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Abstract

Machine learning (ML) is a promising tool in assisting clinical decision-making for improving

diagnosis and prognosis, especially in developing regions. It is often used with large sam-

ples, aggregating data from different regions and hospitals. However, it is unclear how this

affects predictions in local centers. This study aims to compare data aggregation strategies

of several hospitals in Brazil with a local training strategy in each hospital to predict two

COVID-19 outcomes: Intensive Care Unit admission (ICU) and mechanical ventilation use

(MV). The study included 6,046 patients from 14 hospitals, with local sample sizes ranging

from 47 to 1500 patients. Machine learning models were trained using extreme gradient

boosting, lightGBM, and catboost for structured data. Seven data aggregation strategies

based on hospital geographic regions were compared with local training, and the best strat-

egy was determined by analyzing the area under the ROC curve (AUROC). SHAP (Shapley

Additive exPlanations) values were used to assess the contribution of variables to predic-

tions. Additionally, a metafeatures analysis examined how hospital characteristics influence

the selection of the best strategy. The study found that the local training strategy was the

most effective approach, in the case of ICU outcomes, for 11 of the 14 hospitals (79%), and,

in the case of MV, for 10 hospitals (71%). Metafeatures analysis suggested that hospitals

with smaller sample sizes generally performed better using an aggregated data strategy

compared to local training. Our study brings to light an important concern about the impact

of grouping data from different hospitals in predictive machine learning models. These find-

ings contribute to the ongoing debate about the trade-off between increasing sample size

and bringing together heterogeneous scenarios.
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Author summary

Machine learning (ML) in healthcare is often applied to large datasets, and a common

strategy is to combine data from different regions and hospitals to increase sample sizes.

In this study, we used ML models to predict two COVID-19-related outcomes: Intensive

Care Unit admission (ICU) and mechanical ventilation (MV) use. We proposed different

groupings of hospitals based on geographic regions and compared these with results

obtained from individual hospitals (referred to as local training). The study found that

local training generally provided more accurate predictions for the two COVID-19 out-

comes. However, grouping hospitals for training prediction models was beneficial in cases

where individual hospitals had few patients. We concluded that it is crucial to consider

the local context before combining data from different centers with high data diversity.

Introduction

The COVID-19 pandemic has posed unprecedented challenges to the world, with over 750

million confirmed cases and 6.9 million deaths attributed to COVID-19 [1]. While the peak of

the crisis has passed, there are still long-term effects and severe clinical outcomes, specifically

Intensive Care Unit admission (ICU) and the use for mechanical ventilation (MV), that need

further investigation. Machine Learning (ML) has emerged as a promising tool for assisting in

clinical decision-making, especially in the diagnosis and prognosis of COVID-19 [2,3].

During the peak of the pandemic, the overwhelming influx of patients into ICUs and the

shortage of ventilators forced healthcare professionals to make difficult decisions regarding the

prioritization of resources. By identifying patients at the highest risk of adverse outcomes,

machine learning algorithms can facilitate the initiation of targeted preventive measures and

optimize the allocation of physical resources within the healthcare system. Although there is a

perceived gap in the application of advanced models to predict critical outcomes [4], a recent

systematic review emphasized the potential of ML algorithms in addressing the complexities

of COVID-19 [5].

Using a Brazilian multicenter cohort study, Wichmann et al. [6] applied machine learning

algorithms to predict the risk of death from COVID-19 in 18 hospitals across the five regions

of the country. The study compared eight different strategies for aggregating data to train the

algorithms, and found that the strategy that yielded the best predictive performance for risk of

death was training and testing the algorithms using only local hospital data.

The objective of this study is to investigate whether the observed trend of improved predic-

tive performance with disaggregated data extends to other two COVID-19 related outcomes:

the admission to the intensive care unit and use of mechanical ventilation. We hypothesized

that hospitals with small sample sizes might benefit from data aggregation. Additionally, we

aim to identify local characteristics that may be associated with more effective training

strategies.

Material and methods

A multicenter cohort study was conducted involving 16,236 adult patients who tested positive

for COVID-19 across five regions of Brazil from March to August 2020. The study, encom-

passing 18 hospitals initially, focused on three primary outcomes: death, admission to the

Intensive Care Unit (ICU), and the use of mechanical ventilation (MV). In the current study,

we focused on the two last outcomes and included only adult patients (> 18 years) with a
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positive RT-PCR (a standard laboratory diagnostic exam for COVID-19). Four hospitals were

excluded from the current analysis as they either did not have ICU care and mechanical venti-

lation support, or only had ICU cases, as there was no local variation on the predicted out-

comes. Consequently, the study included 14 hospitals from the five regions of Brazil: one from

the Midwest, four from the Northeast, two from the North, four from the Southeast, and three

from the South. The sample sizes at these hospitals ranged from 47 to 1,500 patients.

We trained three popular machine learning models for structured data: lightGBM, catboost,

and XGBoost [7–9]. We included only variables routinely collected in all hospitals to train the

algorithms: age, sex, heart rate, respiratory rate, systolic pressure, diastolic pressure, mean

pressure, temperature, hemoglobin, platelets, hematocrit, red cells count, mean corpuscular

hemoglobin (mch), red cell distribution width (rdw), mean corpuscular volume (mcv), leuko-

cytes, neutrophil, lymphocytes, basophils, eosinophils, monocytes, and C-reactive protein. A

single measure of these variables was collected in early hospital admission, within 24 hours

before and 24 hours after the RT-PCR exam. Descriptive measures of quantitative predictors

for each hospital are presented in S1 Table. The 22 variables were initially included in all

models.

Box-plots were used to identify extreme values for continuous variables. If the maximum

value was at least double the second maximum, it was replaced by missing to avoid non-plausi-

ble measures. This strategy helps maintain the overall quality and reliability of the data while

addressing potential outliers effectively. Multinomial attributes were converted into dummy

variables, creating separate variables for each category. Continuous attributes were normalized

with z-score transformation. Variables exhibiting a correlation coefficient exceeding 0.90 were

removed. Additionally, variables with over 90% missing values were also excluded. For the

remaining variables with missing data, median imputation was initially applied.

We evaluated the method of multiple imputation using chained equations (MICE)[10], as it

offers a balance between maintaining data integrity and computational efficiency, particularly

given the large dataset and the relatively low percentage of missing values, but we found it did

not improve the predictive performance of the models. Hyperparameters were optimized

through Bayesian optimization using HyperOpt, coupled with 10-fold cross-validation. To

address class imbalance, random oversampling technique was implemented in the training

dataset, while the test dataset was left unchanged [11].

We compared eight data aggregation strategies for training (Table 1). The first strategy,

called local training (Strategy 1), used data from the evaluated hospital for both training (70%)

and testing (30%). We then applied seven data aggregations to compare with local training,

and, for each one, we trained on 70% of the aggregated data and tested on 30% of the reference

hospital data. For comparisons purposes, the 30% tested data set for each hospital was kept the

same by fixing the randomization seed for all cases over the procedure. The aggregations pro-

posed for training algorithms were: 70% of data from all hospitals, except the reference (Strat-

egy 2); 70% of data from the same geographic region of the reference hospital, except the

reference (Strategy 3); 70% of data from other geographic regions than the reference hospital

(Strategy 4); 70% of reference hospital + 70% of data from all other hospitals (Strategy 5); 70%

of reference hospital + same sample size selected from all other hospitals (Strategy 6); 70% of

reference hospital + same sample size selected from hospitals of the same region (Strategy 7);

70% of reference hospital + same sample size selected from hospitals of other regions (Strategy

8). As in the Midwest there was only one hospital, analyses that aggregated hospitals within the

same region for training purposes (Strategies 3 and 7) were not carried out for this hospital.

For each outcome (ICU admission and MV use), we considered all possible strategy-hospi-

tal combinations presented in Table 1, resulting in 14 hospitals x 8 strategies = 112 combina-

tions. However, we were unable to analyze strategies 3 and 7 for the Midwest region, so the
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Table 1. Description of aggregation strategies of hospitals for training. Abbreviations: SE: SouthEast, NE: NorthEast, MW: MidWest, S: South, N: North.

Training Strategy

Hospitals

(reference)

Strategy 1

local training

Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6 Strategy 7 Strategy 8

SouthEast2

(SE2)

70% SE2 70% all other

hospitals

70% other

SE

70% NE

+MW+S+N

70% SE2 + 70%

all other hospitals

70%SE2 +

same size selected

from all other

hospitals

70%SE2 + same size

selected from other

SE

70%SE2 + same size

selected from NE

+MW+S+N

SouthEast3

(SE3)

70% SE3 70% all other

hospitals

70% other

SE

70% NE

+MW+S+N

70% SE3 + 70%

all other hospitals

70%SE3 +

same size selected

from all other

hospitals

70%SE3 + same size

selected from other

SE

70%SE3 + same size

selected from NE

+MW+S+N

SouthEast5

(SE5)

70% SE5 70% all other

hospitals

70% other

SE

70% NE

+MW+S+N

70% SE5 + 70%

all other hospitals

70%SE5 +

same size selected

from all other

hospitals

70%SE5 + same size

selected from other

SE

70%SE5 + same size

selected from NE

+MW+S+N

SouthEast6

(SE6)

70% SE6 70% all other

hospitals

70% other

SE

70% NE

+MW+S+N

70% SE6 + 70%

all other hospitals

70%SE6 +

same size selected

from all other

hospitals

70%SE6 + same size

selected from other

SE

70%SE6 + same size

selected from NE

+MW+S+N

NorthEast1

(NE1)

70% NE1 70% all other

hospitals

70% other

NE

70% SE

+MW+S+N

70% NE1 + 70%

all other hospitals

70%NE1 +

same size selected

from all other

hospitals

70%NE1 + same size

selected from other

NE

70%NE1 + same size

selected from SE+MW

+S+N

NorthEast2

(NE2)

70% NE2 70% all other

hospitals

70% other

NE

70% SE

+MW+S+N

70% NE2 + 70%

all other hospitals

70%NE2 +

same size selected

from all other

hospitals

70%NE2 + same size

selected from other

NE

70%NE2 + same size

selected from SE+MW

+S+N

NorthEast3

(NE3)

70% NE3 70% all other

hospitals

70% other

NE

70% SE

+MW+S+N

70% NE3 + 70%

all other hospitals

70%NE3 +

same size selected

from all other

hospitals

70%NE3 + same size

selected from other

NE

70%NE3 + same size

selected from SE+MW

+S+N

NorthEast4

(NE4)

70% NE4 70% all other

hospitals

70% other

NE

70% SE

+MW+S+N

70% NE4 + 70%

all other hospitals

70%NE4 +

same size selected

from all other

hospitals

70%NE4 + same size

selected from other

NE

70%NE4 + same size

selected from SE+MW

+S+N

MidWest1

(MW1)

70% MW1 70% all other

hospitals

─ 70% SE+NE

+S+N

70%MW1 + 70%

all other hospitals

70%MW1 +

same size selected

from all other

hospitals

─ 70%MW1 + same size

selected from SE+NE

+S+N

South1 (S1) 70% S1 70% all other

hospitals

70% other

S

70% SE+NE

+MW+N

70% S1 +

70% all other

hospitals

70%S1 +

same size selected

from all other

hospitals

70%S1 +

same size selected

from other S

70%S1 +

same size selected

from SE+NE+MW+N

South2 (S2) 70% S2 70% all other

hospitals

70% other

S

70% SE+NE

+MW+N

70% S2 +

70% all other

hospitals

70%S2 +

same size selected

from all other

hospitals

70%S2 +

same size selected

from other S

70%S2 +

same size selected

from SE+NE+MW+N

South3 (S3) 70% S3 70% all other

hospitals

70% other

S

70% SE+NE

+MW+N

70% S3 +

70% all other

hospitals

70%S3 +

same size selected

from all other

hospitals

70%S3 +

same size selected

from other S

70%S3 +

same size selected

from SE+NE+MW+N

North1 (N1) 70% N1 70% all other

hospitals

70% other

N

70% SE+NE

+MW+S

70% N1 +

70% all other

hospitals

70%N1 +

same size selected

from all other

hospitals

70%N1 +

same size selected

from other N

70%N1 +

same size selected

from SE+NE+MW+S

North2 (N2) 70% N2 70% all other

hospitals

70% other

N

70% SE+NE

+MW+S

70% N2 +

70% all other

hospitals

70%N2 +

same size selected

from all other

hospitals

70%N2 +

same size selected

from other N

70%N2 + same size

selected from SE+NE

+MW+S

https://doi.org/10.1371/journal.pdig.0000699.t001
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total number of strategy-hospital combinations was 110. We trained the three algorithms

LightGBM, CatBoost, and XGBoost for each combination, leading to a total of 330 classifiers

being trained. Initially, we selected the best algorithm for each strategy-hospital combination

based on the area under the receiver operating characteristic curve (AUROC) obtained in the

30% test dataset of the reference hospital. Subsequently, we defined the best strategy for each

hospital by comparing the AUROC of the eight strategies.

We used the binomial test to assess whether the proportion of hospitals favoring local train-

ing as the best strategy for ICU, MV, and death outcomes would be greater than 50% (one-

sided test). Additionally, we calculated the 95% confidence interval for this proportion using

the Clopper-Pearson exact method.

The contribution of variables to the prediction of outcomes was accessed by the SHAP

(Shapley Additive exPlanations) values [12]. While these measures were initially obtained sep-

arately for the best model in each hospital, they were also utilized to assess the overall impact

of variables that frequently emerged as significant predictors of the outcomes and the overlaps

between the main predictors used for the optimal model at each hospital.

The 14 hospitals included in this study varied significantly in several aspects, including

their geographic locations, sample sizes (ranging from 47 to 1,500 patients), the proportion of

different outcomes, and the extent of missing data. Additionally, even though the variables col-

lected were the same, there is an expected variation in their distributions. Therefore, we inves-

tigated whether these diverse characteristics among hospitals, called metafeatures, could

explain why training models with local data might perform better than training with a larger

volume of data and information by grouping other hospitals. The comparison among hospitals

regarding the distribution of the 21 quantitative predictors was performed by calculating skew-

ness, kurtosis, and the coefficient of variation and then summarizing them by the mean and

standard deviation. For the three outcomes—ICU admission, mechanical ventilation (MV),

and mortality—we then compared these metafeatures between two groups of hospitals. The

first group comprised hospitals where a local training strategy was deemed most effective,

while the second group included hospitals where an aggregation strategy proved superior. To

compare the metafeatures between these groups, we employed the non-parametric Mann-

Whitney test.

The study received ethical approval from the University of São Paulo’s Institutional Review

Board (IRB) under reference number 32872920.4.1001.5421, which included a waiver of con-

sent. This approval also covered the utilization of data and collaboration with all hospitals par-

ticipating in the IACOV-BR network.

Results

The total sample consisted of 6,046 patients, with a mean age of 57.5 years (SD = 17.9), and dis-

tributed across the five regions, with 539 from Midwest (8.9%), 2389 from Northeast (39.5%),

294 from North (4.9%), 2129 from Southeast (35.2%), and 695 from South (11.5%).

In the overall sample, males were more prevalent (53.8% of the patients), while the most

common racial background reported was white (65.4%).

Table 2 presents demographic data on age, sex, and race according to the ICU admission

and the MV use, categorized by region. The proportion of patients who were admitted to the

ICU varied from 22.1% in the Northeast to 95.4% in the Midwest, and the proportion of

patients who used MV varied from 13.9% in the Northeast to 57.0% in Midwest, which high-

lights the diverse impact that the pandemic had on the different regions of the country. There

is a tendency of patients being older among those admitted to the ICU and those who used

MV. Male patients were more frequent in almost all regions and outcomes scenarios, but the
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Northeast presented a more balanced sample regarding biological sex. Among patients who

provided information about self-declared race, there was a high proportion of white race in

the Southeast and South regions, and this distribution reflects a similar tendency among

patients with or without the two outcomes. Other races were grouped for the analyses, and

they were more prevalent in the Midwest and Southeast.

Table 3 displays the AUROC results for the optimal strategy in each hospital, with scores

exceeding 0.7 for almost all hospitals (the AUROCs for all strategies tested are in S2 and S3

Tables, respectively for ICU and MV outcomes). Predominantly, local training emerged as the

most effective approach, being the superior strategy for 11 of the 14 hospitals (79%, p = 0.029,

CI95% = [52%; 92%]) regarding ICU outcomes, and for 10 hospitals (71%, p = 0.089, CI95% =

[45%; 88%]) for the MV outcomes. These results align with findings by Wichmann et al.

(2023) regarding the risk of death, where local training was the best for 11 out of 18 hospitals

included in that study (61%). In our study, local training yielded the best predictive perfor-

mance for death risk in 9 of 14 hospitals (64%, p = 0.212, CI95% = [38%; 84%]).

Table 2. Descriptive statistics of the demographic’s characteristics according to the ICU admission and the MV use, categorized by region.

ICU MV

No Yes No Yes Total

Number of patients (n (%))

Midwest 25 (4.6%) 514 (95.4%) 232 (43.0%) 307 (57.0%) 539

Northeast 1862 (77.9%) 527 (22.1%) 2058 (86.1%) 331 (13.9%) 2389

North 185 (62.9%) 109 (37.1%) 221 (75.2%) 73 (24.8%) 294

Southeast 727 (34.1%) 1402 (65.9%) 1267 (59.5%) 862 (40.5%) 2129

South 491 (70.1%) 204 (29.4%) 565 (81.3%) 130 (18.7%) 695

Total 3290 2756 4343 1703 6046

Age (mean ± std)

Midwest 60.0 (17.2) 57.9 (15.7) 54.4 (15.4) 60.7 (15.5) 58.0 (15.8)

Northeast 51.6 (18.4) 65.4 (16.9) 52.8 (18.7) 66.2 (15.9) 54.6 (19.0)

North 52.8 (16.4) 63.4 (15.2) 54.1 (16.6) 64.5 (14.8) 56.7 (16.8)

Southeast 57.0 (17.8) 62.5 (15.6) 59.6 (17.4) 62.1 (15.2) 60.6 (16.6)

South 54.1 (17.6) 67.2 (16.2) 55.6 (17.8) 68.0 (15.9) 58.0 (18.2)

Male (%)

Midwest 64.0% 62.1% 65.1% 59.9% 62.2%

Northeast 47.7% 51.4% 47.6% 54.7% 48.6%

North 53.5% 62.4% 53.8% 65.8% 56.8%

Southeast 49.7% 59.6% 53.0% 60.9% 56.2%

South 55.2% 62.3% 56.3% 61.5% 57.3%

Race—White (%)

Midwest 4.0% 15.8% 3.0% 24.4% 15.2%

Northeast 1.1% 6.3% 1.5% 7.3% 2.3%

North 0.5% 3.7% 0.9% 4.1% 1.7%

Southeast 53.4% 47.5% 50.1% 48.6% 49.5%

South 81.3% 74.0% 81.1% 70.8% 79.1%

Race—Black/Mixed/Asian (%)

Midwest 20.0% 31.4% 11.6% 45.4% 30.8%

Northeast 3.6% 12.1% 3.4% 17.8% 5.4%

North 6.5% 25.7% 8.1% 30.1% 13.6%

Southeast 24.0% 28.6% 24.9% 30.2% 27.0%

South 2.4% 1.0% 2.1% 1.5% 2.1%

https://doi.org/10.1371/journal.pdig.0000699.t002
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The analysis of 42 cases across 14 hospitals, combining the three outcomes, showed that

local training was the best in 30 out of 42 cases (71%, p = 0.004, CI95% = [56%; 83%]). This

indicates that, in general, the proportion of cases where local training was the best strategy was

significantly higher than 50%. Notably, when local training was chosen for mortality, it was

consistently selected for both ICU and MV outcomes. In contrast, local training was not the

preferred strategy for any of the three outcomes in three hospitals with smaller sample sizes—

Northeast-4 (n = 73), South-3 (n = 91), and North-2 (n = 47). These hospitals exhibited no

consensus on the optimal aggregation strategy, as preferences varied by outcome.

Across all strategies and hospitals for the two outcomes, the best-performing algorithm var-

ied. LightGBM emerged as the top performer in 44.1% of cases, followed by extreme gradient

boosting (XGBoost), which led in 35% of cases, and CatBoost in 20.9%.

Shapley values were computed for the best-performing model at each hospital, revealing

variability in the key predictors across different institutions (S1 and S2 Figs). Despite this vari-

ability, certain variables like C-reactive protein (CRP), respiratory rate, and age consistently

exhibited high Shapley values across most hospitals. Fig 1 provides a summary of the absolute

Shapley values, highlighting the contribution of the top 10 variables that, on average, had the

most significant impact on the predictions for each outcome.

The comparison between the group of hospitals where the local training provided better

predictions and the group of hospitals that benefited from some aggregation strategy regarding

the metafeatures of hospitals gives an insight into contexts where data aggregation can be

advantageous and improve predictions (S4 Table presented metafeatures of all hospitals). The

analysis indicated that hospitals with smaller sample sizes generally exhibited better perfor-

mance using an aggregated data strategy compared to local training as we expected; this differ-

ence was statistically significant only for the ICU outcome, as shown in Table 4. Conversely,

there was a trend where the local training strategy performed better in hospitals with unbal-

anced outcomes, which was confirmed statistically only for the MV outcome. No significant

Table 3. AUROCs (AUCs) for the best aggregation strategies for training in each hospital for the three outcomes: the ICU admission, the use of mechanical ventila-

tion (MV) and death (Wichmann et al. [6]).

ICU MV Death

(Wichmann et al. [6])

Hospital* n Best AUC Best strategy Best AUC Best strategy Best AUC Best strategy

Southeast—2 1500 0.799 Local Training 0.754 Local Training 0.79 Local Training

Southeast—3 449 0.764 Local Training 0.865 Local Training 0.81 Local Training

Southeast—5 124 0.667 Local Training 0.906 Local Training 0.98 Local Training

Southeast—6 56 0.814 Local Training 0.885 Local Training 0.60 Local Training

Northeast—1 1359 0.940 Local Training 0.947 Local Training 0.89 Local Training

Northeast—2 845 0.666 Local Training 0.781 Local Training 0.92 Local Training

Northeast—3 112 0.664 Local Training 0.779 Local Training 0.90 Local Training

Northeast—4 73 0.744 Strategy 2 0.908 Strategy 7 0.70 Strategy 4

MidWest -1 539 0.673 Local Training 0.624 Strategy 2 0.73 Strategy 2

South—1 456 0.748 Local Training 0.869 Local Training 0.90 Local Training

South—2 148 0.987 Local Training 0.976 Local Training 0.98 Local Training

South—3 91 0.770 Strategy 6 0.722 Strategy 2 0.85 Strategy 3

North—1 247 0.817 Local Training 0.885 Local Training 0.85 Strategy 7

North—2 47 0.909 Strategy 4 0.796 Strategy 2 0.90 Strategy 5

*Hospitals named Southeast-1, Southeast-4, MidWest-2 and MidWest-3 in Wichmann et al. [6] were excluded for the current study.

https://doi.org/10.1371/journal.pdig.0000699.t003
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differences were observed between the two groups of hospitals regarding the other

metafeatures.

Discussion

We found an overall tendency of better predictive performance for severe outcomes in hospi-

tals with disaggregated data. For the three outcomes (ICU, MV and death), the best overall

strategy was training and testing using only local hospital data. Our finding confirmed that the

Fig 1. Box-plots of the absolute Shapley value obtained for the 14 hospitals for (A) ICU admission and (B) mechanical

ventilation use. Each graph shows the 10 variables which, on average (for the 14 hospitals), presented high

contributions to predicting the outcome.

https://doi.org/10.1371/journal.pdig.0000699.g001
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use of data from other hospitals to train algorithms for predictive purposes could increase data

noise due to heterogeneity in hospital practices, and, consequently, decrease the predictive

ability of the algorithms.

A distinct outcome emerged specifically for the three hospitals with small sample sizes.

These hospitals, which benefited from the aggregated data, were not concentrated in any par-

ticular region of the country. Instead, their commonality was the small sample size, suggesting

that sample size was an important factor influencing the results, rather than regional character-

istics. Upon examining the metafeatures, it was observed that hospitals benefiting from data

aggregation showed no significant differences in predictor distributions compared to those

using local training. This finding supports the effectiveness of data aggregation for hospitals

with limited data. Shapley values highlighted an overlap of certain variables that frequently

appear as key predictors of the outcomes, although the importance of these variables varied

among hospitals, reinforcing the value of adopting local models. Consistency across different

clinical settings regarding the most important variables for predicting an outcome does not

guarantee improved prediction by grouping the data.

Aggregating data from various regions and hospitals is a strategy frequently applied to

increase the sample size for predictive models. Knight et al. [13], for example, developed a risk

score to predict mortality in patients with COVID19, including several hospitals across

England, Scotland, and Wales, stratifying into two geographical regions, and found that per-

formance was robust across regions. Other studies that included data from different regions

and countries found better performances as well [14, 15], however, it is important to discuss

how this can impact predictions of local centers, especially in countries with high data

heterogeneity.

Our findings offer practical insights and contribute to the ongoing debate about the benefits

and drawbacks of aggregating data from various centers to predict diverse outcomes in health-

care. Increasing the size of the training sample does not uniformly enhance prediction accu-

racy. By increasing the volume of data from diverse clinical settings, there is a risk of

introducing more noise due to measurement errors, inconsistencies, and inaccuracies, which

Table 4. Median and IQR (Interquartile range) of metafeatures and p-values of Mann-Whitney tests for comparing two groups of hospitals (local training versus

some aggregation training), separately by type of outcome.

ICU MV Death

(Wichmann et al. [6])

Local

training

Aggregation

training

Local

training

Aggregation

training

Local

training

Aggregation

training

Metafeatures 11 hospitals 3 hospitals 10 hospitals 4 hospitals 9 hospitals 5 hospitals

Median

(IQR)

Median (IQR) p Median

(IQR)

Median (IQR) p Median

(IQR)

Median (IQR) p

Sample size 449 (556) 73 (22) p = 0.022 348 (617.75) 82 (136.5) p = 0.142 449 (721) 91 (174) p = 0.190

% of outcomes 0.30 (0.41) 0.51 (0.15) p = 0.368 0.19 (0.18) 0.50 (0.15) p = 0.024 0.14 (0.13) 0.34 (0.09) p = 0.060

% of missings

values

0.22 (0.13) 0.08 (0.10) p = 0.126 0.22 (0.12) 0.08 (0.06) p = 0.054 0.22 (0.13) 0.09 (0.14) p = 0.190

CV (average) 0.57 (0.33) 0.55 (0.18) p = 0.885 0.54 (0.21) 0.66 (0.34) p = 0.539 0.57 (0.21) 0.55 (0.37) p = 0.898

Skewness

(average)

1.67 (0.92) 1.16 (0.29) p = 0.368 1.46 (0.91) 1.22 (0.77) p = 0.945 1.67 (0.77) 1.16 (0.59) p = 0.364

Skewness (std) 3.10 (2.00) 1.70 (0.60) p = 0.060 2.86 (1.46) 2.03 (1.52) p = 0.374 3.10 (1.25) 1.70 (0.77) p = 0.112

Kurtosis (average) 15.04 (19.73) 4.67 (2.72) p = 0.060 13.86 (19.04) 6.26 (13.91) p = 0.374 15.04 (17.4) 4.67 (3.39) p = 0.112

Kurtosis (std) 24.69 (67.29) 13.24 (6.63) p = 0.088 24.04 (60.15) 15.11 (29.24) p = 0.454 24.69 (63.48) 13.24 (8.84) p = 0.147

CV: Coefficient of variation.

https://doi.org/10.1371/journal.pdig.0000699.t004
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can manifest differently in each hospital. It is crucial to consider the local context before com-

bining data from different centers. Brazil, with its vast geographical expanse and significant

socioeconomic disparities, illustrates this point well. The country’s five regions differ markedly

in healthcare access and resources, leading to variability in hospital practices. This study

underscores the importance of evaluating the cost-benefit of data aggregation from different

hospitals. In scenarios characterized by high data heterogeneity, training a local model may be

more advantageous.

The limitations of this study include regional imbalances in the sample distribution, poten-

tial inconsistencies in data collection procedures, and small sample sizes in some hospitals.

Additionally, while we have observed an overall tendency for better predictive performance

with disaggregated data, this observation requires further validation to confirm its robustness.

We also recognize that there is a relationship between the three outcomes as some of the

patients who died of COVID-19 underwent mechanical ventilation before, and/or went

through the ICU as well. The criteria for ICU admission and for the use of mechanical ventila-

tion may also vary across hospitals, which could increase data heterogeneity.

Nevertheless, we assert that predicting ICU admissions and mechanical ventilation (MV)

use is as crucial as predicting mortality, and machine learning methods are effective for this

purpose [5]. These predictions can assist clinicians in making informed decisions about treat-

ment and resource allocation, potentially preventing patient deterioration. It is also important

to recognize that the dynamics of COVID-19 have evolved since this cohort study was con-

ducted. While the disease context has changed, the primary aim of this study was to evaluate

the effectiveness of data aggregation in predicting various outcomes. Our findings highlight

the need for careful consideration when combining data from different regions for predictive

analyses, as regional disparities can significantly impact the outcomes. The analysis of the vari-

ations in sample size and the proportion of outcomes among different clinical settings can be a

starting point for deciding whether to combine data from distinct locations.
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Valesca Lôbo eSant’ana Nuno31

5Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil.

PLOS DIGITAL HEALTH Comparing local and aggregated data to train Machine learning algorithms

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000699 December 26, 2024 11 / 13

http://journals.plos.org/digitalhealth/article/asset?unique&id=info:doi/10.1371/journal.pdig.0000699.s006
https://doi.org/10.1371/journal.pdig.0000699


6Instituto de Medicina, Estudos e Desenvolvimento-IMED, São Paulo, Brazil.
7Universidade Federal de Pelotas-UFPel, Pelotas, Brazil.
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29Mestrado Profissional em Gestão e Saúde na Amazônia, Belém, Brazil.
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