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Fossil fish provide evidence of geomelanin preservation with 
implications on the visual accuracy of an extinct fish species
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L. PINHEIRO, GABRIEL L. OSÉS, DOUGLAS GALANTE, FABIO RODRIGUES, JAIME J. DIAS, ISMAR 
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Eumelanin is a ubiquitous type of pigment, standing present in all major life branches. 
Chemically, it consists of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2- 
carboxylic acid (DHICA) units bonded with varied functional groups. This biochrome 
is involved in many different roles, such as free radical scavenging, microbial inhibi-
tion, etc. Eumelanin is produced by organelles called melanosomes, which are found 
throughout the animals’ body. In the fish’s eyes, this pigment mainly plays a protective 
role against UV radiation damage and waterborne insults. The previous detection of 
melanosomes in the eyes of fossil teleosts already provided evidence for the palaeo-
biology and palaeoecology of extinct fish lineages. Nonetheless, the presence of these 
organelles remains to be detected in exceptionally preserved fossils from Brazil. Here, 
we report the microscopic and chemical investigation of fossil melanin from the eyes 
of the Cretaceous fish Dastilbe crandalli. Results show that the eye has a circular shape 
with non-recalcitrant dark brown tissues at its rims, exhibiting densely packed, solid, 
subspherical micrometric granules rich in carbon and with vibrational spectra of eumel-
anin. Geothermic calculations of the Raman spectra indicate that melanin is not much 
thermally altered. This result is consistent with other proposals for the maximum tem-
perature for this unit, raising the possibility of its use to estimate the thermal alteration 
of geomelanins. Besides that, these results also indicate that Dastilbe fish possibly had 
a limited visual capability or lived in the shallow but shadowed (by aquatic plants) por-
tions of the palaeolake. □ Melanin, Raman Spectroscopy, Cretaceous, Crato Formation.
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Since the early evolution of animals, many species 
have developed numerous adaptations to help them 
to survive a vast array of environmental conditions 
(Cuthill et al. 2017). In fish, some of the most notable 
are the development of the cup-type eye with a move-
able lens to focus objects and photoreceptor cells that 
allows for the recognition of colours (Land 2014). 
Because water scatters and diffuses light (Land 2014), 
the ability to effectively recognize underwater objects 

and to perceive colours and shades in dim light con-
ditions is crucial for survival and reproduction in fish 
(e.g. Davis et al. 2020). 

The colour patterns of fish are produced by the pres-
ence and distribution of natural pigments (Roy et al. 
2020a), and these expressions are produced by multi-
ple kinds of biochromes, such as carotenoids, guanine, 
pterin, and melanin. Among these pigments, melanin 
is ubiquitous in all domains of life occurring in tissues 
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of Archaea, Bacteria, and Eukaryotes (Borovanský & 
Riley 2011; Ma & Sun 2012; D’Alba & Shawkey 2019). 
Although varied chemical types of melanin exist, this 
compound consists of several pyrrolic and phenolic 
rings, bonded with varied functional groups and orga-
nometallic compounds (Powell et al. 2004; Kaxiras et 
al. 2006; Meredith et al. 2006; Tran et al. 2006; Watt 
et al. 2009; Bellono & Oancea 2014; Prampolini et 
al. 2015). Due to its many π-π carbon bonds and the 
presence of carbonyls, hydroxyls, and thiols, this pig-
ment is highly reactive to free ions, aiding in cellular 
protection, with antioxidant and antibacterial effects 
(Różanowska et al. 1999; Mackintosh 2001). Given its 
high chemical heterogeneity and wide distribution in 
terms of organismal expression, the precise molecular 
structure of most melanins remains largely obscure 
(d’Ischia et al. 2013; Solano 2014).

Melanogenesis is a series of chemical reactions 
that produce two major types of melanin: the black 
to brown carbonyl-rich eumelanin and the reddish 
to yellowish cysteine-rich phaeomelanin. Between 
these two categories, the former is the most common, 
being present, though in small quantities, even in tis-
sues rich with the later compound (Ito 2003; Ito & 
Wakamatsu 2008; Ito et al. 2011; d’Ischia et al. 2013; 
Solano 2014; Ito et al. 2017; Wakamatsu et al. 2017). 
Most studies agree with the Raper-Mason path-
way model for the synthesis of eumelanin (Solano 
2014), and this biochemical cascade begins with the 
oxidation of the amino acid tyrosine and ends with 
the production of the two direct precursors; the 
5,6-dihydroxyindole (DHI) and 5,6,-dihydroxyin-
dole-2-carboxylic acid (DHICA) (Xiao et al. 2018; Ni 
et al. 2020). The synthesis of eumelanin occurs inside 
melanosomes, a lysosome-related organelle that orig-
inates from specialised cells called melanocytes or 
melanophores (Wasmeier et al. 2008, Solano 2014). 
Due to the diverse organization of the melanin grains 
inside the melanosomes, these subcellular structures 
can assume various morphologies, including a solid 
or hollowed granule with cylindrical, flat, spherical, 
or oblate shapes (Nordén et al. 2018). The develop-
ment and abundance of these microbodies and mela-
nin content is directly associated to the level of colour 
saturation of the tissues they are deposited in (Solano 
2014). Hence, it is not surprising that melanosomes 
can be found in modern and fossil skin, feathers, hairs, 
eyes, and internal organs (McNamara et al. 2018). 

It is generally accepted that, in fossils, phaeomela-
nin is usually absent or significantly altered due to 
its less stable nature, whereas eumelanin is found in 
most exceptionally preserved specimens, although 
also occurring chemically slightly altered (Glass et 
al. 2012, 2013; Colleary et al. 2015; Manning et al. 

2019; Jarenmark et al. 2021; Umamaheswaran et al. 
2021, 2022). The loss of carboxylic acids and extensive 
crosslinking also lead to conversion of melanin into 
an ‘aged melanin’ (Ito et al. 2013), or in other words, 
‘geomelanins’ (Vinther 2020; Roy et al. 2023). Aside 
from that, the identification of ancient biochromes 
and their ultrastructure can also provide information 
on the paleoenvironmental and taphonomic con-
ditions that acted on fossil preservation (Briggs & 
Summons 2014; Parry et al. 2017). 

In Brazil, melanosomes have been formally identi-
fied in isolated feathers (Vinther et al. 2008; Campos 
et al. 2019) and pterosaur soft tissues (Pinheiro et 
al. 2019; Cincotta et al. 2022), all reported from 
the Cretaceous Crato Formation Lagerstätte. 
Conspicuously, in a previous study (Osés et al. 2017), 
none of these microbodies were found in the tissues 
of the fish Dastilbe crandalli Jordan 1910. Here, we 
report the results of a microscopic and chemical inves-
tigation on the remains of a preserved fish eye from a 
specimen from the same species from the Cretaceous 
Crato Formation (Araripe Basin, NE Brazil). This 
specimen exhibits the presence of numerous and 
physically intact sub-spherical microbodies that are 
consistent with melanosomes. We discuss the pres-
ence of these micro-sized particles in addition to the 
fossilization of melanin by estimating the temperature 
of thermal alteration by the means of spectral pro-
cessing. As a result, through this study, we introduce a 
new cheaper, and fast approach to study the fossiliza-
tion of this biochrome which may be useful on under-
standing of the chemical behaviour and taphonomic 
history of this pigment.

Geological setting
Located in northeastern Brazil (Fig. 1A), the Crato 
Formation is part of the Mesozoic intrabasinal 
sequence of the Araripe Basin (Fig. 1B), cropping out 
in the states of Ceará, Pernambuco, and Piauí (Assine 
et al. 2014). The Crato Formation (Fig. 1C, D), con-
sists of fossiliferous limestones, shales, sandstones, 
and fine laminae of evaporites deposited mainly in 
a hypersaline lacustrine (Warren et al. 2017) and 
wetland systems (Ribeiro et al. 2021), under an arid 
climate (Bernardes-de-Oliveira et al. 2014). The age 
of the Crato Formation (Fig 1E) is based on microfos-
sil and pollen content that indicates an Alagoas Stage 
(P-270), which partially corresponds to the Aptian, 
ca. 110 Ma (Coimbra et al. 2002; Rios-Netto et al. 
2012; Arai & Assine 2020; Melo et al. 2020; Coimbra 
& Freire 2021; Guzmán et al. 2023; Santos Filho et al. 
2023).
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Fig. 1.  The location of the Araripe Basin and the Crato Formation beds. A, the geographical region of the Araripe Basin. This basin is located 
in the northeastern part of Brazil (black rectangle) where it crops out in the Piauí, Ceará and Pernambuco states. B, lithostratigraphical 
distribution of the Araripe Basin. C, lithostratigraphical column of the Crato Formation based on the well-logs representative of the middle 
of the basin where most rocks can be found. D, photo of the Crato Formation outcrop (Mina da Pedra Branca, Nova Olinda-CE). E, chro-
nostratigraphical chart of the Araripe Basin units. A and B were taken in Pinheiro et al. (2019: CCBY 4.0). C is based on the works of Catto 
et al. (2016) and Varejão et al. (2019).

The carbonate beds were formed by the contribu-
tion of microorganisms and the lack of trace fossils 
or evidence of significant bottom currents suggests 
that carbonate was deposited in calm bottom water 
under reducing conditions (Heimhofer et al. 2010; 
Catto et al. 2016; Warren et al. 2017; Varejão et al. 
2019). The Crato Formation is world famous for its 
rich and exceptionally preserved biota consisting 
of various groups of microfossils, plants, and ani-
mals (Martill et al. 2007; Mendes et al. 2021; Ribeiro 
et al. 2020), whose preservation was induced by 
microbial mats (Carvalho et al. 2015; Osés et al. 
2016, 2017; Varejão et al. 2019; Prado et al. 2021; 
Dias et al. 2022, 2023). The abundant fossils often 
appear preserving soft tissues in three dimensions, 
such as muscle fibres, digestive and reproductive 
system, among others, a feature that allowed this 
unit to be recognized as a Konservat-Lagerstätte 
(Dias & Carvalho 2020; Dias et al. 2023; Storari  
et al. 2024).

Material and methods
The fossil studied here is an incomplete but partially 
articulated specimen of the fish Dastilbe crandalli 
Jordan, 1910 (Fig. 2; SOM1, Fig. S1, A), preserved in 
a buff-coloured limestone matrix (see the taxonomic 
discussion in SOM1, Fig. S1). Although the precise 
taxonomic identification of this fish fossil was not the 
focus of this study, due to the readily observed char-
acters of the bones, the specimen’s body size, and the 
fact that Dastilbe is the most abundant species in the 
Crato beds (Davis & Martill 1999), the probability 
that this specimen represents this taxon is high. Soft 
tissues appear as dark brown matter that is limited to 
discrete regions (SOM1, Fig. S1 B-C), and is distinct 
from bones that are light brown/beige hue. The fos-
sil comes from Crato Formation beds and is housed 
in the Palaeontological Collection of the Institute of 
Geosciences of the University of São Paulo (IGc-USP) 
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Fig. 2.  The analysed fossil fish. A, the whole specimen. B, magnified view of the head. C, interpretative drawing of the head (seen in A) with 
tentative identification of bony structures (dark beige) and soft tissues around the eye (in black). D, detail of the eye showing its circular 
shape (black dashed line). E, detail of the lower rim of the eye showing the presence of an amorphous dark brown material. Abbreviations 
in (C): (ar) articular, (ey) eye, (ft) frontal, (ip) interopercle, (le) lateral ethmoid, (op) opercle, (pop) preopercle, (pt) parietal, (qt) quadrate, 
(st) soft tissue. Scale bars: (A) 10 mm, (B and C) 4 mm, (D) 1 mm, (E) 500 µm. 

with the collection number GP/2E-9378b. No spe-
cial permits were necessary to perform the study, 
and the fossil eye was examined in optical stereom-
icroscope (OM), confocal microscope (COM), and 
scanning electron microscope (SEM). Elemental 
composition was identified using energy dispersive 
spectroscopy (EDS). Microbodies identified in SEM 
were measured from micrographs using ImageJ 1.50i 
software (Schneider et al. 2012), while descriptive 
statistics, Mixture Modelling, and their respective 
graphs were computed in the software Excel, Origin 
2022 (OriginLab Co., Northampton, MA, USA), 
PAST (Hammer et al. 2001), and JMP 16.2.0 (SAS 

Institute Inc., Cary, NC, USA). Raman spectroscopy 
(RS) and Fourier-Transform Infrared spectroscopy 
(FTIR) were used to obtain the molecular informa-
tion (SOM2, Tables S1-S5). To compare the Raman 
spectra from the fossil fish eye, we also analysed a 
synthetic melanin and Sepia melanin (Sigma-Aldrich, 
Saint Louis, MO, USA), and a natural released con-
tour feather of a helmeted guineafowl (Numida 
meleagris). Assuming that melanins of fossils may 
undergo similar chemical processes during diagenesis 
as do other organic biomolecules, the temperature of 
alteration of melanin-derived kerogen could also be 
estimated using more stablished Raman parameters. 
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To investigate this, we used the more reliable Raman 
parameters of full width at half maximum of the 
G-function (G-FWHM) and the Raman band sepa-
ration (RBS), but we also included R1 (D1 height/G 
height), D1-FWHM and D1A/GA (D1 area/G area) 
and Kouketsu et al. (2014) equation (SOM2: Tab. 
S6). All spectra were obtained and processed using 
the software Wire (Renishaw plc., Gloucestershire, 
UK), Fityk 1.3.1, and Origin 2022, and all figures were 
made using the software Inkscape™ 0.92. For further 
material and methods details, as well as spectroscopic 
data, see Supplementary Material (SOM1, SOM2).

Results
Under the OM, the fish eye (Fig. 2) exhibits a circular 
shape (Fig. 2D) with a dark brown amorphous sub-
stance at the upper and lower rims (Fig. 2E) with a 
white colour in the centre. The amorphous matter 
bony tissues stands out by its darker hue (Fig. 2B, C) 
that contrasts with the beige hue of the bones and 
whitish colouration of the matrix. The COM images 
of the rims show that the brown material is typical in 
appearance to carbonaceous compounds (Muscente 
et al. 2018). This dark material exhibits a grainy tex-
ture, with a dense pack of shiny micrometric glob-
ules (Fig. 3A). In contrast, the host matrix has only 
anhedral and blocky rhombohedral crystals with 

white-grey colour (Fig. 3B), which is common in the 
Crato Formation laminated limestones (Heimhofer 
et al. 2010).

The SEM investigation provides further support for 
the COM images, indicating that the rims are formed 
by solid subspherical particles (Fig. 3C-E), with reg-
ular size, smooth surface and high density (Fig. 3F). 
Although spherules can be also found in the central 
eye region, they are highly scattered and scarce, sug-
gesting that most have been lost and/or remained 
in the counterpart, or that their concentration was 
originally lower. Although they are the most abun-
dant shape in the dark regions of the eye rims, a few 
elongated microbodies can be also found, though in 
lower density (Fig. 3G). Altogether, the eye microbod-
ies exhibit a fairly consistent size, subspherical shape, 
smooth surface, and high density. In contrast, the 
matrix is composed mainly of subhedral to euhedral 
blocky and tiny crystals, lacking the spherical micro-
bodies (Fig. 3H).

The overall dimensions of these microbodies 
exhibit an estimated size of 0.632 ± 0.172 µm in length 
and 0.489 ± 0.135 µm in width (n = 1593), with a mean 
aspect ratio of 1.32, supporting the interpretation of 
their subspherical shape (Fig. S7A; SOM1, Table S2). 
There is an appreciable correlation between their 
length and width (r=0.5786; R2=0.7606; t(1592)=51.17, 
ρ<0.001). Although the population is made majority 
of spherical/subspherical microbodies, few elongated 

Fig. 3.  Confocal optical microscopy and scanning electron microscopy of the fossil fish eye. A, B, COM images of the) the dark brown 
material in the lower rim of the eye (A), which occurs with a grainy texture, and the host matrix exhibiting the white crystals of calcite (B). 
C–H, secondary electron (SE) micrograph of a dense population of spherical microbodies observed in the upper (C), centre (D), and lower 
(E) rims of the eye. F, detail of the microbodies from the eye upper rim, exhibiting a regular subspherical shape with a smooth surface. G, 
micrograph showing the presence of elongated microbodies among spherical and subspherical granules. H, SE micrograph of the matrix 
exhibiting the absence of microbodies and presence of crystals.
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ones can also be found as seen in Fig. 3G. Thus, con-
sidering that two shapes (e.g. spherical and elongated) 
of microbodies exist, we performed the mixture mod-
elling (MM) analysis of the entire dataset to distin-
guish these two subpopulations and to compare their 
proportions. Results indicated that our dataset can be 
indeed divided into two groups (Figs 4A; SOM1, S7B), 
but microbodies are essentially spherical/subspherical 
with 91.71% (n = 132) of total population, whilst elon-
gated consist of only 8.29% (n = 1461). Statistical anal-
ysis indicates that Group 1 have moderate correlation 
values (r = 0.6335; R2 = 0.7960, t(131) = 27.53, ρ < 0.001) 
whereas Group 2 have strong correlation (r = 0.8720; 
R2 = 0.7603; t(1460) = 59.51, ρ < 0.001). Dimensionally, 
the Group 1 consists of elongated microbodies with 
mean sizes estimated in 0.773 ± 0.229 µm in length, 
0.398 ± 0.109 µm in width, and mean AR = 1.95. In 
turn, the Group 2 is consisted of spherical/subspheri-
cal microbodies with average size estimated in 0.619 ± 
0.160 µm in length, 0.4967 ± 0.134 µm in width, and 
mean AR = 1.26 (Fig. 4B; SOM1, Table S2).

The EDS point-and-shoot analysis (Figs 5; SOM1, 
S2) revealed that, from the 15 elements detected, 
microbodies exhibited a larger suite (n = 12) with dif-
ferent intensity in comparison with the matrix (n = 
10). Nevertheless, both fossil microbodies and matrix 
crystals are enriched with three similar elements, C, 
O, and Ca but values appear with different propor-
tions (Fig. 5). Whilst the fossil is comparatively more 
enriched in C, the matrix is enriched in Ca, however, 
both regions show a comparable relative intensity of O. 
Additionally, Fe is limited to the matrix, whereas S is 
slightly enriched in the fossil microbodies, but Mg lev-
els are similar in both microbodies and matrix. Other 
elements occur with negligible or trace amounts below 
the equipment’s detection limit (<0.5%). On the other 
hand, the non-detection of these elements may also 
reflect their true absence in the sample. This may be 
the case of Cu and Zn, which are important elements 
often related to melanin in fossil and extant samples 
(Wogelius et al. 2011; Egerton et al. 2015; Edwards et 
al. 2016; Rossi et al. 2020, 2021). Because in previous 
investigations these elements were found in tissues of 
Dastilbe fish (see Osés et al. 2017), the absence of both 
Cu and Zn can be considered authentic. Interestingly, 
both elements were also not found in the eyes of a 
fossil crane fly and two fishes from the Eocene Für 
Formation, Denmark (Lindgren et al. 2012, 2015, 
2019), nor in the orbital region of an enantiornith-
ine bird from Jehol Biota, China (Tanaka et al. 2017). 
Notwithstanding, a study of the fish larvae from the 
Eocene Stolleklint Clay (Denmark), detected Cu but 
not Zn in the eyes (Heingård et al. 2021). Therefore, the 
absence of both Cu and Zn in the eyes of many fossil 

fishes indicate the transient nature of these elements 
and their absence in GP/2E-9378b is not accidental.

Raman spectroscopy of the samples (Fig. 6A–D; 
SOM1, Table S1, Figs S3, S4; SOM2, Tables S1-S4) 
show that the matrix is composed of calcite with an 
influence of phosphates (SOM1, Fig. S4). Whilst the 
fish eye clearly show Raman bands of melanin (Fig. 5A; 
SOM1, Fig. S3), which are also similar to kerogeneous 
materials that exhibit the ‘D and G bands’ of the amor-
phous carbons. When compared to that of a helmeted 
guineafowl feather, the spectra of the brown material 
from the fossil eye are similar to eumelanin compo-
sition from natural (Sepia officinalis) and synthetic 
forms. However, spectra from the fossil eye material 
are nearly indistinguishable to that of synthetic mel-
anin in that both exhibit intense double broad bands 
around 1370 ± 4 cm-1 and 1570 ± 4 cm-1. On the other 
hand, the guineafowl brown feather and Sepia mela-
nin not only exhibit these doublets, but they also show 
an additional band at around 1199 cm-1 or 1205 cm-1, 
respectively. Raman Spectroscopy map of the eye sup-
port the single point spectra, indicating a spatial cor-
relation of CO3 band and D & G bands (Fig. 5B-D). 
The deconvolution of these broad doublet bands in 
the fossil spectra resulted in five additional (D1-D5 
and G bands) in the range of 1000-1800 cm-1. While 
the ‘D-band’ vary both red- and blueshift range-direc-
tions, the ‘G-bands’ only appear to change in the red-
shift side (SOM1: Fig. S5; SOM2, Table S1-S4). 

The spectrum of the host rock indicates that diag-
nosable bands are limited to the fingerprint region of 
the spectra, ca. 200-2000 cm-1 (Smith & Dent 2005). 
Both matrix and the mid-eye show bands centred at 
about 290-292 cm-1, 719-720 cm-1, 968-981 cm-1, and 
1094-1095 cm-1 (SOM2, Table S1-S4). These bands 
are consistent with vibration modes of carbonates ν1 
and ν4(CO3), and phosphates ν1(PO4), which may be 
occurring as calcite in the matrix, and/or hydroxyapa-
tite from small fragments of bones or phosphatized 
tissues (Gunasekaran et al. 2006; Gunasekaran & 
Anbalagan 2008; Buzgar & Apopei 2009; Morris & 
Mandair 2011). Additionally, it is also possible to 
observe a very weak band at ca. 515 cm-1 in one spec-
trum which most likely is the ν2(PO4) from diageneti-
cally altered hydroxyapatite (Marques et al. 2018). No 
Raman bands of calcite were observed in the fish eye 
containing the microbodies.

The FTIR data further support the Raman 
Spectroscopy results (Fig. 6 E-I; SOM1, Fig. S6; 
SOM2, Table S5), with the presence of stretching 
bands of hydroxyls (3700-3100 cm-1), C−H (ca. 3050-
2850 cm-1), carbonates (ca. 2650-2450 cm-1), carbon-
yls (ca. 1850-1500 cm-1), amide III (1200-1350 cm-1), 
C−O (ca. 1200-1100 cm-1),  phosphates (ca. 900-800 

https://www.idunn.no/doi/suppl/10.18261/let.58.3.7/suppl_file/let.58.3.7_SOM1
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cm-1), and bending of methyl (ca. 1500-1400 cm-1) 
(Gunasekaran et al. 2006; Movasaghi et al. 2008; 
Perna et al. 2016; Monnier et al. 2018; So et al. 2020). 
Furthermore, the amide III band is consisted of at least 
three others bands, such as, C−N, C−C, and C−OH 
from stretching of pyrroles, indole rings and phenolic 
group (SOM2, Table S5). In addition, the molecular 
mapping indicates the spatial distribution of some 
functional groups, especially the bands of O−H that 
occur mainly in the fossil and the bone.

Finally, although the use of geothermometer is 
not directly indicated for the study of maturation of 
organic carbons in low grade metamorphic rocks, we 
decided to apply it to test if the alteration tempera-
ture for the eumelanin could be retrieved since this 
pigment generally is transformed into kerogen-type 
compound in the geological record. Results, suggest 

metamorphic zones between diagenesis and cata-
genesis. It is important to note that it is uncertain if a 
geomacromolecule derived from a likely more homo-
geneous organic material, such as the biopolymer 
melanin inside melanosomes, would be comparable 
to data derived from the more typical kerogen types 
or macerals used in previous studies. Nevertheless, the 
values reported here are broadly similar to the ones 
reported by Goldberg et al. (2017) for the Santana 
Group, which range from 0.29-0.6%.

Fig. 4.  Statistical analysis of the microbodies. A, scattered plot of the microbodies (n=1593) indicating the relationship between the axis 
(length vs width), and their correlation/determination values. This image also shows that two subpopulations (i.e., groups) can be identified 
through the mixture analysis, with elongated (n=1461) and spherical microbodies (n=132). B, boxplot chart showing the range of sizes and 
aspect ratio of each group.

Discussion
Considering the morphological and chemical 
evidence, the observed microbodies in GP/2E-
9378b can be confidently identified as fossilised 
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Fig. 5.  EDS point-and-shoot analysis. Bar chart summarizing the mean values of all spots, showing the relative intensity from both eye 
microbodies (soft tissue) and host matrix. Inset: the spectrum from the microbodies seen in the micrograph.

eumelanin-bearing melanosomes (Roy et al. 2020b). 
These results are consistent with the presence of pig-
ments in life (Dubey & Roulin 2014), and due to the 
limited distribution of the fossil melanin residues to 
the eye tissue, they are likely not a consequence of 
displaced internal or integumentary melanosomes 
(McNamara et al. 2018). 

The Raman bands observed in the fossil and guin-
eafowl feather exhibit remarkable similarity with those 
seen in modern melanin samples, whilst the matrix 
shows bands of calcite. Together with the occurrence 
and morphology of the carbon-rich microbodies, the 
results from the vibrational spectroscopy (RS and 
FTIR) allow us to attribute these spectra to fossilized 
melanin, i.e. geomelanin. Furthermore, the positions 
of the Raman and FTIR bands are consistent to those 
seen in the literature for extant (Perna et al. 2016; and 
references therein) and fossil eumelanin (Košťák et al. 
2018; Gaspard et al. 2019; Pinheiro et al. 2019; Rossi et 
al. 2022). These bands can be assigned to various vibra-
tional modes of the pyrrole, indole units, amines, and 
its functional groups (Capozzi et al. 2005; Centeno & 
Shamir 2008; Kim et al. 2013; Perna & Capozzi 2012; 
Perna et al. 2013, 2016). For instance, the first Raman 
band, between 1300 cm-1 to 1400 cm-1, likely repre-
sents an overlap of many vibrational modes, such as 
the stretching of C=N and C—N bonds from pyrrole 
rings, combined with in-plane deformation of C=C 
and C=N of both pyrrole and indole moieties. The 
second band, between 1500 cm-1 to 1600 cm-1, can be 
assigned to stretching vibration of C=C from aromatic 
rings. The third band generally occurs between 1100 

cm-1 to 1250 cm-1, and most likely represent C—O 
stretching or O—H in-plane deformation of carbox-
ylic acid (Capozzi et al. 2005; Centeno & Shamir 2008; 
Perna & Capozzi 2012; Perna et al. 2013, 2016). 

Albeit recent studies suggested that it is possible 
to distinguish geomelanin from carbonaceous com-
pounds from other sources (Rossi et al. 2024; Li et al. 
2024), the experimental setup used far simulate the 
real conditions of melanin degradation and the chem-
ical dynamics that usually leads to the formation of 
kerogen. In contrast, degradation of melanized tissues 
in sediment encased experiments indicate a nearly 
undistinguishable spectra with kerogen (GP, unpub-
lished data 2024). Therefore, because melanin usually 
is diagenetically altered, through the loss of volatile 
components and extensive polymerization/crosslink-
ing, is not wrong considering that this pigment can 
be transformed into a more kerogen-type substance 
over long time (Muscente et al. 2018; Roy et al. 2023). 
In this scenario, although the analysis of the eye indi-
cates that the spectra are similar to eumelanin, they 
also resemble the characteristic ‘D and G bands’ of 
disordered and graphitic kerogen (Huang et al. 2004), 
and here, these doublet bands can also be referred 
here as the ‘D and G bands of geomelanin’. Moreover, 
in the Dastilbe case, the organic matter derived from 
melanin could also be crosslinked to some extent to 
other byproducts of tissue decay from the eye and 
other body parts, including those highly pigmented. 
Indeed, the broadness of these double bands likely 
indicates the influence of several vibration modes of a 
complex macromolecule that is akin to the disordered 
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Fig. 6.  Vibrational spectroscopy of the GP/2E-9378b and extant samples. A, spectra at the fingerprint region taken from the matrix and 
standard calcite mineral and band assignments. Image (A) also shows spectra from the fossil eye, the guineafowl feather, DHI-rich synthetic 
melanin, and DHICA-rich natural melanin (with molecular structure of the monomers of each type), above the 1000 cm-1 (dashed line). 
Standard bands and molecular bonding of melanin are show as vertical number and coloured lines. B, optical image of the region mapped 
from where the five point-and-shoot spots analysis were made. C, map from the 1070 to 1100 cm-1 range which corresponds to the ν1(CO3). 
D, map from the D and G band range, between 1100-1700 cm-1. E, spectra from the previous maps from the fossil eye, matrix + bone; 
showing bands of the organic matter, phosphates, and carbonate. F, H, optical image of the upper rim of the eye and matrix where the FTIR 
spatial map was performed. G, I, FTIR map from the F and H figures at the 3700 to 3100 cm-1 range that correspond to the ν(O−H). For 
detailed assignments, see SOM2, Table S5.

and heterogeneous nature of eumelanin and an amor-
phous carbonaceous matter (Huang et al. 2004).

The production of synthetic melanin results in a 
compound rich in, if not solely consisting of, DHI 
precursors (Costa et al. 2012). In contrast, both moie-
ties are present in natural melanin, although DHICA 
generally predominates (Roldán et al. 2014). Here, we 
observed that the Helmeted Guineafowl spectra are 
strikingly similar to that of Sepia melanin, whereas 
the fossil fish eye is unexpectedly more similar to that 
of the synthetic melanin. Consequently, it is possible 
that many, if not most, carboxylates in the fossil fish 

melanin were lost during diagenesis, resulting in an 
enrichment of DHI. It has been already shown that 
during melanin thermal maturation, DHICA mon-
omers lose their carboxylates, promoting extensive 
crosslinking between moieties besides being bonded 
with environmental metals and other surround-
ing polymers (Ito et al. 2013). Notably, experiments 
have shown that Ca2+ and Mg2+ generally bind with 
the RCOO- and OH sites of the eumelanin structure 
(Hong & Simon 2007). In this case, the fossil fish 
geomelanin might be enriched with calcium, in addi-
tion to minor amounts of sulphur and magnesium. 
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Because the DHICA of this fossil eye appears to have 
partially lost their carboxylates, we hypothesize that 
these metals and other compounds − even melanin 
monomers and moieties − possibly tended to bind 
at this site. It is also possible that diagenesis exposed 
the DHI moieties to dehydration, inducing loss of OH 
and allowing organics and metals to bind at the vacant 
sites (Fig. 7A). The Raman spectroscopy data seem to 
support this, since the band related to the carboxylic 
acid and hydroxyls (around 1200-1250 cm-1) disap-
pear or decreases in the geomelanin spectra (Fig. 7B).  
This interpretation is further supported by other 
studies of fossil melanosomes as well as in maturation 
experiments (Pinheiro et al. 2019; Rossi et al. 2020, 
2021). Furthermore, it might be the case that the 
occupation of these sites by the metals possibly con-
tributed to the molecular stability of the geomelanin, 
increasing its chemical resistance to further diage-
netic changes; however, this hypothesized effect still 
needs to be observed experimentally.

Despite that the host rock minerals may have 
contributed to the spectra, the presence of the Ca in 
the fossil eye may be also explained by in vivo and/
or post-mortem accumulation/adsorption dur-
ing life through exposure to calcium-rich waters. 
Furthermore, at least in part, incorporation could be 
further compounded when the saturation of Ca ions 
around the decaying carcass reached their highest 
level. Since we did not find bands related to calcite in 
the melanosome-rich regions, it is also plausible that 
some Ca ions could have been incorporated into the 
melanin oligomers during mesodiagenesis, where Ca 
became available through the dissolution/recrystalli-
zation of authigenic calcite crystals. This process was 
likely responsible for releasing a significant concentra-
tion of Ca, which likely led to some Ca incorporation 
into the eumelanin monomers. Moreover, according 
to our estimation of the melanin thermal alteration, 
based on the fact that geomelanins can also be con-
verted into kerogen-type macromolecules, the Raman 
parameters (mainly G-FWHM) suggest a thermal 
maturity similar to vitrinite reflectance (VRo) values 
ranging from ca. 0.3% to ca. 1.5-2% in accordance 
with recent compiled trends (see Henry et al. 2019; 
Schito et al. 2023). These results point to an immature 
to mature kerogen, broadly in agreement with VRo 
values reported by Goldberg et al. (2017), which sug-
gested immature to only marginally mature organic 
matter for the Santana Group (see SOM2, Table S6). 
All together, these data are also consistent with stud-
ies of palaeotemperature in the Araripe Basin, which 
suggested that the temperature did not exceed the 
110 °C during basin evolution (Morais Neto et al. 
2006). 

Supposed cones and rods have been reported pre-
served in exceptional fossils in the Carboniferous fish 
of Mazon Creek of USA and putatively in a Cretaceous 
dinosaur from Jehol Biota of China (Tanaka et al. 
2014, 2017). However, both types of photoreceptors 
are missing in GP/2E-9378b. This absence is, per-
haps, to be expected because these cells are very del-
icate and similar to other cellular tissues, i.e. they are 
prone to be lost early in decay. This is particularly 
especial to Dastilbe fish whose preservation favoured 
other more recalcitrant tissues, such as muscle fibres 
(Osés et al. 2017). Nevertheless, this fossil exhibits an 
abundance of spherical to subspherical microbodies, 
indicating that melanin permitted the preservation of 
the pigmented layers of the eye, such as the tapetum 
lucidum of the retinal pigmented epithelium (RPE). 
Nevertheless, this explanation may be biased, since 
it is possible that most eye remnants remained on 
the now lost counterpart. Anyhow, if we reject this 
interpretation, then the low abundance of elongated 
melanosomes is puzzling, given the wide range of mel-
anosome shapes in extant eyes that varies from elon-
gated to oval forms. As a result, it is possible that both 
morphologies were present in the retina in vivo, such 
as the seen in many fossil organisms, such as puta-
tive early cyclostomes (Clements et al. 2016; Gabbott 
et al. 2016; Rogers et al. 2019; Gabbott et al. 2021), 
teleost fishes (Lindgren et al. 2012; Tanaka et al. 2014; 
Lindgren et al. 2015; Heingård et al. 2021; Rossi et al. 
2022), aquatic reptiles (Lindgren et al. 2010, 2018), 
and dinosaurs (Vinther et al. 2008; Tanaka et al. 
2017). On the other hand, although unlikely, it is also 
possible that the oblate melanosomes in GP/2E-9378b 
possibly had - counterintuitively - a different melanin 
composition (i.e. being greater phaeomelanin con-
centration). Since phaeomelanins are less stable than 
other melanins (Vinther 2020), during fossilization 
the loss of this pigment would favour the concentra-
tion of eumelanin creating an artificial biased concen-
tration of this polymer. Indeed, this may be the case 
of the pterosaur Tupandactylus imperator from the 
Crato Formation, in which only subspherical micro-
bodies were detected in many parts of the headcrest 
(Pinheiro et al. 2019). Alternatively, it is possible that 
most elongated melanosomes were removed when 
the matrix was split open, but this explanation would 
require the admission that a select removal of these 
microbodies occurred naturally. In another scenario, 
it is also possible that this eye had originally only a 
meagre quantity of these elongated melanosomes. 
Conspicuously, this pattern of distribution is consist-
ent with the hypothesis that microbody abundance 
decreases from the eye’s border to the centre (Durairaj 
et al. 2012; Burgoyne et al. 2015).
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Fig. 7.  Formation of geomelanin. A, the possible pathway suggested by the Raman spectroscopy in which the DHICA and DHI units are 
converted into a melanin enriched with DHI-like moieties. In this proposal, the DHICA and DHI moieties lose their RCOOH and phenolic 
OH during diagenesis with increase of temperature and pressure, additionally with the influence of acidic pH. This leads to the formation of 
DHI derivative with vacant sites that would be occupied with metals and organics (e.g. polymers). B, spectra of natural (Sepia melanin) and 
diagenetically altered geomelanin (seen in spectrum SP01 of the fossil eye), indicating that spectra may be able to reflect its preservation, 
with changes in molecular composition (loss of COOH and OH).

Despite these hypotheses, around 92% of all mel-
anosomes of GP/2E-9378b eye is consisted of spher-
ical/subspherical microbodies, and their presence is 
limited to the eye rims (i.e. the dark organic stains). 
This interpretation would be in agreement with the 
fact that in modern eyes, the abundance of spherical 
melanosome increases towards the periphery (distal 
part, the region preserved in our specimen), but at 
the same time, decreases with age (Schmidt & Peisch 
1986). Indeed, the low frequency of elongated mela-
nosomes could be explained by their location in the 
preserved tissue, as most of elongated melanosomes 
are located, and somewhat oriented, in the distal 
part of the of RPE (Vinther et al. 2008; Lindgren et 
al. 2012; Clements et al. 2016). A similar predomi-
nance of sub-spherical melanosomes was observed 
in the eyes of the elasmobranch Bandringa from the 
Carboniferous Mazon Creek Lagerstätte (Clements et 
al. 2016). Therefore, assuming that the pattern is not 
taphonomically driven, and considering the disparate 
abundance of spherical/subspherical microbodies, 
this result may indicate that, at least in this fish taxa, 
melanosome shape may have been not diverse as seen 
in other species. In any case, this phenomenon still 
needs to be verified whether with better preserved 
and/or numerous specimens.

Considering that modern fish eyes are not that 
different from their Silurian ancestors (and extant 
descendants) whose eye were already well devel-
oped (Land 2014), it is possible that similar visual 

acuity was present in extinct fish lineages from the 
Cretaceous; and this may be the case of the Dastilbe 
fish. The sole living relative of Dastilbe, the milk-
fish (Chanos chanos Forsskål, 1775), are sensitive to 
blue-green and orange-red wavelengths, and hence, 
able to see in colour (Kawamura & Nishimura 1980). 
However, the specimen studied exhibited some par-
ticularities that mostly are derived from taphonomy, 
such as the lack (degradation) of preserved photore-
ceptors and remarkable low abundance of elongated 
melanosomes. Notwithstanding, these characteristics 
are remarkably different to another report, in which 
no structure other than calcite crystals from the sur-
rounding matrix was found in the ocular region, sug-
gesting that most tissues were lost during decay and 
diagenesis (Osés et al. 2017). 

In most fish eyes, image focusing is only obtained 
when their spherical lenses are moved forward to or 
backward from the eye surface. Due to this, fish can 
see a maximum distance up to 20 m, but generally, 
their vision is limited to one metre (Glaeser & Paulus 
2015). Conspicuously, juvenile individuals of the 
milkfish have hyperopic vision (Chang et al. 2009a), 
and assuming that D. crandalli may have had a sim-
ilar visual trait, it is possible to suggest that this fish 
was also hyperopic. Similar to milkfish, this farsight-
edness may also be related to the environment that 
this fish inhabited (Bagarinao 1991). In the transition 
between larvae to juvenile stage, the milkfish also 
change their habitat and, consequently, their visual 
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acuity (Chang et al. 2009b). This shift to the sea shal-
low waters, which have clearer waters compared to the 
coastal and near-shore settings, favours the develop-
ment of the young milkfish eyes to better receive short 
wavelengths (violet-blue hues), typical of the open 
sea (Chang et al. 2009b). If we assume that Dastilbe 
had a similar visual capability as its kin, it is possible 
that this fish also dwelled in the shallow and brackish 
waters of the Crato palaeolake (Warren et al. 2017). 
Since these shallower portions were teeming with life 
both inside and outside the body of water − as seen 
by the abundant record of fossil small animals − this 
visual capacity may have also impacted the Dastilbe’s 
survival. It was in these regions that these fish could 
feed on the abundant plankton and smaller animals, 
such as cyanobacteria, ostracods, insects, larvae 
(Mendes et al. 2023), and even smaller Dastilbe speci-
mens (Salgado & Carvalho 2023). 

Despite all that, it is important to recognize that the 
presence of retinal melanin alone can be associated 
with the capacity to discern light from shade. Also, 
highly pigmented eyes are usually associated with 
animals that are active at night or live in dim light 
(Nicol et al. 1973; Land & Nilsson 2012). The pres-
ence of oblate microbodies, in some way, is also con-
sistent with the hypothesis that melanin significantly 
contributes to visual acuity aside colour perception. 
In the case of GP/2E-9378b, assuming that tapho-
nomic biases are not at play, it is possible to suggest 
that the visual capability of Dastilbe was limited com-
pared to other fish specimens. In other words, the low 
diversity but the high density of melanosomes from 
RPE would imply that this fish was at least adapted 
to discern light from shade in shorter distances, and 
hence, being adapted to live in low light environment, 
such as in turbid or shaded waters by aquatic plants 
(Ribeiro et al. 2021; Gobo et al. 2023) of the palaeo-
lake. Nevertheless, we recognize that further investi-
gations on exceptionally preserved individuals or with 
larger number of specimens would provide evidence 
to support this study.

Conclusions
Assuming that taphonomic bias is not at play, the 
evidence presented in this paper indicates that the 
examined Dastilbe crandalli fish exhibit low diversity 
of melanosome shape, with spherical to subspherical 
representing 91% of the total. This result also indicates 
that this fish had a limited visual capability compared 
to extant fishes, but at the same time, they may have 
been adapted to shadowing portions of the palaeolake. 

We also noted that the estimated temperature of alter-
ation of geomelanin is consistent to the diagenesis of 
the Crato beds, with relatively little volatilization and 
polymerization/crosslinking compared to other fossil 
melanin. Furthermore, this result also indicates that 
geothermomether can be successfully applied to infer 
the level of maturation of the geomelanin. Since mela-
nosomes and melanin is an important trait in the biol-
ogy of fish, we hope that new investigations on this 
subject, and in a greater number of specimens, will 
give new information about the palaeoecology of this, 
as well as others, largely overlooked fish. 
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