

Insights into *In Situ* electrogeneration of H₂O₂ in urine matrix using gas diffusion electrodes

Raul José Alves Felisardo^{1*}, Marcos Roberto de Vasconcelos Lanza²

¹ Instituto de Química de São Carlos (IQSC)/Universidade de São Paulo (USP)

*e-mail: raulfelisardo.eng@gmail.com

The quest for new technologies and catalytic materials capable of producing chemical oxidants has been a topic of considerable interest. Among these, the In Situ production of hydrogen peroxide (H₂O₂) offers significant advantages, particularly in decentralized treatments of complex matrices, by reducing constraints related to storage, transportation, and management of this reagent. H₂O₂ is a powerful and versatile chemical reagent that can act both as a reducer and an oxidizer. The In Situ generation of this oxidant can be achieved through the Oxygen Reduction Reaction (ORR) involving the transfer of 2 electrons [1]. Carbon materials have prominently featured due to their ability to selectively promote reactions. A notable example is the carbon-based Printex-L6 matrix, distinguished by its large surface area and functional groups acting as active sites [2,3]. These characteristics impart a hydrophobic nature to the material, making it a promising choice for various applications. In this study, gas diffusion electrodes (GDEs) were synthesized using Printex-L6 carbon (P-L6) for in situ generation of H₂O₂ aimed at enabling the production of this oxidant for subsequent use in degrading organic components of synthetic urine, specifically urea, uric acid, and creatinine. Electrogeneration of H₂O₂ was evaluated under different current densities (25, 50, and 100 mA cm⁻²) in the inorganic salts present in synthetic urine and compared with electrogeneration in Na₂SO₄ at the same ionic strength. Experiments were conducted in a glass electrochemical cell equipped with a Ag/AgCl reference electrode, a dimensionally stable anode used as a counter electrode, and the GDE prepared as the working electrode positioned at the cell base. O₂ flow was fixed at 0.05 L min⁻¹ and directly injected into the GDE. Quantification of H₂O₂ was performed by UV-Vis absorption spectrophotometry ($\lambda = 350$ nm) using ammonium molybdate. All experiments were performed in duplicate over 120 min, under mechanical stirring and constant temperature of 20 °C. Results revealed that, overall, the highest H₂O₂ generation occurred at a current density of 100 mA cm⁻², reaching a maximum concentration of 1253 mg L⁻¹ in Na₂SO₄ medium. However, under the same conditions, H₂O₂ generation in salts from synthetic urine was 94.314 mg L⁻¹.

Comparing this electrogeneration among the supporting electrolytes, approximately 75% of H₂O₂ consumption in urine matrix salts can be attributed to the compositional complexity of this matrix. Besides Na₂SO₄, the synthetic urine composition included NaCl, Na₂HPO₄, and KCl, which significantly interfered with H₂O₂ generation and stability. Chloride ions (Cl⁻) may catalyze H₂O₂ decomposition, leading to the formation of chlorine gas (Cl₂) and water; sulfate ions (SO₄²⁻) may react with H₂O₂ to form persulfate (HSO₅⁻); and phosphate ions (HPO₄²⁻) may catalyze H₂O₂ decomposition, resulting in the formation of water and oxygen. These interactions can reduce H₂O₂ concentration in the solution. Moreover, the simultaneous presence of various ion types may result in secondary reactions that also affect H₂O₂ stability. Thus, these results indicate that in situ generation of H₂O₂ in complex matrices such as synthetic urine is significantly influenced by the presence of inorganic components. Despite the high efficiency observed in Na₂SO₄, the presence of NaCl, Na₂HPO₄, and KCl in synthetic urine drastically reduces H₂O₂ concentration due to decomposition reactions. This study opens new frontiers for optimizing H₂O₂ generation systems, underscoring the importance of developing materials and experimental conditions that can mitigate the influence of inorganic interferents in complex matrices.

Acknowledgments:

The authors gratefully acknowledge the financial support received from FAPESP (Process number 2023/13260-2 and 2022/12895-1) and CNPq.

References:

- [1] W. Zhou, X. Meng, J. Gao, A.N. Alshawabkeh, Chemosphere, 225, 588–607 (2019).
- [2] M.F. Barroso, C. Delerue-Matos, M.B.P.P. Oliveira, Electrochimica Acta, 56, 8954–8961 (2011).
- [3] P.J. Marques Cordeiro-Junior, C. Sáez Jiménez, M.R. de Vasconcelos Lanza, M.A. Rodrigo Rodrigo, Separation and Purification Technology, 300 121847 (2022).