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Extended Lyapunov Functions for Detailed Power System Models

Luis F. C. Alberto

Flavio H. J. R. Silva
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Engineering School of S840 Carlos - USP
Sao Carlos, Brazil
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Abstract - The main concern of this paper is the proposal
of Extended Lyapunov Functions for power system models
which do not have Lyapunov Functions in the usual sense.
Extended Lyapunov Functions are proposed for a single-
machine-infinite-bus-system considering line losses and with
both the classical model and the one-axis-model for the gen-
erator. An Extended Lyapunov Function is also proposed for
multimachine systems taking transfer conductances in con-
sideration.

Keywords ~ Invariance Principle, Transient Stabil-
ity, Direct Methods, Energetic methods, Lyapunov Func-
tions

1 Imtroduction

IRECT methods have been shown to be suitable for

stability analysis of power systems on real time.
Among these methods, Lyapunov’s ideas associated to
LaSalle’s Invariance Principle have been used to estimate
the stability region of power systems. In the last decades,
niany authors have addressed the problem of estimating
the stability regions and these studies culminated with the
development of the BCU method [1] [3] [4] [7]) [8].
which nowadays is considered the most efficient direct
method for studying transient stability. In spite of these
advances, there exist many obstacles in the application of
direct methods to the assessment of stability in real power
systems. The main one is that direct methods are still im-
proper to deal with more realistic models. In fact this ob-
stacle 1s intimately related to the problem of finding a suit-
able Lyapunov Function associated to those models.

Finding Lyapunov Functions for power systems is a
difficult task which has been challenging engineers for
several decades. Unfortunately, there is no systematic
method for obtaining these functions, and the success of
a process of trial and error exclusively depends on the per-
sonal experience.

In general, in order to find a Lyapunov Function for
power systems, many simplifications are usually made.
Machines are modeled as constant electromotive forces
behind the transient reactances. Loads are modeled as
constant impedances, the network is reduced to the elec-
tromotive force nodes and the transfer conductances are
neglected in the reduced model.

Recently, an extension of the LaSalle’s Invariance
Principle has been proposed [17] [18]. This extension
relaxes some of the requirements on the auxiliary func-
tion which is commonly called Lyapunov Function. In
this extension, the derivative of the auxiliary function can

fhsilva@sel.eesc.sc.usp.br

ngbretas@sel.eesc.sc.usp.br

be positive in some bounded regions of the state space and,
for distinction purposes, it is called, in this case, Extended
Lyapunov Function.

The advantage of this extension is that a greater num-
ber of problems, that could not be solved by the usual in-
variance principle, now can be treated by this theory. Fur-
thermore, it is easier to find an Extended Lyapunov Func-
tion than a Lyapunov Function in the usual sense.

The main concern of this paper is to provide Lyapunov
Functions in the extended sense for power system mod-
els which do not have a Lyapunov Function in the usual
sense. First of all, the usual Invariance Principle is re-
viewed and the extension of the Invariance Principle is
presented. In the sequence, the problem of one-machine-
infinite-bus system is studied. Using the classical model
for the machine and considering losses in the transmission
line, an Extended Lyapunov Function is proposed. For the
same system, a Lyapunov Function in the usual sense is
proposed considering the one-axis model for the genera-
tor and neglecting line losses. Considering the one-axis
model and taking into account line losses, an Extended
Lyapunov Function is proposed. In these three cases, the
proposed Lyapunov Functions are used to estimate the at-
traction area of the respective systems.

In the second part of this paper, an Extended Lyapunov
Function is proposed for a multimachine system model
taking into consideration the transfer conductances. This
function can be used for attraction area estimation and 1s
based on a solid theoretical background.

2 The Invariance Principle

This section starts by reviewing the usual Invariance
Principle [11] [12] [13] [14]. Consider the following au-
tonomous differential equation:

= f(x) (99

Theorem 2.1 Let Vrz : B* — Rand f: R — R"® be C*
functions. Let L > 0 be a constant such that Q; = {z €
R™ : Vrr(z) < L} is bounded. Suppose that V(z) < 0 for
every ¢ € Q2 and define EF := {z € Q1 : V(z) = 0}. Let
B be the largest invariant set contained in E. Then every
solution of (1) starting in 1, convergesto B as t — oo.

In this work, more general results than the previous one
are presented. They require less restrictive conditions and
allow the possibility of the derivative of VFr to be pos-
itive in some regions. The advantage of these results is
that it is easier to find the function Vr; and some quite
complicated problems can be treated as well.
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Theorem 2.2 (The Extended Imvariamce Principle):
Let Ve : R® > Rand f : B® — R be C* functions. Let
L € R be a constant such that Oy = {z € R* : Vrr(z) <
L} is bounded. Let C := {z € Qr : V(z) > 0}, suppose
that sup,.oVrr(z) = I < L. Define Q= {zr ¢ R* :
VFL(I)Sl}andEzz{.’ZJEQL VFL -—O}UQZ Let B
be the largest invariant set of (1) contained in E. Then ev-
ery solution of (1) starting in ), converges to the invariant
set B, as ¢ — co.

Moreover if z, € Q; then (¢, z,) € {; forevery ¢ > 0
and (¢, z,) tends to the largest invariant set of (1) con-
tained in Ql. i

For a proof see [17] and for more general results
see [18].

Remark 2.1 [ many cases, the set {z €0 : Vrzle) = 0}
is contained into the ser §;. In these cases E = Q, is an
estimate of the attractor and Qr is an estimate of the
attraction area or stability region.

3 Extended Lyapunov Functions for SMIB Systems
3.1 Classical Model

Consider the SMIB system of Figure 1 where a syn-
chronous machine is connected to an infinite bus through
a transmission line with losses.

EL8 il

SN
“rﬂx k S.— ¥ — 1 e "
\’\_F-" ] '\"\_H"/‘

Figure 1: Single Machine Infinite Bus System

Modeling the generator as a constant electromotive
force behind the transient reactance, this system can be
mathematically described by the following pair of differ-
ential equations:

§
H -
Y

w
Py — B?*G + EEBsind + EEoGcosé — Tw
@)

where § and w are respectively the rotor angle and the
generator frequency deviation from the synchronous fre-
quency, P, is the input mechanical power, H is the inertia
constant, E is the electromotive force, Eo is the voltage
mag-mtude at the infinite bus, T is the darnpmU coefficient
and G + 7B is the admittance of the equlvalent transmis-
sion line. For notation simplicity, let us rewrite the SMIB
differential equations as:

5 = w .
P — Csind — Decosé — Tw @)

T
where P = P, — E°G,C = —~EEBand D = —EE..G.
Alternatively, one can write equation (3) in a shorter form
as:

é W .
2 Pi(3) = Tw @

where P;(8) = P — Csiné — Dcosd.
Although this model incorporates line losses, this sys-

tem has a general Lyapunov Function in the usual sense
given by:

VFL(J,{;J) =

H w? . -
5~ Pé— Cecosd + Dsind + a 3y

e
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where o is an arbitrary constant. It is easy to show that
the derivative of V along the orbits is given by:

Vrr = =Tw? <0 (6)

which is a negative semi-definite function. The func-
tion Vg, satisfies the requirements of the usual Invariance
Principle and as consequence this function can be used to
study the stability of this system in the usual way.

In spite of that, a new function will be proposed and
the Extended Invariance Principle will be used to study
the stability of this system. Our purpose is to illustrate
the application of the extension of the Invariance Princi-
ple and to prepare the ideas to solve other problems which

do not present a Lyapunov Function in the usual sense.
For this purpose, consider the following function:

W(lw) = -E “’;——PJ-—CCOSJ

7 fo

-
—Bw (P —Csind — Dcosd) + & @

where 3 is a parameter to be adjusted and « is an arbitrary
constant. Our goal is to show that this function satisfies the

requirements of Theorem 2.2.
Calculating the derivative of W along the orbits we
obtain:
W = —(T-$(Ccosd— Dsind))w?+
+8zfeT (p — Csingd — D cos §) w— ®)
B” e (P — Csind — Dcos6)? — D cos(d)w

which is eq ulvalent to:

—W :=[ Pl“(lﬁ) ]T[ Brfa

v faT
H - [ 7o ]
~B2feT T _ §(Cecoed— Doind)

w

+D cos(d)u
19

Note that this function is composed by a quadratic term
plus the term D cos(d)w. Parameter 5 can be chosen in
order to make the quadratic term positive definite. Apply-
ing the Silvester’s Criteria one can easily find that this is
certainly guaranteed if

T

0<B8< —m——rr
C+ D+ 22

In this way, only the term D cos(d)w will be responsible
for generating regions where the derivative of W is posi-
tive. Once parameter § has been chosen, it is necessary to
find a real number L such that the conditions required in
Theorem 2.2 are satisfied. These conditions are:

o The set (17, must be bounded;
o | = sup,ecVrL(z) < L.

In the following example, these conditions are checked
numerically.

Example 3.1 Consider the SMIB system of Figure 1 with
P =10 C=20D=0.10T =0.10and H = 9.425.
The level curves of W are depicted in Figure 2 for o =
2.2551 and 8 = 0.0093. The constant « was chosen in or-
der to make the energy of the post-fault stable equilibriuun
equal to zero. The regions where the derivative of W is
positive are small bounded sets which are shown in black
in Figure 2. One of them is close to the unstable equilib-
rium point. The another set is close to the stable equilib-
rium point and corresponds to the set C of Theorem 2.2.
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The maximum value of W in C defines the set () which is
an antractor estimate, i.e, all the solutions starting into the
stability region will enter in this attractor estimate in a fi-
nite time. In this example, one finds numerically I = 0.07.
In order 1o estimate the stability region or attraction area
of the attractor we must choose the largest number L of
Theorem 2.2 such that the conditions of Theorem 2.2 are
satisfied. In practice, we must guarantee that Q0 does not
intercept the region close to the unstable equilibrium point
where the derivative is positive. In this example L = 1.34
is found numerically. Figure 2 illustrates the attractor and
the stability region estimates.

Suppose a solid three-phase short-circuit occurs at the
terminal generator bus. The estimated critical clearing
time obtained with this new energy function belongs to the
interval {0.358,0.359s). This estimate is very close to the
estimated critical clearing time obrained with the conven-
tional Lyapunov Function V which belongs to the interval
{0.362,0.3635). As expected, these estimates are a litile
conservative because the stability region estimate is con-
tained into the real stability region. The critical clear-
ing time obtained by simulation belongs to the interval
(0.393,0.3945s). Figure 2 shows the trajectories of the
Sault and post-fault system for a clearing time equal to
0.358s.

ost—fandt

© trajectory

Frequency (rad/s)

-1 N5 00 05 1 15 %z 25 2
Angle (rad)

Figure 2: Level Curves of W

3.2 One-Axis Model

Consider again the SMIB system of Figure 1 where
a synchronous machine is connected to an infinite bus
through a transmission line. Using the one-axis model for
the generator, this system can be mathematically described
by the following differential equations:

b = w (10
Eo = REE)-Tw an
1 q
7 fo
7./ . 1 st
—de __pr = Esy =+ g Vicosd
X, — X, 9 XX, T B

Rix
(R2+XZIX(’I)(X{1 - X
R N
oy e |V sind (12)
R?+ X, X7
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where
Pi(8,Ey) = Pm*%;%%%;ﬁiwzsin%
- (I;f_lf)-: ;2,7:))~ E{zz + f‘;;‘;f;%:;;"zz) (V|2 sin? &
- (?;ji—];‘(i})g—g + R2+)§:f_x$> E,|V]sind
(ﬁxf;j;jf) + +§}&X;> BL|V|coss

CRXL(XL—X!)
'r(?;s’—xpm%lwz cos® 4,
S 2

R = r, + r is the armature plus the line resistance,
X} = zy +x; and X, = zi, + z; are respectively the tran-
sient reactances of direct and quadrature axis plus the line
reactance, X, = zq + 2; and X, = z, + z; are respectively
the synchronous reactances of direct and quadrature axis
plus the line reactance, E, is the electromotive force and

Ey4 is the voltage applied to the field winding.
Finding a Lyapunov Function for this system is not a
trivial task. For this purpose define a new variable &}, and

consider the following change of variables:
ey = In (By)

This change of variables is well defined while E;, # 0.
Neglecting line losses and armature resistance, this sys-
tem has a general Lyapunov Function in the usual sense
given by:

% 2o g - Ly e X cogos
Fr = e’ = Pml— 5|V XXy 080T
,
<
efe|v| 1 Xy 2:0 1 sh o
X7 C055+2X;(Xd~xé)e a Xd—X;Efde T+

(13)

where « is an arbitrary constant. It is easy to show that
the derivative of V' along the orbits is given by:

7 i7 : 2
—do__ |¢% | —Tw?<0 (14)
X4 — .Xé -

VFL = -

which is a negative semi-definite function. Function V

satisfies the requirements of the usual Invariance Principle

and as consequence this function can be used to study the
stability of this system in the usual way.

Example 3.2 Consider the SMIB system of Figure I with
P,=10H=67T=008r7, =3 Efy =192
V=1r,=0z,=02 .7:27 =04 24 =09 2, =08
ry = 0 and z; = 0.5. The projected level curves of Vi,
are depicted in two figures for o = 3.2625. Again the
constant & was chosen in order to make the energy of the
post-fault stable equilibrium equal to zero. In Figure 3.
E; is fixed and is equal to 1.3. In Figure 4, w is fixed and
is equal to —0.8. In order to estimate the atntraction area
of the stable equilibrium point, we must choose the largest
number L of Theorem 2.1 such that §1y, is bounded. In this
example L = 0.4081 is found numerically. The shaded re-
gions in Figures 3 and 4 shows the intersection of the
attraction area estimate onto the respective planes. The
estimated critical clearing time obtained with this energy
function belongs to the interval {0.127;0.128s). As ex-
pected, this estimate is a litrle conservative because the ar-
traction area estimate is contained into the real one. The
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critical clearing time obtained by simulation belongs to
the interval (0.281,0.282s). Figures 3 and 4 show the
projected trajectories of the fault and post-fault systems
Jor a clearing time equal to 0.127s.

Velacity (rad/s)

Ang -ﬂefnza' )

Figure 3: Level Curves of W, E is fixed and equal to 1.3

EB'q (Volts)

' Post-fault

Apgiefrad)
Figure 4: Level Curves of W, w is fixed and equal to —0.8

When line losses and armature resistance are taken
into consideration, this system does not have a Lyapunov
Function in the usual sense. In spite of that, a new func-
tion, which is an extended Lyapunov Function, will be
proposed and the extended Invariance Principle will be
used to study the stability of this system. For this purpose,
consider the following function:

W= :;j‘; * = Pl — gr257 Brae® a—
§’Tv‘<i/“_‘e "H/[coso - RJ_H%XQE QQVlsinJ—
f&fiﬁ‘,—’lv 2 (o4 28 _
T e (5 ) 4 us)
Eﬁ‘(%f—xg?j;w{wzcoszﬂ

R"+/\ x!
R RS~ R By) o

where f is a parameter to be adjusted and « is an ar-
bitrary constant. Our goal is to show that this function
satisfies the requirements of Theorem 2.2. Calculating the
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derivative of W along the orbits we obtain:

. T ~
. e efe
W=\ BB | A RLEY
w w
2R3 (X -X!) of . .
(_I€f+_x&’7‘)17€ 2| Viwsind 16)

2RX! (X7 2x7)

—ﬁ—ﬂ——ﬂ—z—m_ i <AL 9[V w cos §

R(R2+X") 2¢’

XX e v
where
.411 0 A13
A= 0 [ As | Ag
Az | Azz | Ass
!
T o
Au = xdixl
Aso = IB
2RXI (X -X]) ‘
A 'B Rh—x'x' TR ) €%9|V]cosd
2
'>R'X' X! _x') ot o
< (R~—X dX')~ + Hﬁx.iz{'xl) e“9|V]sing
2RX] (X, -X1) 2RXG (X~ X1 5
( FEXLXD? + = +x’x')« |V|?cosdsind
(R? =X X, ) (X,
—TEW{,—%—\V]'COSQO +7T
_8 X, 2RI(X, X! )
Az =3 K RQ+Y,X, T TREEXGXT) [Visind
, 2RXL (X! =X1)
- <R°+})2(’X’ - (R-—X X’ 5 ) |Vicosé
2R(R2+X1,%)
-~y € 2)2
-4‘23 = -Tli_'gd

Similarly to the classical model case, the derivative of
W is composed by a quadratic term plus two additional
terms. The parameter $ can be chosen in order to make
the quadratic term positive definite. Applying the varia-
tion of constants formula to the differential equation of Eé
one finds that E'q, keeps bounded along the orbits. More
precisely, the following estimate is obtained:

E ( )
By < By = WWNHfﬂ+H%%§ﬁV
L (za—zly)r
TR vl

Using this estimate and the Silvester’s criteria it is possi-
ble to find a number 8 which guarantees that the matrix A
is positive definite.

Example 3.3 Consider the SMIB system of Figure 1 with
Pn =10 H=6T =0.08 7, =5 Efg = 1.92
V=171, = 0002 ) =02 2, = 04 24 = 09

= 0.8, = 0.04 and z; = 0.5. The level curves of
W are depicted in Figures 5 and 6 for o = 3.3072 and
B = 0.0117. Again the constant & was chosen in order to
make the energy of the post-fault stable equilibrium equal
to zero. In Figure 3, Ej is fixed and is equal to 1.3. In
Figure 6, w is fixed and is equal to —0.8. The regions
where the derivative of W is positive are small bounded
sets which are shown in black in Figures 5 and 6. One
of them is close to the stable equilibrium point, and corre-
sponds to the set C of Theorem 2.2. The maximum value
of W in C defines the set § which is an attractor esti-
mate, i.e, all the solutions starting into the stability region
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will enter in this attractor estimate in a finite time. To esti-
mate the stability region or attraction area of the attractor,
we must choose the largest number L of Theorem 2.2 such
that the conditions of Theorem 2.2 are satisfled. In this
example L = 0.3996 is found nwmerically. Figures 5 and
6 illustrate the attractor and the stability region estimates.

Suppose a solid three-phase short-circuit occurs at the
terminal generator bus. The estimated critical clearing
time obtained with this new energy function belongs to
the interval (0.143,0.144s). As expected, these estimates
are a little conservative because the stability region esti-
mate is contained into the real stability region. The crit-
ical clearing time obtained by simulation belongs to the
interval (0.333,0.334s). Figures 5 and 6 show the pro-
Jjected trajectories of the fault and post-fault system for a
clearing time equal to 0.143s

Fault
rsjectory

Veloctty (rad/s)

Attraction
Ares Estimste

Lin
n

-1 a 435 1 1.2 z z35 3 3.

Anglefra3)

in

Figure 5: Level Curves of W, E, is fixed and equal to 1.3

Eg (Volts)
= /

" Atirection

[N} 3
2,
n
w

05 u} 0.5 1 1.5
Angle(rad)

Figure 6: Level Curves of W, w is fixed and equal to —0.8

4 Extended Lyapunov Functions for Multimachine
Systems

4.1 Two-machine versus infinite bus system

Before considering the general multi-machine case, let
us firstly consider the two-machine versus infinite bus sys-
tem of Figure 7.
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Figure 7: Two-machine versus infinite bus system
The following differential equations:

5 =w1
My = P1— Cysind; — Dycosdy—
—~C12sin(d1 — §2) — D1z cos(éy — d2) — Thwi
2 = wy
Mows = Pa— Cysinds — Dacosba—
~Crosin(da — §1) — Di1acos(ds — 1) — Tows

an

describe the dynamical behavior of this system. When the
transfer conductances are neglected in the model (D2 =
0), there exists a general Lyapunov Function in the usual
sense which can be used to study the stability of this sys-
tem. This function can be easily found by a traditional
integration process and is given by:

Vpr(81,wi,02,w2) = My}t — P1dy; — Cycosdy + Disindy+

W L—ﬂEu

wa

M2+ — P2§2 — Cacosd2 + D2 sindo—
—Ch2 COS(51 - (52) +a
(18)
where « is an arbitrary constant.
However when D1, 3# 0 the integration process yields
a path dependent integral and it is impossible to prove that
its derivative , along the trajectories, is semi-negative defi-
nite. As consequence the original invariance principle can-
not be used to study the stability regions of these systems.
In order to solve this problem a new function is pro-
posed and the extension of the Invariance Principle is used
to study the stability of this system. It will be shown that
this new function is a Lyapunov Function m a wider sense,
that is, in the sense of the extension of the Invariance
Principle if the transfer conductance D2 is small enough.
‘With that in mind consider the following function:

W(d1,w1,82,w2) = M 5 — P16, — C1coséy + D1sindg—
—,61&11 [Pl - C] sindl - D] cos (51 — C]g sin(Jl - (52)—

2
D12 cos(61 — 82)] + Algi,;‘ — Pydy — Cacosdy + Dy sinbo—
— Baws [Pz — Cysindo — Dacosde — Cra Sin(52 - 51)—
Dio COS(O—Q -— (51 )] - Cu COS(J*] — (52) -+ O

GH

(19)

where 41 and B are parameters to be determined and « is
an arbitrary constant.

Calculating the derivative of this function along the
system orbits one finds:

W = —{Ty + 1 [~C1cosd1 + D1 sind; — Cra cos(dr — b2)
+D12sin(8y — d2)]}w} + ZFwy [Py — Crsindy — Dicosdy
—012 Sin(51 — 52) - Dlg COS((51 - (52)] - %1; [Pl - Cl sin61
—Dj cos 61 — Crasin(dy — 82) — Dya cos(é1 — 82)12

-D13 COS(51 - 52)1411 - ﬁ1w1w2 [012 005(51 - 0-2)

—-D12 sin(&l - 52)]

—{T2 + B2[—Ca cos §3 + Dasinda — Cra cos(ds — 1)
+D1ysin(dz — 61)]} w§ + %’%wz [Py — Casindy — Da cos do
-—C12 Sin((sz - (51) - Dlz COS(52 - 51)] - —1\%": [Pz - C;z sing
—Dg cos (52 - Clg Sin(dg ad 51) - Dlg COS((52~-— 51)12
-—D12 COS(52 - 51)&!2 - ﬁzwlwg [Clz COS((52 - 51)

—Di12 Siﬂ(Jg s 51)]
(20
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Choosing § = 1 = > one finds:

T

Pi1(61,82) Fi1(01,62)
X Wi w1
-w Pr3(61,42) Py3(61,82) +
w2 w2
Wi T Wi .
[ wa } B { wo ] + D12 COS(Jl - 52)((1.71 + w2)
2D
where
i An 0
A= [t
B= 3 BCrzc05(8, — d2)
BCrzc08(81 — d2) 1—22— ;
B _ BT 7
MY M4
An = BTy IQL [ —~C1cosdy + D1sinéy
TEMI | —(Cyhcos(d1 — d2) + Diasin(fy — 02)]
and
£ _ BT 1
pive SM>
Am = | g7, T2 B|—~Cscos ds + Dasin ds
2Ma —C12 005(52 — 51) + D12 Sin(52 — 01 )}

Similarly to the previous case, the derivative of W is
composed by quadratic terms plus the term D+ cos(d1 —
82) (w1 + w2). Parameter 3 can be chosen in order to make
the quadratic term positive definite. Applying Silvester’s
Criteria one can easily find that this is certainly guaranteed
if

s 1T
R
g %,
T
0<h<—0 :
2<4M +Cl+D1+CIZ+D12)
and

Ts

0<B< ——

2<%+02+D2+012+D12)

In this way, only the term D1z cos(d1 — d2) (w1 + w=) will
be responsible for generating regions where the derivative
of W is positive.

Once 4 has been chosen, a real number L must be
found such that the conditions of Theorem 2.2 are satis-
fied. In the next example, these conditions are numerically
checked.

Example 4.1 Consider the system of Figure 7 with P, =
125, P'_v_ = 1.5, 01 = 17 02 = 20, Dl = D2 = 0,1,
012 = 0.5, Dlg = 0.05, T1 = TQ = 0.1 and M1 = ]\/[2 =
0.05. The level curves of W are depicted in Figure 8 for
a = 5.1337 and 3 = 0.0093. These curves were drawn in
the plane wy = wo = —0.4. The region where the deriva-
tive of W is positive is composed by two small bounded
sets. One of them is close to the stable equilibrium point
and corresponds to the set C in Theorem 2.2. The maxi-
mumvalue of W in C defines the set Qp which is an attrac-
tor estimate. i.e, all the solutions starting into the stability
region will enter in this attractor estimate in a finite time.
In this example, one finds numerically [ = 0.0417. To es-
timate the stability region or attraction area of the attrac-
tor we must choose the largest number L of Theorem 2.2
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such that the conditions of Theorem 2.2 are satisfied. In
practice, we must guarantee that Q, is bounded and does
not intercept the region close to the unstable equilibrium
point where the derivative is positive. In this example
= 0.8667 is found numerically. Figure § illustrates
the attractor estimate projection and the stability region
estimate projection on the plane w; = wy; = —0.4.
af eSS,

Y "
"v,' Stability Region ‘] |
Em::-mts PF‘O_}’SCHOH 7
i

Iy
) ',r’r"‘/(’.

deltad (rad)
a

- Projection  —o—————— T T
& =
= = deltal (rad) F ?

Figure 8: Level curves of W

4.2 Multimachine-systems

Consider a system composed by n machines where the

nt*-machine is an infinite bus. One can show, similarly to
the case of two-machines, that the following function

wl

— P;6; — Cicosd; + D;sind;—

i=1

W=7t {Mi'

—Biw; [P; — Cisind; — D; cos §;—
-z”;lz , Cis sin(d; — ;) — 2“31: Di; cos(d; — &;)]
j#i j#i

- 774:1+1 Cij cos(é) — 5'7)} + o

where « is an arbitrary constant, is a Lyapunov func-
tion in the sense of the extended Invariance Principle if
the transfer conductances are small enough. Choosing
Bi=48t=1,..., ,n, then the derivative of W along the
orbits is given by

P (4) P1(6)
wh Wi
-'W = . A N -
P’Iﬂ—l([S) Rn-l(b-)
Wn—1 Wr 1
2 wq T LAJ"
-3 -1 i
= X i [ o J Bij [ e }"‘
g i
PP ETCN Dijcos(6s — 6) (wi + wy)

where A is a block diagonal matrix. Each block of A is
given by

8 8T:

M; ' " ZM;
Az o= BT; ;l:"‘l' + ﬁ("Cin 305(§i - 671.) + D'Lns'in(oz - ’Jcn)

2M; Z?;il Cijcos(6; — 0;) + ZJ# Dj;sin(d; — ;)
and

T
By = Py ' Cijcosgfi, — (5j)
Cijecos(d; — é;) i =
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The quadratic terms will be positive definite if

TiT;

62 < s,
(n~1)203j

i#g, di=1,...,n—1
and
T

T2 ’
=1 (T + St Cs T 0

Fi

0< <

t=1,...,mn—1

In this way, only the term D15 cos(81 — d2) (w1 + ws) will
be responsible for generating regions where the derivative
of W is positive.

Therefore, the same ideas presented in the previous
cases can be applied to multi-machine systems. Obviously
there are some difficulties to be overcome in order to make
the idea suitable for applications in large systems. First of
all, it is more difficult to check the conditions required by
Theorem 2.2 than checking the conditions required by the
original invariance principle. In both theorems it is nec-
essary to guarantee the boundedness of the set {2,. From
the point of view of the classical invariance principle, it is
enough to take L as the potential energy of the unstable
equilibrium point which has the lowest energy between
all unstable equilibrium points around the stable equilib-
rium point of interest. The experience has shown that this
choice guarantees the boundedness ofthe set ;. and guar-
antees that the stable equilibrium point of interest is the
unique invariant set contained into 2. From the point
of view of the extended Invariance Principle, the bound-
edness of {1z, is also required and indeed it is necessary
to assure that the set C' containing the stable equilibrium
point of interest is strictly contained into 7, and that the
set {11, does not intersect any other set where the derivative
of the Lyapunov Function is positive.

5 Conclusions

In this paper, the extension of the Invariance Principle
was successfully applied to support theoretically the pro-
posal of new functions which are Lyapunov Functions in
a wider sense (their derivative can assume positive values
in some bounded regions) for power system models which
do not have Lyapunov Functions in the usual sense. These
functions were shown to be suitable for transient stabil-
ity studies and estimates of the critical clearing time were
obtained using a solid theoretical background without ap-
proximations or conjectures. Further studies are necessary
to reduce the conservativeness of the obtained estimates
when the one-axis model is employed.
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