

AVALIAÇÃO DA ATIVIDADE CITOTÓXICA E ANTIMIGRATÓRIA DE DERIVADOS DE DIPEPTIDIL NITRILAS EM LINHAGENS DE CÉLULAS DE CÂNCER DE PRÓSTATA

Júlia Maia Oliveski

Natália W. de Faria, Sabrina M. Botelho

Andrei Leitão

Instituto de Química de São Carlos - Universidade de São Paulo

Julia_maia@usp.br

Objetivos

O estudo desenvolvido tem como objetivo a avaliação in vitro da atividade citotóxica e antimigratória de quatro novas entidades químicas que têm como alvos moleculares as cisteíno catepsinas. Os ensaios foram realizados em duas linhagens celulares de câncer de próstata, PC-3 e DU-145, utilizando o método colorimétrico MTT para avaliar a viabilidade celular e microscópio de campo claro para o ensaio de fechamento de risca.

Métodos e Procedimentos

A manutenção celular das culturas das linhagens DU-145 e PC-3 foram realizadas em meio DMEM e F12-K, respectivamente, em frascos de cultura T75 e incubadas a 37°C, 90% de umidade e 5% de CO₂. O meio de cultura foi trocado a cada dois dias até que a cultura atingisse a confluência de 80%. As células foram retiradas dos frascos de cultura e contadas na Câmara de Neubauer, objetivando o ajuste da concentração para utilização nos respectivos ensaios.

Para o ensaio de migração celular, o plaqueamento foi realizado em placas de 24 poços, na concentração de 3,0x10⁵ células/mL,

com 1 mL por poço. Os ensaios de risca foram conduzidos por meio da avaliação do perfil migratório após a administração dos quatro compostos (Figura 1) em concentrações de 10 e 100 µM. A risca foi realizada 24 horas após o plaqueamento, e a administração dos compostos ocorreu em seguida. O monitoramento da migração foi feito nos tempos de 0, 24 e 48h após a realização da risca

O ensaio de viabilidade celular foi realizado por meio da semeadura das células em placas de 96 poços, na concentração de 1,0x10⁵ células/mL, adicionando-se 100 µL por poço. Os ensaios dos quatro compostos foram realizados nas concentrações de 10 e 100 µM, e a sua administração ocorreu 24h após a semeadura, seguida por 72 h de incubação a 37°C, 90% de umidade e 5% de CO₂. A viabilidade celular foi determinada colorimetricamente, adicionando-se 10 µL por poço de MTT em tampão fosfato-salino (11,0 mg/mL) com incubação por 3 horas. O sobrenadante foi removido e adicionou-se 100 µL do agente solubilizante DMSO com posterior medida da absorbância a λ=570 nm.

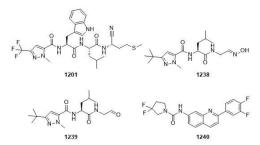


Figura 1: Estruturas químicas dos três novos derivados de dipeptidil nitrilas e do composto 1240.

Resultados

O ensaio antimigratório permitiu observar que os compostos testados não inibiram a migração celular das linhagens PC-3 e DU-145 (Fig. 2).

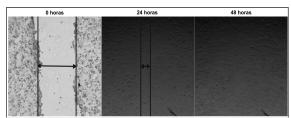
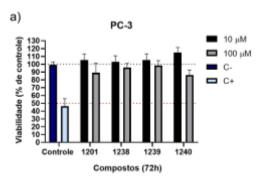



Figura 2: Monitoramento da migração celular nos intervalos de 0, 24 e 48 horas para a linhagem DU-145 incubada em 10 μM do composto 1240.

Em relação à citotoxicidade, verificou-se que o composto 1240 a 100 μ M levou a uma pequena redução na viabilidade celular das linhagens PC-3 e DU-145. No entanto, os compostos foram considerados inativos, uma vez que não atingiram valores inferiores a 50% de viabilidade celular (Fig. 3a e 3b).

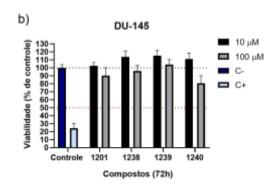


Figura 3: Análises de citotoxicidade utilizando o método MTT para os compostos em concentrações de 10 e 100 μM após 72h de incubação nas linhagens a) PC-3 e b) DU-145.

Conclusões

Este estudo não identificou atividade citotóxica e antimigratória dos compostos derivados de dipeptidil nitrila testados para as linhagens celulares de câncer de próstata PC-3 e DU-145.

Agradecimentos

Ao IQSC-USP e ao Programa Unificado de Bolsas de Estudo para Apoio e Formação de Estudantes de Graduação (PUB-USP) pela oportunidade concedida. Ao grupo NEQUIMED por fornecer os compostos testados.

Referências

GHASEMI, M. et al. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. International Journal of Molecular Sciences, v. 22, n. 23, p. 12827, 26 nov. 2021.

WILKINSON, H. N.; HARDMAN, M. J. Wound healing: Cellular Mechanisms and Pathological Outcomes. Open Biology, v. 10, n. 9, 30 set. 2020.