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Extended Lyapunov Functions for Detailed Power System Models 
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Abstract- The main concern ofthis paper is the pro posai 
of Extended Lyapunov Functions for power system models 
which do not have Lyapunov Functions in the usual sense. 
Extended Lyapunov Functions are proposed for a single­

machine-infinite-bus-system considering line losses and with 
both the classical model and the one-axis-model for the gen­
erator. An Extended Lyapunov F1mction is ais o proposed for 

multimachine systems taking transfer conductances in con­
sideration. 

Keywords - lnvariance Plinciple, Transient Stabil­
ity, Direct Jlfethods, Energetic methods, Lyapunov Func­
tions 

1 Introduction 

D IRECT methods have been shown to be suitable for 
stability analysis of power systems on real time. 

Among these methods, Lyapunov's ideas associated to 
LaSalle's Invariance Principie have been used to estimate 
the stability region o f power systems. In the last decades, 
many authors have addressed the problem of estimating 
the stability regions and these studies culminated with the 
development ofthe BCU method [1] [3] [4] [7] [8], 
which nowadays is considered the most effi.cient direct 
method for studying transient stability. In spite o f these 
advances, there exist many obstacles in the application of 
direct methods to the assessment o f stability in real power 
systems. The main one is that direct methods are still im­
proper to deal with more realistic models. In fact this ob­
stacle is intimately related to the problem offinding a suit­
able Lyapunov Function associated to those models. 

Finding Lyapunov Functions for power systems is a 
difficult task which has been challenging engineers for 
several decades. Unfortunately, there is no systematic 
method for obtaining these functions, and the success of 
a processo f tlial and error exclusively depends on the per­
sonal expelience. 

In general, in order to find a Lyapunov Function for 
power systems, many simplifications are usually made. 
Machines are modeled as constant electromotive forces 
behind the transient reactances. Loads are modeled as 
constam impedances, the network is reduced to the elec­
tromotive force nodes and the transfer conductances m:e 
neglected in the reduced model. 

Recently, an extension of the LaSalle's Invariance 
Principie has been proposed [17] [18]. This extension 
relaxes some of the requirements on the auxiliary func­
tion which is commonly called Lyapunov Function. In 
this extension, the delivative ofthe auxiliai)' function can 

be positive in some bounded regions ofthe state space and, 
for distinction purposes, it is called, in this case, Extended 
Lyapunov Function. 

The advantage o f this extension is that a greater nun1-
ber ofproblems, that could not be solved by the usual in­
variance principie, now can be treated by this theory. Fur­
thermore, it is easier to find an Extended Lyapunov Func­
tion than a Lyapunov Function in the usual sense. 

The main concem ofthis paper isto provide Lyapunov 
Functions in the extended sense for power system mod­
els which do not have a Lyapunov Function in the usual 
sense. First of all, the usual Invaliance Principie is re­
viewed and the extension o f the Invaliance Principle is 
presented. In the sequence, the problem of one-machine­
infinite-bus system is studied. Using the classical model 
for the machine and conside1ing losses in the transmission 
line, an Extended Lyapunov Function is proposed. Forth-:: 
same system, a Lyapunov Function in the usual sense is 
proposed considering the one-axis model for the genera­
tor and neglecting line losses. Considering the one-axis 
model and taking into account line losses, an Extended 
Lyapunov Function is proposed. In these three cases, the 
proposed Lyapunov Functions are used to estimate the at­
traction area ofthe respective systems. 

In the second partofthis paper, an Extended Lyapunov 
Function is proposed for a multimachine system model 
taking into consideration the transfer conductances. This 
function can be used for attraction area estimation and is 
based on a solid theoretical background. 

2 The Invariance Principie 

This section staJ"ts by reviewing the usual Invariance 
Principie [11] [12] [13] [14]. Consider the following au­
tonomous differential equation: 

x= f(x) (I) 

Theorem 2.1 Let VFL : lRn -+ lR and f : lRn -+ lRn be 0 1 

functions. Let L > O be a constant such that i:h = {x E 

JRn : VFL(x) <L} is bounded. Suppose that V(x) ::; O for 
every X E nL and define E:= {x E nL: V(x) = 0}. Let 
B be the largest invariant set contained in E. Then every 
solution o f (1) starting in nL converges to B as t -+ oo. 

In this work, more general results than the previous one 
are presented. They require less restlictive conditions and 
allow the possibility o f the delivative o f VF L to be pos­
itive in some regions. The advantage of these results is 
that it is easier to find the function VFL and some quite 
complicated problems can be treated as welL 



14th PSCC, Sevilla, 24-28 June 2002 

Theorem 2.2 (The Extended Invariance Principie): 
Let VF L : lRn -+ lR and f : lRn -+ lR be C1 functions. Let 
L E lR be a constant such that DL = {x E lRn : VFL(x) < 
L} is bounded. Let c:= {x E nL : V(x) > 0}, suppose 
that sup,EcVFL(x) = l < L. Define Dz = {x E lRn : 
VFL(X) ::; l} andE:= {x E fh : VFL(x) =O} u nz. Let B 
be the largest invmiant set o f (1) contained in E. Then ev­
ery solution o f ( 1) starting in DL converges to the invariant 
set B, as t-+ oo. 

Moreover if Xo E nz then cp(t, Xo) E nz for every t 2: o 
and cp(t,xo) tends to the largest invariant set of (1) con­
tained in nz. • 

For a proof see [17] and for more general results 
see[18]. 

Remark 2.1 In many cases, the set { x E íh : VF L ( x) = O} 
is contained into the set S'21• In these cases E = S11 is an 
estimate of the attractor and DL is an estimate of the 
attraction area o r stability region. 

3 Extended Lyapunov Functions for SMIB Systems 

3.1 Classical Model 

Consider the SMIB system o f Figure 1 where a syn­
chTonous machine is connected to an infinite bus through 
a transmission line with losses. 

E/6 ltQ 

~,(·-------\+.'\ /\ /· ,_,....-...-.~ ... ...--~.1 
• \,-...___// 'v lí '' 'v X/ - I 1,,'--.___.-/ 

Figure 1: Sn1gle Machn1e Infinite Bus System 
Modeling the generator as a constant electromotive 

force behind the tlwsient reactance, this system can be 
mathematically described by the following pair of differ­
ential equations: 

w 

P= - E 2G + EEocBsinó + EEoo Gcosó- Tw 

(2) 

where 5 and w are respectively the rotor angle and the 
generator frequency deviation from the synchronous fre­
q uency, P m is the inp ut mechanical power, H is the inertia 
constant, E is the electromotive force, Eco is the voltage 
magnitude at the infinite bus, Tis the damping coefficient 
and G + jB is the admittance ofthe equivalent transmis­
sion line. For notation sirnplicity, let us rewrite the SMIB 
differential equations as: 

w 
P- Csinó - Dcosó- Tw 

(3) 

where P = Pm- E 2 G, C= -EE00 B and D = -EE00 G. 
Altematively, one can write equation (3) in a shorter fom1 
as: 

w 
Pz(ó) -Tw 

(4) 

where P1(ó) = P- Csinó- Dcosó. 
Although this model incorporates line losses, this sys­

tem has a general Lyapunov Function in the usual sense 
given by: 

H w2 
VFL(J,w) :=---Pó- Cco8ó + D8inó +a (5) 

7rfo 2 
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where a is an arbitrary constant. It is easy to show that 
the derivative ofV along the orbits is given by: 

(6) 

which is a negative semi-definite function. The func­
tion VF L satisfies the requirements ofthe usual Invariance 
Principle andas consequence this function can be used to 
study the stability ofthis system in the usual way. 

In spite o f that, a new function will be proposed and 
the Extended Invariance Principie will be used to study 
the stability o f this system. Our purpose is to illustrate 
the application o f the extension o f the Invariance Princi­
ple and to prepare the ideas to solve other problems which 
do not present a Lyapunov Function in the usual sense. 

For this purpose, consider the following function: 

W(J,w) .- JLw
2

- P5- CcosJ 
7r f o 2 (7) 
-;3w (P- CsinJ- D cosó) +a 

where {3 is a parameter to be adjusted andais an arbitrary 
constant. Our goal isto show that this function satisfies the 
requirements ofTheorem 2.2. 

Calculating the derivative of W along the orbits we 
obtain: ~ ~ 

TV - (T- j3 (C coso- D sino)) w 2 + 
+(h:[oT (P-Csinó-Dcosó)w-

- 8{/o (P- Csinó- D cosó) 2 - D cos(ó)w 

which is equivalent to: 

r[ Pz(SJ 
w 

-~L ] ZH [ 
T- i3(C coo 5- D o;n S) 

+D cos(ó)w 

(8) 

Note that this function is composed by a quadratic term 
plus the term D cos(ó)w. Parameter ,8 can be chosen in 
order to make the quadratic term positive defini te. Apply­
ing the Silvester's Criteria one can easily find that this is 
certainly guaranteed if 

T 
0<,8< " 

C+ D + "~"J-
In this way, only the term D cos(ó)w will be responsible 

for generating regions where the derivative o f W is posi­
tive. Once parameter {3 has been chosen, it is necessary to 
finda real number L such that the conditions required in 
Theorem 2.2 are satisfied. These conditions are: 

• The set nL must be bounded; 

• l = S1.LPxECVFL(x) <L. 

In the following example, these conditions are checked 
numerically. 

Example 3.1 Consider the SMIB system o f Figure 1 with 
P1 =LO. C= 2.0. D = 0.10, T = 0.10 and H= 9.425. 
The levei curves ofTV are depicted in Figure 2 for a = 
2.2551 and {3 = 0.0093. The constant a was chosen in o r­
der to make the energy ofthe post-fault stable equílibrium 
equal to zero. The regions where the derivative ofvV is 
positive are small bounded sets which are shown in black 
in Figure 2. One ofthem is close to the unstable equilíb­
rium point. The another set is close to the stable equilib­
rium point and corresponds to the set C o f Theorem 2.2. 
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The maximum value ofW in C defines the set fl.1 which is 
an artractor estimare, i. e, all the solutions srarting into the 
stability region wíll enter in this attractor estimate in afi­
nite time. In this example, onefinds numerically l = 0.07. 
In arder to estimare the stabilíty region o r attraction area 
ofthe attractor we must choose the largest manber L of 
Theorem 2.2 such that the conditions o f Theorem 2.2 are 
satisfied. In practice, we must guarantee that fl.L does not 
intercept the region elos e to the unstable equilibrium point 
where the derivative is positive. In this e.xample L = 1.34 
is found numerically. Figure 2 íllustrates the attractor and 
the stability region estimates. 

Suppose a solid three-phase short-circuit occurs at the 
terminal generator bus. The estimated critica! clearing 
time obtained with this new energy fimction belongs to the 
interval (0.358, 0.359s ). This estimareis ve1y elos e to the 
estimated critica! clearing time obtaíned with the conven­
tíonal Lyapunov Function 1/ which belongs to the interval 
(0.362, 0.363s ). As expected, these estimates are a little 
conservative because the stability region estimate is con­
taíned into the real stabilíty regíon. The critica! clear­
ing time obtained by simulation belongs to the interval 
(0.393, 0.394s ). Figure 2 shows the trajectories o f the 
fault and post-fault system for a clearing time equal to 
0.358s. 

Figure 2: Levei Curves oflV 

" 7 .) __ One-Axis Model 

Consider again the SMIB system of Figure 1 where 
a synchronous machine is connected to an iniinite bus 
through a transmission line. Using the one-axis model for 
the generator, this system can be mathematically described 
by the following differential equations: 

J 
H. 
-w 
7r f o 

w 

Pz(ó,E~) -Tw 

(lO) 

(11) 
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where 

Pz(ó,E~) = 

R = ra + r1 is the armature plus the line resistance, 
X~ = x~ + x1 and X~ = x~ + xz are respectively the tran­
sient reactances o f direct and quadrature axis plus the line 
reactance, Xd = xd + xz and Xq = xq + xz are respectively 
the synchronous reactances of direct and quadrature axis 
plus the line reactance, E~ is the electromotive force and 
E1d is the voltage applied to the field winding. 

Finding a Lyapunov Function for this system is not a 
trivial task. For this purpose define a new vmiable é~ and 
consider the following change o f variables: 

e:~= ln (E~) 

This change o f variables is well defined while E~ =1- O. 
Neglecting line losses and armature resistance, this sys­
tem has a general Lyapunov Function in the usual sense 
given by: 

- H 2 li 2 (Xj-X~) Ó - ::--1 w - Pm6- -2 VI ox•x• cos2 -
" o - d q 

e c~ lVI 1 Xd 2~' 1 ;.' , --x;;- cos /j + 2 Xd(Xd Xd) e q - Xd-Xd Ejde q -r O: 

(13) 

where a is an arbitrary constant. It is easy to show that 
the derivative o f V along the orbits is given by: 

. T~ v -- o 
FL- xd -xd (lA) 

which is a negative semi-definite function. Function V 
satisfies the requirements ofthe usual Invariance Principle 
and as consequence this function can be used to study the 
stability ofthis system in the usual way. 

Example 3.2 Consider the SMIB system o f Figure 1 with 
Pm = LO, H = 6. T = 0.08, T~0 = 5. Etd = 1.92, 
V= 1, Ta =O, X~= 0.2, X~ = 0.4, Xd = 0.9, Xq = 0.8. 
r1 = O and Xz = 0.5. The projected leve! curves ofVFL 
are depicted in two figures for a = 3.2625. Again the 
constant a was chosen in arder to make the energy ofthe 
post-fault stable equilibrium equal to zero. In Figure 3. 
E~ is jixed and is equal to 1.3. In Figure 4, w isfi;-ced and 
is equal to -0.8. In arder to estimate the attraction area 
o f the stable equilibrium point. we must choose the largest 
number L ofTheorem 2.1 such that 0r, is bounded. In this 
example L = 0.4081 is found numerically. The shaded re­
gions in Figures 3 and 4 shows the intersection o f the 
attraction area estimate onto the respective planes. The 
estimated critica! clearing time obtained wíth this energy 
fimction belongs to the interval (0.127; 0.128s). As e.x­
pected, this estimate is a little conservative because the at­
traction area estimare is contained into the real one. The 
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crítica! clearíng time obtaíned by símulation belongs to 
the interval (0.281, 0.282s ). Figures 3 and 4 show the 
projected trajectoríes o f the fault and post-fault systems 
for a clearíng time equal to O.l27s. 

1.E 
A.!J.gle(m.d) 

Figure 3: Leve! Curves o f 117 . E~ is fixed and equal to 1.3 

Figure 4: Leve! Curves o f TV. w is fi:xed and equal to -0.8 

3.5 

When line losses and annature resistance are taken 
into consideration, this system does not have a Lyapunov 
Function in the usual sense. In spite o f that, a new func­
tion, which is an extended Lyapunov Function, will be 
proposed and the extended Invariance Principle will be 
used to study the stability ofthis system. Forthis purpose, 
consider the following function: 

(15) 

where (3 is a parameter to be adjusted and a is an ar­
bitrary constant. Our goal is to show that this function 
satisfies the requirements ofTheorem 2.2. Calculating the 

where 

Au 

Azz 
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(16) 

Similarly to the classical model case, the derivative of 
W is composed by a quadratic term plus two additional 
terms. The parameter f3 can be chosen in order to make 
the quadratic term positive defin:ite. Applying the varia­
tion o f constants formula to the differential equation o f E~ 
one finds that E~, keeps bounded along the orbits. More 
precisely, the following estimate is obtained: 

E~< 

Using this estimate and the Silvester's criteria it is possi­
ble to finda nun1ber (3 which guarantees that the matrix A 
is positive defin:ite. 

Example 3.3 Consíder the SMIB system o f Figure 1 with 
Pm = 1.0, H = 6, T = 0.08, T~0 = 5, Ejd = 1.92, 
V = 1, Ta = 0.002, X~ = 0.2, X~ = 0.4, Xd = 0.9. 
Xq = 0.8, rz = 0.04 and XL = 0.5. The leve! curves of 
Hl are depícted in Figures 5 and 6 for o: = 3.3072 and 
/3 = 0.0117. Again the constant o: was chosen in arder to 
make the energy ofthe post-fault stable equilibrium equal 
to zero. In Figure 5, E~ isjixed and is equal to 1.3. In 
Figure 6, w is jixed and is equal to -0.8. The regions 
where the derivative of~'V is positive are small bounded 
sets which are shown in black in Figures 5 and 6. One 
o f them is elos e to the stable equilíbrium point, and corre­
sponds to the set C ofTheorem 2.2. The maximum value 
o f w· in c defines the set nl which is an attractor esti­
mate, i. e. all the solutions starting into the stability region 
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will enter in this attractor estimate in afinite time. To esti­
mate the stability region o r attraction area o f the attract01: 
we must choose the largest number L ofTheorem 2.2 such 
that the conditions o f Theorem 2.2 are satisfied. In this 
example L = 0.3996 is found numeri.cally. Figures 5 and 
6 illustrate the attractor and the stability region estimates. 

Suppose a solid three-phase short-circuit occurs at the 
terminal generator bus. The estimated critica! clearing 
time obtained with this new energy fimction belongs to 
the interval (0.143, 0.144s ). As e.xpected, these estimates 
are a little conservative because the stability region esti­
mare is contained into the real stability region. The crit­
ica! clearing time obtained by simulation belongs to the 
interval (0.333, 0.334s). Figures 5 and 6 show the pro­
jected trajectories o f the fault and post-fault system for a 
clearing time equal to 0.143s 

Angk(li.d) 

Figure 5: Leve! Curves of1V. E~ is fi'<ed and equal to 1.3 

0.5 1.5 
Ang!e(rsd) 

Figure 6: Leve! Curves o f íV. w is fixed and equal to -0.8 

4 Extended Lyapunov Functions for Multimachine 
Systems 

4.1 Two-machine versus infinite bus system 

Before conside1ing the general multi-machine case, let 
us firstly consider the two-machine versus iniinite bus sys­
tem ofFigure 7. 
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Figure 7: Two-machine versus infinite bus system 
The following differential equations: 

{ 

jl 

M~w1 

Jz 
Mzwz 

= Wl 

= P1- C1 sinJ1- D1 COS<h-
-C12 sin(J1- Jz)- D12 cos(J1 - Jz)- T1w1 
== W2 

= Pz- Cz sinJz- Dz cosoz-
-Clz sin(Jz- Jl)- D12 cos(Jz- <51)- Tzwz 

(17) 

describe the dynamical behavior o f this system. When the 
transfer conductances are neglected in the model (D12 = 
O), there exists a general Lyapunov Function in the usual 
sense which can be used to study the stability o f this sys­
tem. This function can be easily found by a traditional 
integration process and is given by: 

VFL(J1, W1, Óz, wz) = M1 '4: - Pl<i1 - c1 COSOI + D1 sín61 + 
Mz ":,;;- Pzóz- Cz cosJz + DzsinJz­
-cl; cos(J1 - óz) +a 

(18) 

where a is an arbitrary constant. 
However when D12 =!- O the integration process yields 

a path dependent integral and it is impossible to prove that 
its derivative, along the trajectories, is semi-negative defi­
nite. As consequence the original invariance principie can­
not be used to study the stability regions ofthese systems. 

In order to solve this problem a new function is pro­
posed and the extension ofthe Jnvariance Principieis used 
to study the stability o f this system. It will be shown that 
this new function is a Lyapunov Function in a wider sense, 
that is, in the sense of the extension of the Invariance 
Principie ifthe transfer conductance D12 is small enough. 
With that in mind consider the following function: 

í,Y(JI,Wl, óz,wz) = Ivh ~- PlJl - c1 COS<h + Dl sín<h­
-,81w1 [P1- C1 síno1- D1 cosJ1- C12 sín(J1- óz)-

2 

D12 cos(J1- 5z)]-'- Mz ":," - Pzóz- Cz cosoz + Dz sinJz­
-,Bzwz [Pz - Cz sinóz - Dz cos Oz- c12 sin(Jz - Jl )-
D12 cos(<iz- J, )] - C12 cos(J, - óz) +o: 

(19) 

where /31 and /32 are parameters to be determined and a is 
an arbitrary constant. 

Calculating the derivative of this function along the 
system orbits one finds: -

rir=- {T1 + fj, [-C, coso,+ D1 sinJ, - C12 cos(J1 - Jz) 
+Dlz sín(61 - <iz)]} wf + 131J~1 W1 [P1 - c1 sinO I - D1 cos 01 

-C12sin(oi- óz)- Diz cos(J1- óz)]- fer~ [PI- CI sinJI 

-DI cos <li- C12 sin(6I- Jz)- Diz cos(JI- Jz)j 2 

-Diz cos(<h- Jz)w1 - ,8Iw1w2 [Giz cos(J1- óz) 
- D12 sin(ó1 - óz)] 

- {Tz + ,Bz [ -Cz cos óz + Dz sin 6z - C12 cos(6z - 61) 
+ D12 sin( Jz - ÓI)]} w§ + 13;J,2 wz [Pz - Cz sin Jz - Dz cos 62 

-C12 sin(ôz- 61)- Diz cos(6z- <h)]- tr~ [Pz- Cz sin6z 
-Dz cos óz- Giz sin(Jz- 6I) -Diz cos(óz-- 61)] 2 

-Diz cos(óz- ol)wz- $zw1w2 [Giz cos(óz- 61) 
-Diz sin(Jz- 6I)] 

(20) 
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where 

An= [ 

/3 /3T, 

] M -2M 

_/3T, T +I9[-C1cosõ1 +D1sinÕ1 
ZM1 -C12 cos(õ1- õz) + D1z sin(õ1- Jz)] 

and 

An = [ 

{3 _./rDL 

] M 2J:..;f 

_.frDL -f + 19 [ -Cz cos 6z + Dz sin 62 
2iV12 -C12 cos(õz- õ1) + D1z sin(õz- 61)] 

Similarly to the previous case, the derivative of W is 
composed by quadratic terms plus the term D,z cos(.5, -
.5z)(wl + wz). Parameter f3 can be chosen in orderto make 
the quadratic term positive definite. Applying Silvester's 
Criteria one can easily find that this is certainly guaranteed 
if 

and 
r~ 

0<.6< -
2 ( Jb + Cz + Dz + C12 + D1z) 

In this way, only the te1m D12 c.os(.l1 - .lz)(w1 + wz) will 
be responsible for generating regions where the derivative 
ofW is positive. 

Once (3 has been chosen, a real number L must be 
found such that the conditions of Theorem 2.2 are satis­
fied. In the next example, these conditions are numerically 
checked. 

Example 4.1 Consider the system o f Figure 7 with P1 = 
1.25. P2 = 1.5. C1 = 1.7. C2 = 2.0, D1 = D2 = 0.1. 
C12 = 0.5. D12 = 0.05, T1 = T2 = 0.1 and M1 = lv[z = 
0.05. The levei curves ofW are depicted in Figure 8 for 
n = 5.1337 and ;3 = 0.0093. These curves were drawn in 
the plane w1 = Wz = -0.4. The region where the deriva­
tive qflV is positive is composed by two small bounded 
sets. One ofthem is close to the stable equilibrium point 
and corresponds to the set C in Theorem 2.2. The maxi­
mum value ofTi\l in C defines the set Dr which is an attrac­
tor estimate. i. e. all the solutions starting into the stability 
region will enter in this attractor estimate in a finite time. 
In this e.xample. onefinds numerically l = 0.0417. To es­
timare the stability region or attraction area ofthe attrac­
tor we must choose the largest number L ofTheorem 2.2 
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such that the conditions o f Theorem 2.2 are satisfied. In 
practice. we must guarantee that DL is bounded and does 
not intercept the region close to the unstable equilibrium 
point where the derivative is positive. In this e.xample 
L = 0.8667 is found numerically. Figure 8 illustrates 
the attractor estimate projection and the stability region 
estimate projection on the plane w1 = w2 = -0.4. 

Figure 8: Levei curves o(VV 

4.2 Multimachine-systems 

Consider a system composed by n machines where the 
nth_machine is an infinite bus. One can show, similarly to 
the case oftwo-machines, that the following function 

"n-1 { w; - _ . _ W = L-i=l M; 2 - P;ó;- C; cosó; + D;smó;-

-eiWi [P;- C; sinJ;- D; COSÕi-

(22) 

where a is an arbitrary constant, is a Lyapunov func­
tion in the sense o f the extended Invariance Principie if 
the transfer conductances are small enough. Choosing 
{3; = (3, i = 1, ... , n, then the derivative o f W along the 
orbits is given by 

-w 

P11 (õ) T 

r W> 

P1n~1(6) 
Wn-1 

"n-2 "n-1 [ 
L-i=1 L-j=i+1 

Ar 

Pn(J) 
W1 

' 
Pln-1(6) 

Wn-1 

I:f,:;-1
2 I:j,:;;/+1 D;j cos(õ;- 6j )(w; + Wj) 

where A is a block diagonal matrix. Each block of A is 
given by ~ 

A;;= 
[ 

{3 
M· 

and 

_ BT; 
2M; 

~ + !3( -C;ncos(Õi- 6n) + D;nsin(Õi- Gn)-

2:j;i1 C;jcos(6;- Õj) + 2:j;;1 
D;jsin(6;- Õj )) 
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The quadratic tetms will be positive definite if 

i#j, i,j=l, ... ,n-1 

and 

Ü < {3 < T. T; ' 

(n-1) ( ;r;{y+ "L:j,:; C;; 2::'],:; +D;;) 
i=l, ... ,n-1 

In this way, only the term D12 cos(<h - J2)(w1 + wz) will 
be responsibie for generating regions where the derivative 
ofW is positive. 

Therefore, the same ideas presented in the previous 
cases can be applied to multi-machine systems. Obviously 
there are some difficulties to be overcome in order to make 
the idea suitable for applications in large systems. First of 
all, it is more difficult to check the conditions required by 
Theorem 2.2 than checking the conditions required by the 
original invariance principie. In both theorems it is nec­
essary to guarantee the boundedness ofthe set DL. From 
the point ofview ofthe classical invariance principie, it is 
enough to take L as the potential energy o f the unstabie 
equilibrium point which has the lowest energy between 
all unstable equilibrium points around the stabie equilib­
riunl point o f interest. The experience has shown that this 
choice guarantees the boundedness ofthe set DL and guar­
antees that the stable equilibrium point of interest is the 
unique invariant set contained into DL. From the point 
o f view o f the extended Invariance Principie, the bound­
edness of DL is also required and indeed it is necessary 
to assure that the set C containing the stable equilibrium 
point of interest is strictly contained into DL and that the 
set DL does not intersect any other set where the detivative 
ofthe Lyapunov Function is positive. 

5 Con.clusion.s 

In this paper, the extension ofthe Invariance Ptinciple 
was successfully applied to support theoretically the pro­
posai ofnew functions which are Lyapunov Functions in 
a wider sense (their derivative can assume positive values 
in some bounded regions) for power system mo deis which 
do not have Lyapunov Functions in the usual sense. These 
functions were shown to be suitable for transient stabil­
ity studies and estimates o f the criticai clearing time were 
obtained using a solid theoreticai background without ap­
proximations or conjectures. Further studies are necessary 
to reduce the conservativeness o f the obtained estimates 
when the one-axis model is empioyed. 
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