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Abstract

The nutritional and commercial value of lettuce (Lactuca sativa L.) is determined by its foliar
pigment and phenolic composition, which varies among cultivars. This study aimed to
assess the capacity of hyperspectral and applied multispectral imaging, combined with ma-
chine learning algorithms, to predict and map key biochemical traits, such as chloroplastidic
pigments (chlorophylls and carotenoids) and extrachloroplastidic pigments (anthocyanins,
flavonoids, and phenolic compounds). Eleven cultivars exhibiting contrasting pigmenta-
tion profiles were grown under controlled greenhouse conditions, and their chlorophyll
a and b, carotenoid, anthocyanin, flavonoid, and total phenolic contents were evaluated.
Spectral reflectance data were acquired via a Headwall hyperspectral sensor and a MicaS-
ense multispectral sensor, and the pigment contents were quantified via solvent extraction
and a UV microplate reader. We developed predictive models via seven machine learning
approaches, with partial least squares regression (PLSR) and random forest (RF) emerging
as the most robust algorithms for pigment estimation. Chlorophyll a and b are highly
and positively correlated (r > 0.9), which is consistent with their hyperspectral reflectance
imaging results. The hyperspectral data consistently outperformed the multispectral data
in terms of predictive accuracy (e.g., R2 = 0.91 and 0.76 for anthocyanins and flavonoids via
RF) and phenolic compounds with R2 = 0.79, capturing subtle spectral features linked to
biochemical variation. Spatial maps revealed strong genotype-dependent heterogeneity in
pigment and phenolic distributions, supporting the potential of this approach for cultivar
discrimination and pigment phenotyping. These findings demonstrate that hyperspectral
imaging integrated with data-driven modelling offers a powerful, nondestructive frame-
work for the biochemical monitoring of leafy vegetables, supporting breeding, precision
agriculture, and food quality assessment.
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1. Introduction
Lettuce (Lactuca sativa L.) is one of the most widely cultivated leafy vegetables world-

wide and is valued not only for its nutritional benefits but also for its commercial importance
in both the fresh market and processed food industries [1–4]. It is a rich source of essential
nutrients, including vitamins, minerals, and bioactive compounds such as chlorophylls,
carotenoids, anthocyanins, flavonoids, and other phenolic compounds. These bioactive
components are known for their potential health benefits, particularly their antioxidant,
anti-inflammatory, and anticancer properties [3]. The concentration and composition of
these phytochemicals can vary significantly among different lettuce cultivars, driven by
both genetic factors and environmental conditions.

The variability in phytochemical content across lettuce varieties affects not only their
health-promoting properties but also their sensory attributes, such as taste, color, and
texture [5,6]. Given the growing interest in functional foods, there is an increasing demand
for varieties that are rich in bioactive compounds, particularly those that contain high
levels of antioxidants such as flavonoids and anthocyanins [7,8]. Consequently, accurate
and efficient methods for assessing the biochemical composition of lettuce are necessary
for identifying superior cultivars with increased nutritional value [9]. Although accu-
rate, traditional methods of biochemical analysis, such as liquid chromatography and
spectrophotometric assays, are often labour intensive, destructive, and limited in spatial
resolution [10].

Compared with these traditional methods, hyperspectral and multispectral imaging
technologies have emerged as powerful, nondestructive alternatives, offering the ability to
capture high-resolution spectral data across a broad range of wavelengths [11,12]. Systems
such as Headwall and MicaSense enable the collection of detailed spectral information that
can be linked to the chemical composition of plant tissues. In particular, hyperspectral
imaging provides continuous spectral coverage with high spectral resolution, allowing
the identification of subtle differences in plant biochemical composition [13–15]. Several
studies have employed the MicaSense multispectral sensor to assess pigments and bio-
chemical variation in various horticultural crops, such as tomato, pepper, strawberry, and
grapevine. For example, Vigneault et al. (2024) [16] demonstrated the utility of MicaSense
in estimating biochemical and biophysical parameters and maturity in Romaine lettuce,
whereas Zsebő et al. (2024) [17] applied the sensor to map the spatial variability of chloro-
phyll and carotenoids in winter wheat canopies under greenhouse conditions. Despite
the practical advantages of MicaSense (cost, ease of operation), these studies reported
moderate predictive accuracy (typically R2 values between 0.55 and 0.75), especially for
secondary metabolites, due to the limited number and width of spectral bands. Our study
corroborates these findings, showing that although MicaSense can effectively predict some
pigment traits in lettuce, hyperspectral imaging yields superior results, particularly for
anthocyanins and flavonoids. These imaging technologies, when combined with advanced
machine learning algorithms, can facilitate the development of predictive models that
can accurately quantify the concentrations of key phytochemicals, including chlorophylls,
carotenoids, flavonoids, anthocyanins, and phenolic compounds, in lettuce leaves [18,19].
However, MicaSense sensors contain only a limited number of broad spectral bands, which
aggregate information from wider wavelength ranges. As a result, their efficiency in cap-
turing fine spectral details is often lower than that of hyperspectral sensors, despite being
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more cost-effective and simpler to operate. This spectral coarseness may limit their ability
to resolve subtle biochemical differences, particularly in complex plant phenotyping tasks.

Machine learning models such as partial least squares (PLS) regression, random
forest (RF), and neural networks (NNs) have proven to be highly effective in the analysis
of hyperspectral and multispectral data [20,21]. These algorithms can learn complex
relationships between spectral data and biochemical traits, enabling the accurate prediction
of pigment and phenolic compound concentrations. The ability to develop robust models
that can predict biochemical composition on the basis of spectral features opens up the
possibility of creating detailed spatial maps of plant traits, such as pigment distributions
and variety-specific imaging biochemical profiles [22,23].

Furthermore, hyperspectral and multispectral imaging provide a unique opportunity
to monitor the spatial variability of biochemical traits within the plant canopy, which is
essential for precision agriculture applications. The use of spatially explicit maps allows
for the identification of areas within a crop field that exhibit different biochemical compo-
sitions, which may be indicative of the variability of biochemical traits within the plant
canopy, which is essential for precision agriculture applications (e.g., nitrogen, phosphorus,
potassium, and micronutrients such as iron and magnesium; water stress; or disease resis-
tance) [24–28]. By linking these spectral data to crop management practices, it is possible to
implement more targeted interventions that can optimize yield, improve crop quality, and
enhance the overall nutritional profile of the crop.

Although several studies have explored hyperspectral and multispectral imaging for
pigment and phenolic compound assessment in horticultural crops, few have systemat-
ically compared these two sensor types in lettuce via a wide panel of machine learning
algorithms [29–31]. Our study uniquely integrates a comprehensive cultivar set, parallel
pigment/phenolic quantification, and side-by-side sensor/model comparison, thus pro-
viding new insights into the advantages and limitations of each approach for nutritional
phenotyping in leafy vegetables.

Therefore, this study aims to evaluate the potential of hyperspectral and multispectral
imaging, in combination with machine learning models, to predict and map the biochemical
composition of lettuce leaves, with a particular focus on key compounds such as chloro-
phylls, carotenoids, anthocyanins, flavonoids, and phenolic compounds. The hypothesis of
this research is that hyperspectral and multispectral imaging technologies, when coupled
with advanced machine learning techniques, can provide a reliable and efficient approach
for distinguishing lettuce varieties based on their biochemical composition. Additionally,
this study seeks to develop high-resolution, spatially explicit maps of these traits, offer-
ing new insights into the biochemical diversity within lettuce crops and supporting the
advancement of precision agriculture.

2. Materials and Methods
2.1. Plant Materials, Growth Conditions and Experimental Design

A greenhouse experiment was conducted at the State University of Maringá, Paraná,
Brazil (23◦23′47.6′′ S, 51◦57′05.3′′ W), to evaluate eleven lettuce cultivars (Lactuca sativa
L.) that were distinguished by leaf pigmentation ranging from pale green to deep purple.
The cultivars used in this study were Rainha de Maio (V01), Vitória (V02), Maravilha de
Inverno (V03), Grandes Lagos Americana (V04), Mimosa Prado (V05), Quatro Estações
(V06), Batávia Joaquina (V07), Mimosa Vermelha (V08), Batávia Cacimba (V09), Pipa (V10),
and Mimosa Rubi (V11).
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The 100 seeds were germinated in Petri-dish glass (150 × 50 mm) on Germitest®

filter paper (J. Prolab, Curitiba, PR, Brazil) moistened with 4 mL of Hoagland’s nutrient
solution (pH 5.4). After a 15-day start germination period, uniform seedlings (growth
in MecPlant commercial substrate) were transplanted at 4 cm height and three true leaf
stage, into 10 L pots filled with a substrate composed of pine bark, vermiculite, and
limestone (MecPlant®, Telêmaco Borba, PR, Brazil) and mixed with soil and sand at a 3:2:2
(v:v:v) ratio. The plants received a basal application of balanced NPK fertilizer (containing
nitrogen, phosphorus, and potassium; 10–10–10 formulation) following the recommended
rate for lettuce Falcioni et al. 2022 [9] and were irrigated daily with 25 mm of water
throughout the growth period in pots [9]. The following environmental parameters were
recorded continuously during the trial: photosynthetically active radiation (PAR) peaked
at 1500 µmol m−2 s−1 via an LI-190R quantum sensor (LI-COR Inc., Lincoln, NE, USA)
under a natural 12 h photoperiod, the air temperature varied approximately 30 ± 5 ◦C,
and the relative humidity ranged between 50% and 80%. Humidity and temperature were
monitored continuously via a digital hygrometer 7663 (Incoterm, Cotronic Technology Ltd.,
Inc., Shenzhen, Guangdong, China). The greenhouse ventilation was natural, irrigation was
applied at a fixed rate of 25 mm day−1 to meet plant water requirements, and irrigation was
not used to manipulate the air temperature or relative humidity. To minimize microclimatic
variation and shading effects, all the pots were rotated and repositioned weekly, ensuring
uniform exposure to light throughout the greenhouse. The plants were also spaced at
regular intervals to prevent overlap and ensure consistent light across the canopy. The
analyses were conducted at 50 days post-transplantation, corresponding to the point of
maximum vegetative growth and commercial maturity, when plants had reached the
plateau phase of the linear growth curve.

2.2. Extraction and Quantification of the Pigment Profile

Fifty days post-transplantation, 0.5 cm2 leaf segments were excised from each ex-
perimental unit and subsequently converted to m2. These segments were immediately
homogenized in 1.5 mL microcentrifuge tubes containing a chloroform–methanol (2:1 v/v)
mixture, along with a small amount of CaCO3 to stabilize the pH, following the protocols
outlined by Gitelson & Solovchenko (2018) [32] and Falcioni et al. (2022) [9]. After complete
extraction, 20% (v/v) distilled water was added to each tube to promote phase separation.
The samples were subsequently centrifuged at approximately 21,130× g (corresponding
to 15,000 rpm (Model 5424, Rotor FA-45-24-11, Eppendorf SE, Barkhausenweg Hamburg,
Germany)) with an 8.4 cm radius for 5 min to yield a lower organic phase and an upper
polar phase. Each analysis was performed via six biological replicates per cultivar, and
each measurement was conducted in triplicate.

The organic (chloroform) phase was used for the analysis of chlorophyll and carotenoid
contents. Aliquots (200 µL) of this phase were transferred into quartz 96-well microplates,
and the absorbance was measured at 665, 652, and 470 nm via a Biochrom Asys UVM-340
UV microplate reader (Biochrome Ltd., Milton Road, Cambridge, UK). The concentrations
of chlorophylls (Chla and Chlb) and carotenoids were calculated per unit leaf area (mg m−2)
according to the equations provided by (Gitelson & Solovchenko, 2018) [32]:

Chla = 16.72 × A665 − 9.16 × A652

Chlb = 34.09 × A652 − 15.28 × A665

Carotenoids = (1000 × A470 − 1.63 × Chla − 104.96 × Chlb)/221
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The upper polar phase was acidified to 0.1% HCl (v/v) for the determination of antho-
cyanins, which were quantified by measuring the absorbance at 530 nm (ε530 = 30 mM−1 cm−1).
Flavonoids were quantified from the same polar extract at 358 nm (ε358 = 25 mM−1 cm−1)
before acidification (Gitelson & Solovchenko, 2018) [32]. The anthocyanin and flavonoid
contents were expressed on an area basis (nmol m−2).

2.3. Quantification of Total Soluble Phenolic Compounds

The total soluble phenolic content was quantified via a modified Folin–Ciocalteu
method [33]. In 2 mL tubes, 150 µL of the polar extract was mixed with 70 µL of Folin–
Ciocalteu reagent (1 M), 140 µL of Na2CO3 (3.56 M), and 850 µL of deionized water. After
the samples were incubated for 50 min in the dark, they were centrifuged at 15,000 rpm for
2 min. The absorbance of the supernatant was determined at 725 nm, and the phenolic con-
tent was quantified as gallic acid equivalents via a calibration curve (Ŷ = 87.651 × + 1.6515;
R2 = 0.993). The total water-soluble phenolic content was expressed as mg gallic acid
equivalents per m−2 of leaf (mg GAE m−2).

2.4. Spectral Collection of Leaf Reflectance Data

Leaf reflectance spectra were obtained via a Headwall Photonics A-Series push-broom
hyperspectral imaging system (Headwall Photonics Inc., Bolton, MA, USA). This system
features a cooled, back-illuminated charge-coupled device (CCD) detector coupled with a
diffraction grating, generating 825 contiguous spectral bands across the 380–1000 nm range,
with an average spectral resolution of 0.74 nm. The sensor was installed on a precision-
controlled linear stage located 60 cm above the leaf surface, resulting in a ground sampling
distance of approximately 0.25 mm per pixel. Twelve 20 W halogen lamps were evenly
placed around the scan window to provide uniform illumination across the field of view.

Prior to imaging, the system was warmed for 15 min to stabilize the CCD temperature
and reduce electronic noise. Dark-current reference images were captured with the lamps
switched off to characterize the sensor noise and fixed-pattern artefacts. White-reference
images were then captured via a certified Spectralon™ panel (SRT-99-120; Labsphere, North
Sutton, NH, USA) with 99% diffuse reflectance. The frame acquisition parameters were set
in Hyperspec III® (Headwall Photonics, Bolton, MA, USA) as follows: integration time of
39 ms, frame period of 40 ms, and translation speed of 50 mm min−1. This setup ensured
minimal spatial data gaps due to slight overlap between successive line scans.

After the calibration references were collected, each replicate for each cultivar (com-
prising six leaves per variety) was scanned once. The raw radiance data were processed by
performing pixelwise subtraction of the dark reference, followed by normalization against
the white reference, resulting in relative reflectance values. The resulting hypercubes,
comprising two spatial dimensions (x, y) and one spectral dimension (λ), were exported
in ENVI 5.4® (Exelis Visual Information Solutions, Boulder, CO, USA) format for subse-
quent spectral preprocessing, including noise-band removal, Savitzky–Golay smoothing
(second-order, 15-point window), and continuum removal around key pigment absorption
features. This rigorous preprocessing workflow ensured high fidelity of the reflectance data
for downstream multivariate and machine learning analyses.

2.5. Vegetation Indices

Vegetation indices were calculated to assess their effectiveness in detecting changes
in lettuce leaf pigmentation, photochemical efficiency, water status, pigment levels, and
structural-physiological traits. The indices analysed were, in order, NDVI (Normalized Dif-
ference Vegetation Index), GNDVI, EVI (Enhanced Vegetation Index), SAVI (Soil-Adjusted
Vegetation Index), OSAVI (Optimized Soil-Adjusted Vegetation Index), MSAVI2, SIPI (Struc-
ture Insensitive Pigment Index), PSSRc (Plant Senescence Reflectance Index—carotenoids),
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RARS (Red-Edge Anthocyanin Reflectance Signal), Water Band Index), ARI1 and ARI2
(Anthocyanin Reflectance Index 1 and 2), CRI1 and CRI2 (Carotenoid Reflectance Index
1 and 2), VOG1 and VOG2 (Vogelmann Red Edge Index 1 and 2), NPQI (Normalized
Phaeophytinization Index), and PRI (Photochemical Reflectance Index).

Average index values were compared between treatment groups, and correlations with
physiological parameters were assessed via Pearson’s coefficient. This integrated approach
enabled robust discrimination of plant responses to pigments in leaves and supported the
identification of informative spectral markers for physiological and structural changes in
the leaves via two sensor analyses.

2.6. Correlation and Heatmap Analyses

For each trait, a correlation matrix was generated with all individual wavelengths, and
the results were visualized as heatmaps, with color scales representing the strength and
direction of the correlation (from −1 to +1). Additionally, a second heatmap was produced
to visualize the correlation matrix among all measured variables, allowing for an integrated
assessment of relationships between biochemical, physiological, and structural traits. All
calculations and graphical representations were performed via custom Python version 3.12.
scripts (Python Software Foundation, Wilmington, DE, USA).

2.7. Preprocessing of Hyperspectral Data and Dataset Division

The hyperspectral image cubes were imported into ENVI 5.4® (Exelis Visual Informa-
tion Solutions, Boulder, CO, USA) for spatial–spectral sampling. Two regions of interest
(ROIs) were delineated per replicate (six replicates per cultivar), resulting in 12 ROIs for
each of the eleven varieties. Each ROI encompassed approximately 1000 contiguous pixels
from a homogeneous leaf area, and the mean reflectance spectrum of these pixels was
calculated to reduce within-leaf spectral variability. The resulting 132 averaged reflectance
spectra were exported as ASCII files for downstream analysis.

Spectral preprocessing and machine learning workflows were implemented in Orange
Data Mining 3.33 (Bioinformatics Lab, Ljubljana, Slovenia) and RStudio® (Posit, Boston,
MA, USA). Before modelling, noisy bands at the extremes of the sensor range (380–400 nm
and 980–1000 nm) were removed, and spectral smoothing was performed via a Savitzky–
Golay filter (second-order, 15-point window). For comparisons with lower-cost multispec-
tral sensors, five bands matching the MicaSense Altum AL05 configuration were extracted
from each spectrum: blue (475 ± 32 nm), green (560 ± 27 nm), red (668 ± 14 nm), red-edge
(717 ± 12 nm), and near-infrared (842 ± 57 nm). This process generated a multispectral
dataset with 132 five-band spectra.

The hyperspectral and derived multispectral datasets were split into calibration (train-
ing) and independent validation (test) subsets via a stratified random partition (80% cal-
ibration, 20% validation). The optimal models for each biochemical attribute, identified
via the hyperspectral calibration set, were then applied to the spatial image cubes. Spatial
prediction maps for both sensor types were generated in QGIS 3.10 (QGIS Development
Team, Hannover, Germany) via the AVHYAS plugin version 1.0 (Hyperspectral Techniques
Development Division, Advanced Microwave and Hyperspectral Techniques Development
Group, Space Applications Centre, ISRO, Ahmedabad, Gujarat, India), enabling direct
visual comparison of the predicted pigment distributions.
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2.8. Machine Learning Algorithms

Seven regression methods were implemented in Orange Data Mining 3.33 (University
of Ljubljana, Ljubljana, Slovenia) to predict leaf biochemical parameters: cubist rule-based
regression, extreme gradient boosting (GBoost), linear regression (LR), neural networks
(NNs), partial least squares regression (PLSR), random forest (RF), and support vector
machines (SVMs). The models were trained on 80% of the spectral dataset and evaluated
on the remaining 20% via a stratified random split. Model performance was assessed via
the coefficient of determination (R2), root mean square error (RMSE), Akaike’s Information
Criterion (AIC), and Bayesian Information Criterion (BIC). The R2 values were interpreted
as follows: poor (<0.50), moderate (0.50–0.75), or excellent (>0.75). The optimal algorithm
for each biochemical attribute was selected based on the highest R2 on the test set, the lowest
RMSE, and the minimal AIC/BIC, ensuring both predictive accuracy and model parsimony.

2.9. Statistical Analyses

Statistical analyses were performed via RStudio® (Posit, Boston, MA, USA; version
2023.09.0) with base R and the AgroR (Experimental Statistics and Graphics for Agricultural
Sciences), agricolae, factoextra, and FactoMineR packages. Descriptive statistics were
calculated for each biochemical parameter in the complete dataset (n = 132), the calibration
(training) subset (n = 106), and the independent validation (test) subset (n = 26). The
reported metrics included sample size (n), arithmetic mean, standard deviation (SD),
median, minimum, maximum, and coefficient of variation (CV, %).

Cultivar effects for each trait were assessed via one-way ANOVA in RStudio® (version
2023.09.0). Residual normality was checked via Shapiro–Wilk tests, and variance homo-
geneity was checked via Levene’s test before ANOVA. Differences between treatments
were considered significant when p < 0.05. In cases where ANOVA indicated significant
cultivar effects, pairwise means were compared via Tukey’s honestly significant difference
test at the 5%, 1%, and 0.1% significance levels.

Multivariate patterns of hyperspectral and biochemical variation were explored via k-
means clustering and principal component analysis (PCA). K-means clustering was applied
to the complete set of average trait values to partition the eleven cultivars into homogeneous
groups. The k-means clustering analysis was performed using the k-means (factoextra
package) function in R (base package), applied to the matrix of average hyperspectral
curves and biochemical trait values (chlorophyll a, chlorophyll b, carotenoids, anthocyanins,
flavonoids, and phenolic compounds) across the eleven lettuce cultivars. To determine
the optimal number of clusters (k), we used the fviz_nbclust function from the factoextra
package which computes the average silhouette (factoextra package) width for different
k values (typically ranging from 2 to 10). The silhouette width quantifies how similar
each observation is to its own cluster compared to other clusters, thus providing a robust
measure of cluster validity. The number of clusters that maximized the average silhouette
width was selected as optimal (k = 4 in our study). The final cluster assignment was
visualized using factoextra and cross-validated against PCA results. PCA was subsequently
conducted on centred and scaled data with FactoMineR, retaining components with p < 0.01.
Dimensionality reduction was performed via principal component analysis (PCA) and by
selecting the most informative wavelengths based on PLS variable importance (VIP) scores.
The number of retained features for each best-performing model is between 3 and 5 factors.
PCA biplots were generated via facto extraction to visualize cultivar separation and to
illustrate the contributions of individual biochemical traits to the principal axes. All the
flowcharts are shown in Figure 1.
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Figure 1. Schematic workflow for the prediction of biochemical parameters in lettuce (Lactuca sativa
L.) via hyperspectral imaging and machine learning modelling. Eleven cultivars (V01–V11) exhibiting
a range of leaf colouration were grown in a controlled greenhouse environment and categorized into
four color clusters (A–D). The intact leaves were then scanned via a hyperspectral sensor array under
standardized illumination to capture full reflectance spectra. Following spectral acquisition, the
leaf tissues were subjected to solvent extraction and pigment quantification in vitro via a microplate
reader. Finally, the paired spectral and biochemical datasets were analysed through multivariate
statistical methods and deep learning algorithms to generate predictive models of leaf pigment
content and related physiological traits.

3. Results
3.1. Descriptive Analyses

Table 1 presents the full descriptive statistics and the full dataset (n = 132), along with
the training (n = 106) and external testing (n = 26) subsets. The pigments in the leaves of
the lettuce samples significantly varied. The mean concentration of chlorophyll a (Chla)
was 128.89 mg m−2, with values ranging from 63.15 to 306.40 mg m−2. This indicates
substantial variation in chlorophyll a content across the samples, reflecting distinct levels
of photosynthetic activity among them. Chlorophyll b (Chlb) had a mean of 66.76 mg m−2,
ranging from 39.41 to 147.27 mg m−2, which also demonstrated moderate variability in
its concentration across the samples, as indicated by the coefficient of variation (CV%)
of 35.09%. Carotenoids (Cars) exhibited a similar pattern, with a mean concentration of
45.70 mg m−2 and a range between 25.56 and 101.92 mg m−2.

In contrast, the mean anthocyanin (Anc) content was lower at 13.43 nmol m−2, with
values ranging from 0 to 68.57 nmol m−2, reflecting a high level of variability within the
dataset. This high variability is evident in the CV of 126.53%, indicating substantial differ-
ences in the anthocyanin concentration across the samples. Flavonoids (Flv) demonstrated
even greater variation, with a CV of 60.66%, whereas total phenolic compounds (Phe)
showed the least variation, with the lowest CV of 16.79%.

For the training and test datasets, we observe that most parameters have consistent dis-
tributions. For Chla, the means were 129.18 mg m−2 in the training set and 127.69 mg m−2

in the test set, with CVs of 40.94% and 31.43%, respectively. Chlorophyll b (Chlb) had
similar mean values of 66.64 mg m−2 in the training set and 67.25 mg m−2 in the test set,
with CVs of 36.74% and 28.11%, respectively. Carotenoids also showed consistent patterns,
with means of 45.82 and 45.16 for the training and test sets, respectively, and CVs of 36.92%
and 29.21%, respectively.
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Table 1. Descriptive statistics of leaf biochemical parameters in lettuce (Lactuca sativa L.) for the
complete sample set (n = 132), the calibration (training) subset (n = 106) and the validation (test)
subset (n = 26). The parameters included chlorophyll a (Chla; mg m−2), chlorophyll b (Chlb; mg m−2),
carotenoids (Car; mg m−2), anthocyanins (AnC; nmol m−2), flavonoids (Flv; nmol m−2) and total
phenolic compounds (Phe; mg GAE m−2). For each parameter, the mean, standard deviation (SD),
median, minimum, maximum and coefficient of variation (CV, %) are reported. The similarity of
central-tendency measures across the calibration and test subsets confirms that both cover comparable
biochemical ranges, thereby ensuring robust spectral–biochemical model development and evaluation.
The analyses were carried out on plants 50 days after transplanting.

Parameters of
Dataset (n) Mean SD Median Minimum Maximum CV (%)

Chla 132 128.89 50.49 118.95 63.15 306.40 39.18
Chlb 132 66.76 23.42 61.75 39.41 147.27 35.09
Car 132 45.70 16.21 42.41 25.56 101.92 35.47
Anc 132 13.43 16.98 11.46 0.00 68.57 126.53
Flv 132 59.55 36.12 49.75 11.77 178.28 60.66
Phe 132 312.95 52.55 331.01 213.70 393.30 16.79

Parameters
Training (n) Mean SD Median Minimum Maximum CV (%)

Chla 106 129.18 52.89 117.76 63.14 306.40 40.94
Chlb 106 66.64 24.48 60.32 39.40 147.26 36.74
Car 106 45.82 16.92 42.41 25.55 101.91 36.92
Anc 106 12.76 16.63 11.01 0.00 68.57 130.03
Flv 106 57.59 34.64 48.26 11.76 178.28 60.15
Phe 106 310.40 52.90 325.20 213.65 393.30 17.05

Parameters
Test (n) Mean SD Median Minimum Maximum CV (%)

Chla 26 127.69 40.14 123.08 67.38 249.10 31.43
Chlb 26 67.25 18.91 65.65 41.33 123.60 28.11
Car 26 45.16 13.19 42.37 26.51 85.18 29.21
Anc 26 16.15 18.45 12.89 0.00 62.90 114.22
Flv 26 67.53 41.40 58.13 20.83 172.50 61.31
Phe 26 323.20 50.60 341.45 230.45 391.55 15.65

However, anthocyanins presented greater variation. The training set presented a
mean value of 12.76 nmol m−2, with a coefficient of variation of 130.03%. In comparison,
the test set displayed a mean of 16.15 nmol m−2 and a coefficient of variation of 114.22%.
Flavonoids exhibited similar variabilities, with means of 57.59 nmol m−2 for the training set
and 67.53 nmol m−2 for the test set, with CVs of 60.15% and 61.31%, respectively. The total
phenolic compounds were the most stable, with means of 310.40 and 323.20 mg GAE m−2

for the training and test sets, respectively, and CVs of 17.05% and 15.65%, respectively
(Table 1).

The overall consistency between the central tendencies (mean values) and the disper-
sion (standard deviation and CV) of the training and test sets suggests that the datasets
cover a representative range of data variations.

3.2. Effects of Cultivars on Biochemical Composition

Table 2 summarizes the effects of cultivar on the biochemical composition of let-
tuce (Lactuca sativa L.). Eleven lettuce varieties (V01–V11) were compared for their con-
tents of chlorophyll a (Chla), chlorophyll b (Chlb), carotenoids (Car), anthocyanins (AnC),
flavonoids (Flv), and total phenolic compounds (Phe). Statistical analysis revealed signifi-
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cant differences between the varieties, with all parameters showing p values less than 0.001,
indicating strong cultivar effects on the biochemical composition.

For example, Variety V04 presented the highest mean Chla content (243.96 mg m−2),
which was significantly greater than that of all the other varieties. Similarly, variety V08
presented the highest Flv content (124.36 nmol m−2), which was significantly different from
those of the other varieties. The anthocyanin content (Anc) was highest in the V08 and
V09 varieties, whose values were markedly greater than those of the other varieties. These
findings underscore the genetic variation that exists among lettuce varieties, with some
varieties exhibiting high concentrations of extrachloroplastidic biochemical compounds.

The p values for all the parameters are less than 0.001, indicating that the differences
observed among the varieties are statistically significant. These findings indicate that
targeted breeding of particular lettuce cultivars may enhance their phytochemical profiles,
thereby increasing both their nutritional value and antioxidant capacity.

3.3. Cluster, PCA, and Spectral Analysis

The k-means clustering algorithm was employed to determine the optimal number
of clusters on the basis of the hyperspectral curves and biochemical compound values,
with the silhouette method suggesting the formation of four distinct groups of lettuce
varieties. The silhouette width quantifies how similar each observation is to its own cluster
compared to other clusters, thus providing a robust measure of cluster validity. The number
of clusters that maximized the average silhouette width was selected as optimal (k = 4
in our study). On the basis of the analysis, varieties 2 and 4 were assigned to Cluster
A; varieties 5, 7, 10, and 11 were categorized within Cluster B; varieties 1, 3, and 6 were
allocated to Cluster C; and varieties 8 and 9 were classified under Cluster D. Because of
differences in the compound profiles of the lettuce cultivars, k-means analysis was used to
assess the similarity of their spectral behavior.

Figure 2A shows the spectral reflectance profiles that distinguish the photonic signa-
tures of the four lettuce clusters across the visible (VIS) and near-infrared (NIR) regions. In
the VIS range (400–650 nm), cluster C, followed by cluster A, presented greater reflectance,
particularly at the green wavelength (530 nm), suggesting greater potential for chlorophyll
content in these groups than in the other groups. In contrast, clusters B and D demonstrated
a more uniform increase in reflectance from the blue (400 nm) to red (650 nm) wavelengths,
which may indicate variations in the composition or concentration of pigments. In the
NIR region, the reflectance factors for clusters C, A, B, and D were stratified at approxi-
mately 95%, 90%, 85%, and 80%, respectively, indicating differences in leaf structure or
moisture content. A consistent increase in reflectance of approximately 5% was observed
near 760 nm, the “red edge” region, which is often associated with differences in vegetation
health or maturity.
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Table 2. Effects of cultivar on leaf biochemical composition in Lactuca sativa L. Eleven lettuce varieties (V01–V11; n = 6 per variety) were compared for chlorophyll
a (Chla; mg m−2), chlorophyll b (Chlb; mg m−2), carotenoids (Car; mg m−2), anthocyanins (AnC; nmol m−2), flavonoids (Flv; nmol m−2) and total phenolic
compounds (mg GAE m−2). The analyses were carried out on plants 50 days after transplanting.

Effects Chla Chlb Car Anc Flv Phe
Varieties mg m−2 mg m−2 mg m−2 nmol m−2 nmol m−2 mg GAE m−2

V01 138.16 ± 5.19 c † 73.35 ± 3.16 b 48.81 ± 2.10 c 0.00 ± 0.00 f 31.73 ± 2.30 ef 287.10 ± 10.20 c
V02 177.29 ± 12.01 a 85.10 ± 5.56 b 63.62 ± 3.89 b 0.00 ± 0.00 f 26.75 ± 2.22 f 241.65 ± 6.50 d
V03 110.15 ± 5.25 d 57.00 ± 3.07 cde 41.84 ± 1.81 cd 0.03 ± 0.01 f 26.92 ± 3.18 f 259.40 ± 5.90 cd
V04 243.96 ± 19.31 a 118.80 ± 9.24 a 82.21 ± 6.42 a 0.45 ± 0.07 f 35.88 ± 0.94 def 238.60 ± 3.80 d
V05 102.39 ± 3.47 d 51.82 ± 1.43 de 35.29 ± 0.97 de 16.01 ± 0.35 c 61.71 ± 5.65 bc 365.30 ± 8.65 ab
V06 115.75 ± 3.76 cd 57.82 ± 1.91 cd 42.08 ± 1.39 cd 6.71 ± 0.47 e 45.38 ± 2.11 cde 284.30 ± 4.75 c
V07 95.15 ± 2.19 de 45.64 ± 1.02 e 33.78 ± 0.44 e 15.86 ± 0.94 c 71.06 ± 5.25 bc 333.20 ± 6.35 b
V08 137.46 ± 4.38 c 69.55 ± 1.94 bc 44.23 ± 1.30 c 60.88 ± 1.67 a 124.36 ± 16.46 a 383.75 ± 2.90 ab
V09 141.41 ± 6.237 bc 79.85 ± 4.70 b 49.42 ± 1.71 c 22.39 ± 0.72 b 119.46 ± 4.82 a 347.90 ± 2.35 b
V10 76.12 ± 3.72 f 49.22 ± 1.91 de 30.42 ± 1.18 e 11.22 ± 0.25 d 51.49 ± 2.27 bcd 347.50 ± 8.50 b
V11 79.90 ± 2.68 ef 46.18 ± 1.02 e 30.94 ± 0.96 e 14.10 ± 0.09 cd 60.32 ± 0.65 bc 353.30 ± 6.60 b

p value *** *** *** *** *** ***
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001

*** significant at p ≤ 0.001. † According to Tukey’s mean test, values followed by different letters indicate a significant difference (≤0.001) among treatments.
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Figure 2. Spectral reflectance profiles and principal component analysis (PCA) of lettuce cultivar
clusters. (A) Mean leaf reflectance spectra for the four-color clusters—A (blue), B (green), C (olive),
and D (purple)—measured from 420–980 nm under uniform illumination. The vertical gray lines
mark characteristic pigment absorption bands: chlorophyll a at 430 and 640 nm, chlorophyll b at 460
and 660 nm, and carotenoids at 470 nm. The distinct reflectance peaks in the visible range indicate
cluster-specific pigment concentrations, whereas the plateau in the 700–900 nm range reflects leaf
structural scattering. (B) Two-dimensional PCA biplot of the same cultivars (V01–V11), coloured by
cluster, showing scores on PC1 (64.4% of variance) and PC2 (31.7%). The black vectors denote loadings
for chlorophyll a (Chla), chlorophyll b (Chlb), and carotenoids (Car), which primarily contribute
to separation along PC1. The red vectors indicate anthocyanins (AnC), flavonoids (Flv), and total
phenolic compounds (Phe), which influence PC2. Vector length and orientation reflect each variable’s
contribution to the principal components, demonstrating that Cluster A cultivars (e.g., V04) are rich
in photosynthetic pigments, whereas Cluster D cultivars (e.g., V08) have elevated levels of flavonoids
and anthocyanins. The analyses were carried out on plants 50 days after transplanting.

Figure 2B presents a biplot derived from principal component analysis (PCA), which
reveals the multivariate relationships between the phytochemical constituents and the
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lettuce varieties within the four identified clusters. PCA was employed to analyse the
contributions of various pigment classes between the clusters. The majority of the variability
in the dataset can be attributed to the first two principal components (Dim1 and Dim2),
which collectively account for more than 96% of the total variance. Specifically, Dim1
contributes 64.4%, whereas Dim2 explains an additional 31.7%. The biplot vectors revealed
that the concentrations of flavonoids (Flv) and anthocyanins (Anc) play a key role in
differentiating Dim2, particularly in Cluster D, which shows high positive loading on this
axis. These findings indicate elevated levels of these phytochemicals in varieties 8 and
9, as shown by the comparison of the means (Table 2). In contrast, Cluster A, which is
positioned negatively along Dim2, is inversely related to these components. Clusters B
and C are located closely along the positive axis of Dim1, reflecting high concentrations of
chlorophyll a (Chla), chlorophyll b (Chlb), and carotenoids (Car).

3.4. Vegetation and Cluster Heatmaps

The relative importance of vegetation indices (VIs) in predicting foliar biochemical
traits varied across the spectral indicators evaluated (Figure 3A). Among the 18 VIs tested,
anthocyanin and carotenoid-related indices, specifically ARI2, CRI1, and CRI2, presented
the highest predictive relevance, with ARI2 alone accounting for more than 30% of the
explained variation. These indices, which are sensitive to pigments other than chlorophyll,
outperform traditional greenness indices such as the NDVI, EVI, and SAVI, whose con-
tributions remain below 2%. ARI1 and RARS also demonstrated moderate importance,
underscoring the significance of red-edge and reflectance asymmetry metrics under the
experimental conditions. These findings suggest that there is limited modulation of extra-
chloroplastidic pigment biosynthesis, as indicated by the indices related to the targeted
physiological traits within this dataset.

 

Figure 3. (A) Relative importance of spectral vegetation indices for predicting physiological and
biochemical responses in lettuce leaves under different pigments. The bar chart displays the relative
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variable importance (%) of 18 vegetation indices derived from hyperspectral data. The inset illustrates
the principle of light interaction with leaves and the vegetation index calculation. Index abbreviations:
NDVI, Normalised Difference Vegetation Index; GNDVI, Green Normalised Difference Vegetation
Index; EVI, Enhanced Vegetation Index; SAVI, Soil-Adjusted Vegetation Index; OSAVI, Optimised
Soil-Adjusted Vegetation Index; MSAVI2, Modified Soil-Adjusted Vegetation Index 2; SIPI, Structure
Insensitive Pigment Index; PSSRc, Pigment Specific Simple Ratio for chlorophyll c; RARS, Ratio
Analysis of Reflectance Spectra; WBI, Water Band Index; ARI1, Anthocyanin Reflectance Index 1; ARI2,
Anthocyanin Reflectance Index 2; CRI1, Carotenoid Reflectance Index 1; CRI2, Carotenoid Reflectance
Index 2; VOG1, Vogelmann Index 1; VOG2, Vogelmann Index 2; NPQI, Normalised Photochemical
Quenching Index; PRI, Photochemical Reflectance Index. Indices with higher values indicate a greater
contribution to the predictive modelling of leaf responses. (B) Spectral sensitivity heatmap showing
the association Higher values indicate a greater contribution to the predictive modelling. Higher
values indicate a greater contribution to the predictive modelling of leaf responses. (B) Spectral
sensitivity heatmap showing the associations. Higher values indicate a greater contribution to the
predictive modelling of leaf responses. (B) Spectral sensitivity heatmap showing the associations
between wavelength (420–950 nm) and biochemical traits: chlorophyll a (Chla), chlorophyll b (Chlb),
carotenoids (Car), flavonoids (Flv), and phenolics (Phe). (C) Pearson correlation matrix among foliar
biochemical traits, indicating the strength and direction of linear relationships. Positive correlations
are shown in red, and negative correlations are shown in blue, with the intensity representing the
correlation coefficient. The analyses were carried out on plants 50 days after transplanting.

Spectral analysis across the visible to near-infrared range (420–950 nm) revealed dis-
tinct patterns for each biochemical parameter (Figure 3B). Chlorophyll a and b exhibited
strong associations with the reflectance around the red absorption peak (~660–680 nm)
in both the red and far-red regions. Carotenoid and flavonoid compounds were dis-
tributed across the visible spectrum, with wavelength peak localization being less distinct
(Figure 3B). In contrast, phenolics showed a unique reflectance pattern, with a maxi-
mum association observed in the green–blue region (~500–540 nm), indicating distinct
optical behavior.

The correlation structure among the measured foliar traits (Figure 3C) supported these
findings. Chlorophyll a and b were highly positively correlated (r > 0.9), which is consistent
with their joint physiological functions in terms of light absorption. Carotenoids presented
moderate positive correlations with chlorophyll, whereas flavonoids and phenolics pre-
sented contrasting trends. Notably, phenolics were strongly and negatively correlated
with chlorophyll content (r < −0.75), suggesting potential antagonistic dynamics between
primary and secondary metabolism under the environmental conditions studied.

3.5. Machine Learning Models

The predictive accuracy of seven machine learning algorithms (LR, PLS, Gboost,
RF, NN, SVM, and Cubist) for six leaf biochemical attributes was evaluated via both the
Headwall hyperspectral and the MicaSense multispectral datasets. The results for the RMSE
and R2 in both the calibration and independent test sets are presented in Tables 3 and 4.

The chlorophyll a (Chla) and PLS methods achieved the lowest test RMSE and
highest R2 in both datasets (Headwall: RMSE = 26.71 mg m−2, R2 = 0.54; MicaSense:
RMSE = 30.26 mg m−2, R2 = 0.41). The LR and RF models produced comparable results,
with test RMSEs of 27.22 and 27.65 mg m−2 (Headwall), 30.50 and 30.75 mg−2 (MicaSense),
and test R2 values of 0.52 and 0.51 (Headwall), 0.40 and 0.39 (MicaSense), respectively. The
Cubist model recorded the lowest calibration RMSE (Headwall: 18.50 mg m−2; MicaSense:
29.07 mg m−2) and the highest training R2, but its test performance decreased markedly,
with test RMSEs of 46.44 mg m−2 (Headwall) and 35.13 mg m−2 (MicaSense) and test
R2 values of 0.32 and 0.25, respectively. The NN, Gboost, and SVM models presented
higher test RMSEs and lower R2 values in both datasets, with Gboost and SVM consistently
yielding test R2 values less than 0.30.
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Table 3. Performance comparison of seven machine learning models for predicting leaf biochemical
parameters from Headwall hyperspectral data. For each attribute—chlorophyll a (Chla; mg m−2),
chlorophyll b (Chlb; mg m−2), carotenoids (Car; mg m−2), anthocyanins (AnC; nmol m−2), flavonoids
(Flv; nmol m−2) and phenolic compounds (Phe; mg GAE m−2)—the root mean square error (RMSE)
and coefficient of determination (R2) are reported for both the training (calibration) and independent
test sets. Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC) are also
used to assess model parsimony. The model with the lowest test-set RMSE and highest test-set R2

for each attribute is highlighted in blue; blue-highlighted cells indicate optimal test-set performance.
Abbreviations: LR, multiple linear regression; PLS, partial least squares; Gboost, gradient boosting;
RF, random forest; NN, neural network; SVM, support vector machine; Cubist, rule-based regression.
The analyses were carried out on plants 50 days after transplanting.

RMSE R2

Attribute Model Train Test Train Test AIC BIC

C
hl

a
(m

g
m

−
2 ) LR 34.58 27.22 0.57 0.52 975.36 1263.64

PLS 32.98 26.71 0.61 0.54 774.75 789.16
Gboost 39.30 41.28 0.44 0.00 1002.18 1031.00

RF 37.66 27.65 0.49 0.51 792.22 806.63
NN 34.46 28.09 0.57 0.49 801.66 816.08

SVM 50.93 37.50 0.06 0.09 954.37 968.79
Cubist 18.50 46.44 0.85 0.32 972.36 986.78

C
hl

b
(m

g
m

−
2 ) LR 17.36 13.04 0.49 0.51 783.79 1072.07

PLS 16.63 12.64 0.53 0.54 593.79 608.21
Gboost 19.02 16.87 0.39 0.17 731.35 745.76

RF 18.70 13.46 0.41 0.47 612.52 626.94
NN 17.11 15.36 0.51 0.31 682.21 696.62

SVM 22.95 16.93 0.11 0.16 733.86 748.27
Cubist 12.91 16.31 0.66 0.33 694.16 708.58

C
ar

(m
g

m
−

2 ) LR 10.67 8.40 0.60 0.58 547.34 691.48
PLS 10.25 8.26 0.63 0.60 446.46 460.88

Gboost 12.68 12.05 0.43 0.13 648.73 663.14
RF 12.03 8.33 0.49 0.59 451.95 466.37
NN 10.53 9.66 0.61 0.44 532.21 546.63

SVM 14.73 11.13 0.23 0.26 606.40 620.82
Cubist 7.21 9.42 0.77 0.43 527.90 542.32

A
nc

(n
m

ol
m

−
2 ) LR 12.44 13.01 0.43 0.48 691.03 835.17

PLS 11.07 9.35 0.55 0.73 427.31 441.72
Gboost 6.93 7.97 0.82 0.81 338.76 353.17

RF 4.44 5.34 0.93 0.91 134.41 148.82
NN 10.86 10.10 0.57 0.69 465.91 480.33

SVM 11.69 12.93 0.50 0.49 596.83 611.25
Cubist 3.14 11.27 0.96 0.63 518.20 532.61

Fl
v

(n
m

ol
m

−
2 ) LR 24.28 28.05 0.50 0.52 883.29 1027.43

PLS 24.82 27.34 0.48 0.55 778.01 792.41
Gboost 28.27 26.10 0.33 0.59 753.46 767.87

RF 24.34 20.11 0.50 0.76 613.94 628.35
NN 27.05 27.94 0.38 0.53 789.47 803.88

SVM 29.63 35.69 0.26 0.23 919.26 933.68
Cubist 14.87 24.72 0.80 0.49 767.92 782.34

Ph
e

(m
g

G
A

E
m

−
2 ) LR 26.20 22.05 0.75 0.80 279.29 423.43

PLS 25.30 23.25 0.77 0.79 209.72 224.14
Gboost 28.70 32.40 0.70 0.57 391.93 406.35

RF 25.40 28.90 0.77 0.66 330.76 345.17
NN 28.95 29.80 0.70 0.64 346.40 360.81

SVM 35.65 29.85 0.54 0.64 346.84 361.25
Cubist 24.35 29.10 0.82 0.76 286.60 301.01
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Table 4. Performance comparison of seven machine learning models for predicting leaf biochemical
parameters from MicaSense multispectral data. Each attribute is reported for both the training
(calibration) and independent test sets. Akaike’s information criterion (AIC) and the Bayesian
information criterion (BIC) are also shown. The best-performing model for each attribute—identified
by the lowest test-set RMSE and highest test-set R2—is highlighted in blue; blue-highlighted cells
denote optimum test-set performance. Abbreviations as in Table 3. The analyses were carried out on
plants 50 days after transplanting.

RMSE R2

Attributes Model Train Test Train Test AIC BIC

C
hl

a
(m

g
m

−
2 ) LR 37.58 30.50 0.49 0.40 844.85 859.26

PLS 37.55 30.26 0.49 0.41 836.54 845.19
Gboost 40.25 33.14 0.41 0.29 884.98 893.63

RF 39.39 30.75 0.44 0.39 845.18 853.83
NN 37.80 31.36 0.48 0.37 854.63 863.28

SVM 48.68 37.42 0.14 0.09 949.81 958.46
Cubist 29.07 35.13 0.55 0.25 911.61 926.03

C
hl

b
(m

g
m

−
2 ) LR 18.55 14.49 0.42 0.39 646.54 655.19

PLS 18.56 14.39 0.42 0.39 644.71 653.36
Gboost 22.07 18.28 0.18 0.03 773.11 787.52

RF 19.67 14.48 0.35 0.39 650.36 664.77
NN 18.66 14.99 0.41 0.35 667.88 682.29

SVM 22.58 16.76 0.14 0.18 728.01 742.43
Cubist 14.41 15.92 0.43 0.31 666.44 680.85

C
ar

(m
g

m
−

2 ) LR 11.64 9.36 0.52 0.48 514.10 528.51
PLS 11.65 9.29 0.52 0.48 508.12 516.77

Gboost 13.73 10.12 0.33 0.39 551.78 560.43
RF 12.44 8.93 0.45 0.52 487.12 495.77
NN 11.68 9.71 0.52 0.44 529.57 538.22

SVM 13.74 10.70 0.33 0.31 582.76 591.41
Cubist 8.61 11.22 0.60 0.42 576.36 590.78

A
nc

(n
m

ol
m

−
2 ) LR 11.47 11.38 0.52 0.60 531.06 545.47

PLS 12.40 12.63 0.44 0.51 581.36 590.01
Gboost 9.01 14.51 0.70 0.36 653.24 661.89

RF 8.44 13.69 0.74 0.43 622.60 631.24
NN 10.26 8.98 0.62 0.75 402.49 411.13

SVM 11.71 13.54 0.50 0.44 617.35 626.00
Cubist 2.87 9.24 0.97 0.66 454.61 469.02

Fl
v

(n
m

ol
m

−
2 ) LR 24.86 28.72 0.48 0.50 804.90 819.32

PLS 25.67 29.64 0.45 0.47 816.92 825.57
Gboost 31.21 27.20 0.18 0.55 772.64 781.29

RF 26.69 26.58 0.40 0.57 760.55 769.20
NN 23.97 26.95 0.52 0.56 767.24 775.89

SVM 27.85 34.19 0.35 0.29 893.22 901.87
Cubist 19.57 29.55 0.64 0.41 769.06 783.48

Ph
e

(m
g

G
A

E
m

−
2 ) LR 28.25 25.40 0.71 0.74 261.26 275.68

PLS 28.50 25.60 0.71 0.73 264.32 272.96
Gboost 30.85 31.25 0.66 0.60 368.85 377.49

RF 29.80 32.35 0.68 0.57 387.53 396.17
NN 28.10 25.10 0.72 0.74 254.13 262.78

SVM 31.80 26.35 0.63 0.72 276.74 285.39
Cubist 24.10 31.00 0.82 0.62 363.95 378.37
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Chlorophyll b (Chlb) by PLS achieved the lowest test RMSE and the highest R2 in both
datasets (Headwall: RMSE = 12.64 mg m−2, R2 = 0.54; MicaSense: RMSE = 14.39 mg m−2,
R2 = 0.39), closely followed by LR (Headwall: 13.04 mg −2, 0.51; MicaSense: 14.49 mg m−2,
0.39). The RF, Cubist, and NN models showed intermediate test performances, with RMSEs
ranging from 13.46 to 16.31 mg m−2 (Headwall) and 14.48 to 15.99 mg m−2 (MicaSense),
with R2 values between 0.31 and 0.47. Both the Gboost and SVM methods resulted in higher
test RMSEs and lower R2 values for chlorophyll b across datasets.

Carotenoids (Car) and PLS presented the lowest test RMSE and highest R2 in the Head-
wall dataset (RMSE = 8.26 mg m−2, R2 = 0.60), whereas RF was superior to the MicaSense
data (RMSE = 8.93 mg m−2, R2 = 0.52). LR, PLS, and RF showed similar performances in
the MicaSense dataset (test RMSE = 9.29–9.71 mg m−2; R2 = 0.44–0.48). Cubist, NN, and
SVM had moderate performance (test RMSE: 9.42–11.22 mg m−2; R2 = 0.31–0.44), whereas
Gboost presented higher test RMSE (Headwall: 12.05 mg m−2; MicaSense: 10.12 mg m−2)
and lower R2 (Headwall: 0.13; MicaSense: 0.39).

The anthocyanins (Anc) and RF presented the lowest test RMSE (5.34 nmol m−2) and
the highest test R2 (0.91) in the Headwall dataset, whereas the NN presented the best
results for MicaSense (test RMSE = 8.98 nmol m−2, R2 = 0.75). Gboost and PLS achieved
competitive performance (Headwall: Gboost RMSE = 7.97 nmol m−2, R2 = 0.81; PLS
RMSE = 9.35 nmol m−2, R2 = 0.73; MicaSense: PLS RMSE = 12.63 nmol m−2, R2 = 0.51),
whereas Cubist, LR, and SVM had test RMSEs between 9.24 and 13.54 nmol m−2 and test
R2 values ranging from 0.44 to 0.66.

Flavonoid (Flv)-based RF demonstrated the lowest test RMSE (20.11 nmol m−2) and the
highest R2 (0.76) with the Headwall dataset. In the MicaSense dataset, RF, NN, and Gboost
achieved similar test RMSE and R2 values (RF: 26.58 nmol m−2, 0.57; NN: 26.95 nmol m−2,
0.56; Gboost: 27.20 nmol m−2, 0.55). PLS and LR produced slightly higher test RMSEs
(Headwall: 27.34–28.05 nmol m−2; MicaSense: 28.72–29.64 nmol m−2) and moderate R2

values (0.47–0.55). SVM and Cubist displayed the least favourable test performance for this
trait in both datasets.

The phenolic compounds (Phe), LR and PLS achieved the lowest test RMSEs
and highest R2 values in the Headwall dataset (LR: 22.05 mg GAE m−2, 0.80; PLS:
23.25 mg GAE m−2, 0.79), whereas the NN was superior in the MicaSense dataset (test
RMSE = 25.10 mg GAE m−2, R2 = 0.74). Cubist, RF, and SVM showed comparable test
performances in both datasets (Headwall: test RMSE = 28.90–29.85 mg GAE m−2,
R2 = 0.64–0.76; MicaSense: test RMSE = 26.35–32.35 mg GAE m−2, R2 = 0.57–0.72), and
Gboost had the least favourable results overall.

Overall, this analysis reveals a clear hierarchy: PLS and RF yield reliable, repeatable
predictions; LR and NN serve as solid baselines; and complex learners such as Cubist,
Gboost, and SVM require additional safeguards against overfitting to approach the perfor-
mance of simpler, more robust algorithms.

3.6. Performance of Regression Models in Predicting Phytochemical Compounds

Figures 4 and 5 display scatterplots of the predicted values for chlorophyll a, chloro-
phyll b, carotenoids, anthocyanins, flavonoids, and phenolic compounds, comparing
the predictions from regression models with the observed values from laboratory leaf
chemical analysis.
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Figure 4. Scatter plots of observed versus predicted chlorophyll and carotenoid concentrations
(mg m−2). Predictions for chlorophyll a (A,D) and chlorophyll b (B,E) were obtained via partial
least squares regression on headwall hyperspectral (A,B) and MicaSense multispectral (D,E) data.
Carotenoid predictions were performed via PLS for Headwall (C) and random forest for MicaSense
(F). The 1:1 diagonal line indicates perfect agreement; the inset boxes report each model’s coefficient
of determination (R2) and RMSE. The analyses were carried out on plants 50 days after transplanting.
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Figure 5. Scatter plots of observed versus predicted anthocyanin, flavonoid and phenolic concen-
trations. Panels A, C and E use Headwall hyperspectral data—random forest for anthocyanins (A)
and flavonoids (C) and PLS for phenolics (E). Panels B, D and F use MicaSense multispectral data—a
neural network for anthocyanins (B) and phenolics (F) and a random forest for flavonoids (D). The
1:1 diagonal line denotes perfect prediction; the inset annotations show each model’s R2 and RMSE.
The analyses were carried out on plants 50 days after transplanting.
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The pigment scatterplots (Figure 4) show significant performance differences between
the Headwall and MicaSense sensors in terms of their ability to predict phytochemical
content via the PLS and RF models. For chlorophyll a (Chla), the predictions derived from
the Headwall sensor data (Figure 4A) yielded an R2 of 0.54 and an RMSE of 26.71 mg m−2,
indicating better alignment with the observed values than the MicaSense sensor (Figure 4B),
which had an R2 of 0.41 and an RMSE of 30.26 mg m−2. This trend is consistent across
chlorophyll b (Chlb) and carotenoids (Car), with the Headwall sensor (Figure 4C,E) achiev-
ing higher R2 values and lower RMSEs than the MicaSense sensor (Figure 4D,F). The
observed pattern suggests that the higher spectral resolution data captured by the Head-
wall sensor more accurately reflect the actual pigment concentrations, as evidenced by the
proximity of the data points to the unity line. This close alignment supports the relevance
of this analysis for assessing artificial intelligence model quality.

The scatterplots of secondary metabolites such as anthocyanins, flavonoids and phe-
nolic compounds (Figure 5) further emphasize the superiority of the Headwall sensor. For
anthocyanin content, the Headwall sensor using the RF model (Figure 5A) achieved an R2

of 0.91 and an RMSE of 5.34 nmol m−2, whereas the NN model (Figure 5B) recorded an
R2 of 0.75 and an RMSE of 8.98 nmol m−2. These results suggest that the Headwall sensor,
with its superior spectral resolution, is more capable of detecting anthocyanin content. In
the estimation of flavonoids, the MicaSense sensor with the RF model (Figure 5D) had an
R2 of 0.57, whereas the Headwall sensor using the same model (Figure 5C) achieved an R2

of 0.76. However, both datasets showed significant dispersion of points along the 0–1 line
for values above 125 nmol m−2. For phenolic content (Figure 5E,F), the PLS model with
Headwall sensor data, yielding an RMSE of 23.25 mg GAE m−2 and an R2 of 0.79, provided
more accurate predictions than the NN model applied to the MicaSense sensor data.

3.7. Spatial Mapping of Lettuce Biochemical Traits

Figure 6 presents the spatial distribution maps of six key biochemical traits across
eleven lettuce cultivars (V01–V11), which were predicted via both multispectral and hy-
perspectral imaging. The true-color RGB images (top row) clearly distinguish between
green-leaf cultivars (V01–V04) and red-leaf cultivars (V05–V11), with the latter displaying
a gradient from reddish-brown to deep purple pigmentation.

The trait maps revealed substantial genotypic differences in pigment and phenolic dis-
tribution. The green-leaf cultivars consistently presented high concentrations of chlorophyll
a, chlorophyll b, and carotenoids, as highlighted by the intense green tones and elevated
laboratory ROI values. Conversely, these pigments are significantly diminished in red-leaf
cultivars, whereas anthocyanin concentrations are considerably elevated in this group,
exhibiting extensive distribution across the leaf surface. The green-leaf types presented
minimal anthocyanin contents, as indicated by the yellow map tones and low ROI values.

Flavonoids and total phenolics display broader distributions across cultivars. While
red-leaf varieties contain higher concentrations—especially for total phenolics—significant
intragroup variability is evident, suggesting complex regulation beyond simple colour
grouping. Notably, both the MicaSense multispectral and Headwall hyperspectral models
effectively capture spatial heterogeneity, with visible concentration gradients aligning with
anatomical leaf regions. The hyperspectral predictions, however, offer slightly finer spatial
detail than the multispectral approach does. Overall, these results highlight the strong
agreement between imaging-based predictions and laboratory measurements, demonstrat-
ing the value of spatial mapping for identifying cultivar-specific biochemical patterns and
supporting high-throughput phenotyping in leafy vegetables.



Horticulturae 2025, 11, 1077 21 of 30

 
Figure 6. True color and predicted trait maps for eleven lettuce cultivars (V01–V11, left to right).
The top row shows RGB composites of each whole leaf. The rows then show spatial estimates of six
biochemical attributes: (A), chlorophyll a; (B), chlorophyll b; (C), carotenoids; (D), anthocyanins;
(E), flavonoids; and (F), total phenolics. For each attribute, row 1 shows predictions from the
MicaSense multispectral bands, and row 2 shows predictions from the Headwall hyperspectral
data. A yellow-to-green color gradient indicates increasing concentration; overlaid numbers are
the laboratory-measured ROI values for each leaf segment. Units are mg m−2 for chlorophylls and
carotenoids, nmol m−2 for anthocyanins and flavonoids, and mg GAE m−2 for phenolics. The
analyses were carried out on plants 50 days after transplanting.
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4. Discussion
4.1. Impact of Cultivars on Biochemical Composition

Under greenhouse conditions, the eleven lettuce cultivars (V01–V11) presented pro-
nounced genotypic differences in terms of leaf pigment and phenolic composition. All the
measured compounds (chlorophyll a, chlorophyll b, carotenoids, anthocyanins, flavonoids,
and total phenolics) varied significantly among the cultivars, with coefficients of variation
ranging from ~17% to ~126% (Figures 1–6) [9]. For example, anthocyanins are absent in
some green cultivars but are abundant in others, reflecting the broad genetic diversity in
secondary metabolite accumulation within Lactuca sativa L. Hierarchical clustering of the
chemometric data clearly separates the cultivars by their biochemical profiles.

In general, fully green-leaved varieties (V01, V02, V03, V04) clustered together, ex-
hibiting the lowest levels of anthocyanins, flavonoids, and total phenolics; conversely,
the deep red/purple cultivars (V08, V09) formed an opposing cluster with the highest
concentrations of these compounds [34,35]. Intermediate “green-purplish” types (e.g., V05,
V07, V10, and V11) fell between these extremes, and one cultivar (V06) remained centrally
positioned with a more balanced pigment profile. This inverse relationship between pig-
ment classes was a striking feature of our results. The varieties that accumulated the lowest
levels of flavonoids, anthocyanins, and phenolics presented the highest concentrations of
chlorophyll (a, b, and total) and carotenoids, and vice versa [36–38].

These findings indicate a trade-off or differential regulation between photosynthetic
pigments and secondary phenolics across lettuce genotypes. Anthocyanins, the flavonoid
pigments responsible for red colouration, are essentially absent in green cultivars, whereas
red cultivars accumulate them in high amounts, indicating underlying genetic differences in
anthocyanin biosynthesis [39]. Consistently, we observed that chlorophyll and carotenoid
contents covaried positively (reflecting their joint role in the chloroplast), whereas antho-
cyanin levels were closely paralleled by flavonoid levels, since anthocyanins are a subclass
of flavonoids that share the same biosynthetic pathway [40]. The PCA biplot of our data
further illustrated this dichotomy: cultivars rich in chlorophyll/carotenoid loaded opposite
to those high in anthocyanin/flavonoid, confirming that these pigment groups contribute
in opposite ways to the principal variance among the cultivars.

Biochemical differences exist among lettuce cultivars. Compared with green vari-
eties, red-leaf varieties are widely reported to accumulate significantly greater amounts
of flavonoids, anthocyanins, and total phenolic compounds [40,41], making them richer
sources of antioxidants. For example, one recent study revealed that red lettuce presented
higher phenolic and flavonoid levels than did green lettuce grown under the same condi-
tions. Similarly, comparative analyses have shown that total phenolic concentrations in
red lettuce are 2–3 times greater than those in green lettuce [7]. The green cultivars, while
higher in chlorophyll and carotenoids, contained markedly fewer phenolics (especially no
anthocyanin), whereas the pigmented cultivars accumulated abundant phenolic phyto-
chemicals. This genotypic contrast in secondary metabolism underscores the dominant
impact of cultivar on the biochemical composition of lettuce [2,19].

Overall, the substantial biochemical variation observed among the 11 cultivars high-
lights the importance of genetic factors in determining the phytochemical profile of lettuce.
Even under controlled environmental conditions, each cultivar manifests a unique spec-
trum of pigments and phenolics [40]. This diversity not only explains the distinct spectral
signatures captured in our hyperspectral measurements but also has practical implica-
tions. These results indicate that breeding or cultivar selection may be adjusted to target
nutritional or functional characteristics. For example, red-pigmented cultivars contain
high levels of antioxidant phenolics, whereas green cultivars typically yield relatively high
amounts of chlorophyll and carotenoids. Our study revealed that multivariate analysis
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(including cluster grouping and PCA) clearly differentiated cultivar profiles, demonstrating
that hyperspectral imaging with machine learning reliably classified varieties based on
biochemical differences.

In summary, the cultivar had a clear and profound effect on the biochemical composi-
tion of lettuce in our study, driving the observed clustering of pigment profiles and offering
a deeper understanding of how genetic variation in L. sativa translates into divergent
phytochemical outcomes under the same growing conditions [40]. These results concur
with recent literature confirming that the secondary metabolite content of lettuce is highly
cultivar dependent, with red/purple genotypes consistently enriched in anthocyanins and
related phenolics relative to their green counterparts [39]. This genotype-driven biochemi-
cal heterogeneity provides a strong foundation for the predictive models and classification
approaches employed, as discussed later, and emphasizes that cultivar selection is a key
factor in the nutraceutical quality of lettuce.

4.2. Spectral Reflectance Pattern and Pigment Content

The leaf reflectance spectra from both sensors clearly mirrored the underlying pigment
concentrations. In our results, leaves with relatively high chlorophyll (and related pigments)
contents presented markedly lower reflectance in the visible range (400–700 nm) than did
low-pigmentation leaves, which was consistent with strong absorption by chlorophyll a
and b in the blue and red wavelengths [42]. A pronounced “green peak” at ~550 nm was
evident, but even the reflectance tended to be inversely correlated with the chlorophyll
content (darker, high-chlorophyll foliage reflected less green light) [42]. Importantly, a
greater correlation in the red-edge region (~690–730 nm) emerged as a key spectral domain
linked to pigment levels. The high-chlorophyll leaves presented a red-edge inflection point
that shifted towards longer wavelengths and lower reflectance at ~710 nm, whereas the
low-chlorophyll leaves presented an earlier, more abrupt increase in reflectance. Recent
studies have confirmed that red-edge metrics are reliable indicators of leaf chlorophyll
content. For example, Sonobe et al. (2017) [43] reported that reflectance in the red-edge
(~710 nm) and green (~525–630 nm) bands was strongly negatively correlated with tea leaf
chlorophyll (r down to −0.7). After appropriate preprocessing (e.g., continuum removal
or scatter correction), these correlations became even stronger, underscoring that subtle
spectral features carry significant chlorophyll signals.

The spectral signatures show that as the pigment content increases, the reflectance
in the chlorophyll-absorptive bands decreases, and the red-edge feature shifts, whereas
the NIR plateau (>750 nm) remains high across samples (dominated by the leaf structure,
not the pigment). These characteristic spectral responses confirm that the sensors captured
biochemical variations. Notably, the hyperspectral Headwall sensor, with its continuous
narrow bands, resolved these features in detail (e.g., gradual slopes and inflection shape
of approximately 705 nm), whereas the MicaSense multispectral sensor (with only broad
discrete bands) captured the major trends but with less nuance. This difference is reflected
in our model results, which are consistent with findings in the literature that hyperspectral
indices detect pigment changes more sensitively than broadband indices do. For example, in
a light experiment with a vegetation index (SIPI, SRI, CRI, or ARI1), chlorophyll decreased
before comparable multispectral indices did [44]. Thus, the richer spectral detail from
Headwall yielded stronger pigment–reflectance relationships, whereas MicaSense’s broader
bands limited the detection of subtle pigment-induced spectral shifts.

4.3. Predictive Model Performance Across Sensors

All regression models successfully learned the relationships between spectral re-
flectance and leaf biochemical traits (primarily pigment content), but their performance
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varied in magnitude and generality. Partial least squares regression (PLSR) provided a
strong baseline for both sensor datasets. Despite its simplicity, PLSR effectively leverages
the high collinearity of spectral bands [45], distilling the reflectance data into latent factors
linked to pigment variation. Indeed, the predictive accuracy of PLSR in our study was high
(with cross-validated R2 values indicating that most pigment variability was explained),
indicating a linear relationship between the reflectance and chlorophyll concentration.

The PLSR can be highly effective for leaf-level trait estimation [26]. For example, Wang
et al. (2023) [46] reported that PLSR performed on par with nonlinear Gaussian process and
random forest models for UAV-based chlorophyll estimation (R2~0.75–0.83) [26]. In our
case, more complex machine learning models (Random Forest, Neural Network, Cubist)
yielded comparable or, in some cases, slightly better accuracy, but not dramatically so. The
random forest (RF) models effectively identified certain nonlinear interactions between
reflectance and traits, which resulted in a slight reduction in prediction errors. This was
particularly advantageous for multispectral data, where leveraging nonlinear relationships
among broad spectral bands proved beneficial. This trend—RF outperforming PLSR—
has been noted in some studies [1,21,47]. For example, Zhang et al. (2023) [48], Habibi
et al., 2019 [21] and Falcioni et al. (2022) [9] reported that RF models are superior to PLSR
for soybean and lettuce trait prediction from imagery. Nevertheless, the enhancement
achieved with RF was limited, indicating that linear combinations of wavelengths had
already explained the majority of the pigment concentration.

The Cubist regression model (a rule-based regression tree ensemble) performed ro-
bustly as well. Cubist is known to solve many regression problems by partitioning the
feature space and fitting local linear models, and it indeed provides among the lowest
prediction errors here. This aligns with broader evaluations showing that Cubist often
achieves top accuracy across diverse datasets [49]. However, its comparatively poorer
performance on the test set suggests overfitting, due to the model’s reliance on recur-
sive partitioning combined with local linear fits, which can overadapt to spectral noise
or redundancy in high-dimensional hyperspectral data. This highlights the importance
of regularization and feature selection strategies to improve generalizability in such sce-
narios. In this sense, the neural network (NN) model likewise achieved high accuracy,
particularly for the Headwall hyperspectral data, hinting at its ability to model complex
spectral–biochemical relationships. Notably, recent research in grapevine has demonstrated
that a genetic algorithm-optimized BP neural network outperforms both RF and SVR for
leaf chlorophyll prediction (R2 ≈ 0.83) [50].

The NN models, albeit with simpler architectures, similarly showed excellent fit,
although at the cost of requiring more calibration data to avoid overfitting. Overall,
the relative ranking of the models in our analysis was subtle—no single approach was
overwhelmingly superior across all the traits and sensors. This finding underscores the
importance of data characteristics: with an adequate sample size and well-chosen spectral
features, even straightforward methods such as PLSR can rival more “black-box” algo-
rithms [26]. However, we observed that the more flexible models (Cubist, NN, and RF)
maintained a slight edge in generalizability, especially when predicting an independent
test set. This reflects their capacity to oversee any minor nonlinearities in the pigment–
reflectance response (e.g., saturation at high pigment levels) that PLSR’s strictly linear
framework might not fully capture. Notably, models incorporating feature selection or
optimization tended to perform best.

In the literature, hybrid approaches such as GA-PLSR (genetic algorithm coupled with
PLSR) have shown superior accuracy to either standalone PLSR or univariate machine
learning methods [22]. In our study, reducing hyperspectral data dimensionality (using PLS
loadings or variable selection) yielded the best results, by eliminating noisy or redundant
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bands and improving model robustness. In summary, all techniques have proven effective
for pigment prediction from spectra, and our comparative analysis echoes recent consensus:
no single algorithm uniformly dominates, and performance differences often result from
data volume, noise, and the degree of nonlinearity in the trait–spectra relationship [45].

One clear outcome was the greater predictive power of the models built on the Head-
wall hyperspectral data relative to the MicaSense multispectral data. Under identical regres-
sion methods, the hyperspectral-based models achieved higher R2 values and lower RMSEs
for pigment traits. For example, PLSR on the Headwall spectra explained a greater fraction
of the chlorophyll variance than PLSR on the MicaSense bands did. This is unsurprising—
the hyperspectral sensor’s continuous narrow bands capture fine-grained spectral features
(such as subtle shifts in the red edge or specific absorption band depths) that MicaSense’s
five broad bands cannot resolve. These findings corroborate the general advantage of hy-
perspectral resolution for biochemical trait estimation. Katuwal et al. (2023) [44] similarly
noted that a hyperspectral imaging system (447 bands) achieved ≈87% variance explained
in turf pigment and water status, outperforming a multispectral camera when the same
modelling approach was used. In our study, the multispectral models still performed
with reasonable accuracy, indicating that the MicaSense bands (which include a red-edge
channel) do capture the primary pigment signals associate with concentration in leaves.

Multispectral models, especially those utilizing machine learning with indices or band
combinations, demonstrated accuracy comparable to certain hyperspectral models. This in-
dicates that carefully selected broadband indices may act as effective proxies for estimating
pigment content. Recent work has shown that in certain scenarios, UAV multispectral data,
if combined with ancillary information or calibrated against a specific target, can predict
chlorophyll nearly as well as hyperspectral data [26]. Nonetheless, a consistent gap re-
mained: the hyperspectral models were more generalizable and sensitive to small pigment
differences (e.g., they better distinguished intermediate chlorophyll levels), whereas the
multispectral models tended to saturate or lose resolution at the extremes. Cross-sensor
generalization presents significant challenges; models trained using Headwall spectra are
not readily transferable to MicaSense reflectance data due to differences in band definitions
and variations in scale. This reflects a known challenge: even when measuring the same
target, different sensors yield nonidentical reflectance values or spectral responses [51]. As
such, sensor-specific calibration was necessary. Indeed, any attempt to transfer models
across sensor types must account for spectral response differences (e.g., via band harmo-
nization or recalibration), as highlighted by significant reflectance discrepancies between
the MicaSense RedEdge UAV sensor and Sentinel-2 satellite data [51]. In practice, the
hyperspectral-derived model is designed for use with hyperspectral imagery, whereas
the multispectral model is adjusted to match that sensor’s bands. This reflects a balance
between the accuracy offered by hyperspectral approaches and the wider applicability
or cost-related benefits of multispectral methods. In this sense, hyperspectral sensing
integrated with AI enables high-precision plant identification, with trade-offs between
hyperspectral accuracy and multispectral cost efficiency guiding sensor choice depending
on the application scale and resource constraints. In this sense, from a new perspective,
the selection of imaging technology should strategically balance performance needs with
operational feasibility in agricultural contexts [52].

4.4. Spatial Mapping of Predicted Traits

The application of our calibrated models to full imagery enabled spatial mapping of
leaf biochemical traits across the orchard. These maps provide a powerful visualization
of pigment variability that would be impossible to obtain from sparse sampling alone.
The predicted chlorophyll content maps (for example) revealed distinct spatial patterns.
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Notably, certain plots or sections consistently presented higher predicted chlorophyll levels,
whereas others presented lower values—a pattern that corresponds to the known layout of
our field trial.

Heterogeneity reflects underlying differences such as genotype (cultivar) blocks or
microenvironmental variation, although we avoid reiterating cultivar-specific trends here.
The key point is that the spectral models captured these spatial differences in pigment
status. In this sense, the continuity of the high-chlorophyll a and b zones in the maps and
their agreement with field observations of foliage greenness increase the confidence in
the model’s generalizability. For example, areas predicted to have high pigment content
indeed aligned with visibly lush canopies, whereas low-prediction areas often coincided
with visibly paler or more senescent foliage. The validation plots quantitatively confirmed
this agreement, demonstrating that the mapping process captures genuine biochemical
variation rather than merely interpolating noise.

The fine-resolution trait maps are highly valuable in both research and practical
contexts. For example, in our study, we were able to discern patterns of nutrient or pigment
distribution that manual sampling might miss by akin to how Zhou et al. (2022) mapped
multiple plant traits in alpine grasslands and discovered localized patterns undetectable
by ground surveys [53]. Our pigment maps similarly highlight subtle gradients: some
within-plot variability was apparent, suggesting microscale influences (soil fertility patches
or shading effects) that merit further investigation. Moreover, by generating maps from
both sensor types, we demonstrated the trade-offs in spatial prediction. The Headwall
hyperspectral data produced very detailed trait maps with smooth gradients, whereas the
MicaSense-based maps, while capturing the major patterns, were slightly blacker because
of the lower spectral detail and slightly higher prediction error. Even so, both sensor
maps were consistent in identifying the same high- and low-pigment zones, reinforcing the
reliability of the predictions.

Visualizing leaf biochemical traits spatially has important applications. This confirms
that our regression models do not overfit laboratory measurements but are truly capturing
field variability in pigment content. This builds the trust that these models can be used
for in situ monitoring [54,55]. For example, decision-making in precision agriculture can
be effectively informed. If one observes a low-chlorophyll patch on the map, it could
indicate nutrient deficiency or incipient stress, prompting targeted intervention. In a
breeding or experimental trial, such maps help compare genotype performance: one can
literally “see” which cultivar plots maintain higher chlorophyll (indicative of better vigour
or nutrient uptake) [15,56]. Furthermore, the mapping highlights the generalizability of
the models across space: despite possible confounding factors (soil background, canopy
density, etc.), the predictions remained coherent across the entire image. This indicates the
models’ robustness and the efficiency of our preprocessing (e.g., masking nonvegetation
and using NDVI thresholds to focus on healthy canopy pixels) [31,57]. In summary, the
spatial mapping exercise corroborated and extended our plot-level findings. This approach
provides a tangible link between spectral predictions and field reality, reinforcing that
spectral reflectance patterns can not only quantify leaf pigment content accurately but also
do so continuously over space.

This synergy of spectroscopy and imaging enables high-resolution nutrient/pigment
monitoring over large areas, an approach increasingly reported in recent literature [26].
These findings demonstrate that, with appropriate modelling, both hyperspectral and
multispectral sensors can generate reliable chlorophyll/pigment maps, with the former
offering higher fidelity and the latter offering a cost-effective alternative with acceptable
accuracy. Such outcomes are particularly relevant for plant phenotyping and precision crop
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management, where understanding the spatial distribution of biochemical traits is key to
informed decision-making.

The comparative analysis across sensors and algorithms underscores a central theme:
spectral resolution and data-driven modelling both enhance our ability to assess plant
health and traits, but even simpler spectra (from multispectral cameras) contain enough
pigment signals to be useful. Finally, by translating predictions into spatial maps, we
demonstrate the practical utility and scalability of our approach, moving from leaf-level
chemistry to landscape-level insights in a rigorous, quantitative manner. The consistency
of these findings with recent plant remote sensing studies [26,36,54] provides further
confidence in the robustness of our interpretations. Each piece, spectral pattern, model
performance, sensor comparison, and spatial mapping builds a cohesive understanding
of how leaf pigment content influences reflectance and how, in turn, we can reliably infer
biochemical traits from spectral data at scale.

This approach achieved a certain level of predictive accuracy and spatial resolution;
however, the study was conducted with a moderate sample size under greenhouse-specific
conditions, which may impact its applicability to open-field environments. Nevertheless,
by highlighting the robust performance of both multispectral and hyperspectral models,
our findings provide a foundation for the development of scalable, cost-effective sensing
platforms and field protocols, supporting future efforts to validate and adapt these tech-
niques under real-world agricultural conditions. Complex machine learning models, such
as neural networks and Cubist regression, may particularly benefit from larger datasets to
ensure robust and generalizable predictions. Future work should expand the dataset to
include more cultivars and stress conditions and validate the models under diverse field
settings. In addition, integrating other sensors and exploring transfer learning approaches
could further enhance the generalizability and robustness of the models.

5. Conclusions
This study demonstrated that hyperspectral imaging coupled with machine learning

can accurately predict key foliar biochemical traits (pigment and phenolic concentrations)
in lettuce across multiple cultivars. Genotypic differences were found in pigment and
phenolic contents across the cultivars, as shown by their unique spectral signatures. Cru-
cially, the hyperspectral sensor’s finer spectral resolution captured subtle wavelength
features associated with chlorophylls, anthocyanins, and other phenolic compounds that
a multispectral sensor’s broader bands could not resolve. As a result, models built on
full hyperspectral data achieved markedly higher predictive performance (e.g., greater
accuracy and R2 = 0.91 for anthocyanins using RF) than those using limited multispec-
tral bands. Although the models demonstrated robust performance, several constraints
emerged during the processes of spectral data acquisition and ground-truth validation.
Variations in leaf surface texture, lighting conditions, and biochemical heterogeneity within
cultivars may have introduced additional noise. Future studies will focus on expanding the
spectral database across more species, cultivars, and environmental conditions to improve
model generalizability and resilience under field conditions. The outcomes of this research
will contribute to the development of novel, nondestructive methods for assessing the
nutritional quality of lettuce, facilitating the selection of superior cultivars for breeding
programs and improving the nutritional and functional quality of lettuce.
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