ab-V5 and Pf-5 plant 
interactions, including signal transduction, chemotaxis, and metabolic adaptation. 
In higher concentrations of MBOA (0.50 mM) or hypothetically in closer proximity 
to the roots where MBOA emanates, A. brasilense Ab-V5 experiences a metabolic 
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reprogramming and prepares for transitioning to a lifestyle in close interaction with 
the host plant. Considering untreated Ab-V5 as the reference physiological state, energy 
homeostasis is strongly upregulated, allowing for a reallocation of energy for altering 
transport and rerouting metabolic networks. Nitrogen fixation is suppressed, and the 
gene expression of efflux carriers responsible for the release of auxins is reduced in 
comparison to MBOA-free Ab-V5. The sensitivity of Ab-V5 to MBOA may allow it to serve 
as a cue for locating specific plant hosts, a trait lacking in Pf-5, which exhibits a broader 
host range.

Considering its ecological impact and growth-promoting properties, A. brasilense 
interaction can highly benefit BX-producing cereals (12, 22, 23, 105–108). Moreover, 
MBOA harbors a considerable potential to attract PGPB and stimulate rhizosphere 
colonization, a promising aspect which has largely remained unexplored. The present 
study sheds light on the dynamics and interplay of the intricate mechanisms at play 
governing plant-microbial interactions, which help to understand the molecular function 
of MBOA. Bearing in mind that MBOA has a strong impact on microorganisms, MBOA 
treatment can be a promising tool for improving the inoculation success rate of specific 
strains and enhance crop health in agricultural settings (44, 109–111). To reveal how 
exactly those goals can be achieved and to what biofertilizer PGPR this strategy can 
be applicable, progression was made by advancing fundamental research on bacterial 
physiology.
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