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Abstract
Intelligent and autonomous robots (and vehicles) largely adopt computer vision systems to help in localization, navigation
and obstacle avoidance tasks. By integrating different deep learning techniques, such as Object Detection and Image Semantic
Segmentation, these systems achieve high accuracy in the domain they were trained on. Nonetheless, robustly operating in
different domains still poses a major challenge to vision-based perception. In this sense, Unsupervised Domain Adaptation
(UDA) has recently gained momentum due to its importance to real-world applications. Specifically, it leverages the prompt
availability of unlabeled data to design auxiliary sources of supervision to guide the knowledge transfer between domains. The
advantages of such an approach are two-fold: avoiding going through exhaustive labeling processes, and enhancing adaptation
performance. In this scenario, exploring temporal correlations in unlabeled videodata stands as an interesting alternative,which
has not yet been explored to its full potential. In this work, we propose a Self-supervised learning framework that employs
Temporal Consistency from unlabeled video sequences as a pretext task for improving UDA for Semantic Segmentation
(UDASS). A simple yet effective strategy, it has shown promising results in a real-to-real adaptation setting. Our results and
discussions are expected to benefit both new and experienced researchers on the subject.

Keywords Semantic segmentation · Unsupervised domain adaptation · Temporal consistency · Self-supervised learning ·
Review

1 Introduction

Intelligent and Autonomous Robots/Vehicles should be able
to navigate in safe zones and avoid obstacles and dangerous
zones. Therefore, it is very important for these systems to
recognize the road (navigable zone), and the other elements
present in the scene—“semantic elements” (e.g.: road, cars,
pedestrians, trees, constructions, buildings, sidewalk, grass,
animals, etc). Therefore, Semantic Segmentation is a task of
utmost importance for visual perception in urban environ-
ments. It provides a summarized representation of a given
scene, where elements are classified pixel-wise according to
the set of categories under consideration.
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The field has historically evolved towards increasingly
precise models, reaching Intersection over Union (IoU)
values—the standard metric—of up to 90%. Nonetheless,
these highly specialized models are prone to suffer with
adapting to real-world scenarios, where the target data usu-
ally presents the so-called domain shift. This phenomenon
is often caused by differences in appearance—illumination,
textures, and so on—between the source domain the model
was trained on and the target/application domain.

In this context, transfer-learning and fine-tuning tech-
niques, usually associated with the presence of some sort
of labels in the target domain, could be useful. However,
the labeling process involves high human effort. This is even
more critical for Semantic Segmentation tasks, which require
dense labels—the “the curse of data labeling” [1]. Ultimately,
it is impractical to obtain labeled data for all possible target
domains.

In this sense, Unsupervised Domain Adaptation for
Semantic Segmentation (UDASS) methods emerge as a
promising new research direction, in the search for leveraging
the promptly-available unlabeled data in domain adaptation.
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Its practical relevance explains the increasing number of pub-
lications devoted to the subject.

Alignedwith that, video streams are a great source of large
amounts of unlabeled data. Despite that, temporal correla-
tions among frames have rarely been explored in UDASS,
thus leaving much room for improvements.

In light of that, we propose to explore Temporal Consis-
tency in videos as a source of additional supervision to guide
UDASS. On the one hand, it is simple to implement, since it
does not require modifications to the base model’s structure.
On the other hand, precision and temporal stability can be
simultaneously motivated in the target domain. Specifically,
we aim at a cross-city real-to-real adaptation scenario, where
such an approach has not yet been explored.

First, in Section 2, we conceptualize Domain Shift and
(Unsupervised) Domain Adaptation. Section 3 compiles
recent State-of-the-Art (SOTA)UDASS approaches that take
into account temporal information fromunlabeledvideodata.
In Section 4, we present the proposed method. In Section 5
we share our findings from a real-to-real adaptation experi-
ment, validating the employment of temporal data inUDASS.
Finally, we draw our main conclusions in Section 6.

2 Domain Shift and Domain Adaptation

The field of Deep Learning has experienced large advances
in the last decade, mainly fueled by the proposition of
large annotated datasets [2–4]. Particularly, Semantic Seg-
mentation is a well-developed research field, with recent
contributions reaching up to 90% mean Intersection over
Union (mIoU) in datasets such as Cityscapes [5].

However, the labeling process of such real-scenes datasets
is labor-intensive: for example, the Cityscapes annotation
took around 90 minutes per image. As an alternative to this
scenario, a recent trend is to leverage synthetic data for
model training. The main advantages of this approach are

the possibility of simulating diverse scenarios, weather and
illumination conditions, as well as sensor readings, all of that
together with the associated labels.

Nonetheless, when trying to employ thesemodels (trained
on either real or synthetic data) in real-world applications, we
will likely face a certain amount of performance degradation
(Fig. 1). This can be caused by the so-called Domain Shift:
differences between the source and target domains, such as
illumination, textures, types of elements in the scenes, and
so on. To deal with that, Domain Adaptation techniques try
to transfer the knowledge from a given source domain to the
target domain at hand.

Tomake the problem evenworse, the adaptation process is
not straightforward, since real-world target datasets usually
lack annotations.

As a workaround, Unsupervised Domain Adaptation
(UDA) was proposed to leverage the large availability of
unlabeled data to boost the adaptation process without the
need for labels.

According to the nature of source and target datasets, we
can broadly define two categories of Domain Adaptation:
synthetic-to-real, and real-to-real adaptation. In synthetic-
to-real adaptation, synthetically-generated data are used
during training, while the model is expected to run on real-
world data. In real-to-real adaptation, both source and target
datasets comprise real images, butwith differences in appear-
ance. Some authors group synthetic-to-real and real-to-real
adaptation into Hard Domain Adaptation, while day-to-
night, and season-to-season adaptation are often called Soft
Domain Adaptation.

3 RelatedWorks

The use of temporal information in UDASS is relatively new,
with only a few contributions devoted to the theme. Never-
theless, interesting techniques and results have already been
presented.

Fig. 1 Performance degradation caused by domain shift between source (Cityscapes) and target (ZED2) domains. Results considering a baseline
Bisenet V2 model pretrained on the Cityscapes dataset
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Fig. 2 Synthetic samples drawn from GTA5 (left) and SYNTHIA (right) datasets

The following sections present the systematic literature
reviewdeveloped to build the basis of our proposal and exper-
imentation. Its main goal is to compile the latest advances in
synthetic-to-real and real-to-real adaptation. We were partic-
ularly interested in mapping the use of video streams as a
source of unlabeled data for UDASS. Therefore, we focused
our search on this scope.

3.1 Synthetic-to-real Adaptation

The majority of works in UDASS address synthetic-to-real
adaptation. In this scenario, the source domain is a synthetic
dataset, usually SYNTHIA [6] orGTA5 [7] (Fig. 2),while the
target dataset is composed of real urban scenes—Cityscapes
being the common choice. Promising results (Table 1) have
recently been shown by the adaptation techniques described
in what follows.

Adversarial Learning is frequently employed in UDA
setups. Broadly speaking, the main idea is to build a domain
discriminator that is expected to becomeunable to distinguish
between source and target domains. Ultimately, this means
that the representations from both domains are aligned and,
therefore, the domain shift has been overcome. DA-VSN
[8] proposes a temporal consistency regularization (TCR)
technique to minimize the divergence between source and
target domains. Specifically, the authors design a Cross-
domain Temporal Consistency Regularization (C-TCR) and

an Intra-domain Temporal Consistency Regularization (I-
TCR).Cross-domainmotivates both spatial and spatiotempo-
ral alignment between source and target predictions bymeans
of two different discriminators (spatial and spatiotemporal).
Intra-domain adaptation, conversely, is promoted through
optical flow-based propagation of target frames, with sub-
sequent conditioning of high-entropy predictions to have
similar confidence to propagated low-entropy predictions.
MoDA [9] learns target domain representations using self-
supervised learning of object motion from unlabeled videos.
Domain alignment of foreground and background classes
is treated using different strategies. Foreground objects are
tackled with the aid of instance-level guidance from the
object motion. Background elements, on the other hand, are
addressed with a category-specific discriminator in an adver-
sarial strategy. Since motion learning works based solely on
image correspondences, it is not affected by the cross-domain
gaps.

Consistency Learning is another interesting approach
to leveraging temporal information in UDASS. It can be
explored in different configurations. TPS [10] proposes a
consistency learning framework composed of cross-frame
augmentation and cross-frame pseudo labeling. Through
these mechanisms, the authors explore spatiotemporal cues
for promoting prediction consistency between previous
warped predictions, and current predictions computed from
augmented frames. GUDA [11] explores photometric

Table 1 Current State-of-the-art in applying temporal data in the UDASS pipeline

Method Name Year Adaptation Strategy Performance (mIoU %)
SYNTHIA → Cityscapes GTA 5 → Cityscapes

CLST 2022 Contrastive Learning,
Self-training

50.2 (16 classes)
58.1 (13 classes)

53.4

MoDA 2023 Adversarial, Multi-task Learning,
Self-training, Consistency Learning

58.7 (16 classes)
68.3 (13 classes)

62.0

DA-VSN 2021 Adversarial, Consistency Learning 49.5 (11 classes)

TPS 2022 Consistency Learning, Self-training 53.8 (11 classes)

STPL 2023 Contrastive Learning, Self-training 51.8 (11 classes)

Note: Missing values were not mentioned in the original papers
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consistency in unlabeled videos by means of self-supervised
learning of depth and ego-motion. These tasks can be for-
mulated as a novel view synthesis problem, in which the
target image is reconstructed using information from a ref-
erence image, given a predicted depth map and the relative
transformation between the images. For that to be possible,
the authors assume such transformation and camera intrinsic
parameters known beforehand. In addition to that, semantic
and surface normal loss are used to compose the proposed
framework.

Contrastive Learning also shows promising results. In this
line of research, class centroids are extracted so that to guide
the domain alignment. The process is performed through
contrastively learning to map features close to their corre-
sponding centroids, and far away from the other classes’
centroids. CLST [12] proposes to use contrastive learning
to adapt category-wise centroids across domains. Source
domain’s class centroids are computed and online updated
to act as the goal for alignment. This strategy has led to inter-
esting results; nonetheless, since source priorsmay not be the
optimal estimate for aligning the target domain, some authors
have explored the use of domain-agnostic priors to guide
both domains toward a shared representation [13]. In Spatio-
Temporal Pixel-Level (STPL) [14] contrastive learning,
spatio-temporal feature fusion, and pixel-level contrastive
learning are applied in Source-free Domain Adaptation.

Compared to the previous works, the proposed approach
holds some advantages. First, adversarial methods tend
to be computationally costly and challenging/unstable to
train [15]. Compared to Consistency Learning methods, our
approach is simpler, since it does not motivate consistency
between augmented versions of an image, just between the
frames themselves. It also does not assume known intrinsic
camera properties nor involves the composition of a large
number of tasks, which may be difficult to optimize. Finally,
the proposed method does not depend on the centroids used
in Contrastive Learning, which may not be representative
enough for both domains. This ultimately limits the adap-
tation process and requires the acquisition of positive and
negative samples every time, incurring higher computational
costs.

3.2 Real-to-real Adaptation

Real-to-real adaptation is an equally important task, where
both source and target domains comprise real images. How-
ever, as it is more difficult to manually obtain labels for real
images, this paradigm is less frequently tackled in the lit-
erature. Despite all the following works exploring UDASS,
to the best of our knowledge, there are still no contributions
leveraging temporal data in real-to-real adaptation.

We consider that in the case of real-to-real adaptation, a
classification based on the target subtask is better suited than
that based on the specific techniques employed.

Cross-city adaptation is the most frequently addressed
adaptation subtask. One of the first works on the subject,
FCNs in the Wild [16] tackles cross-city adaptation by try-
ing to adapt from the training to the validation subset of
Cityscapes. In the work of [17], cross-city adaptation is
explored with Cityscapes-to-Oxford Robotcar [18] dataset.
[19] studies the adaptation from Cityscapes to NTHU [20].
AdaptSegNet [21] and MaxSquareLoss [22, 23], besides
synthetic-to-real adaptation, explore real-to-real adaptation
using the Cityscapes and Cross-City [24] datasets.

Another subcategory of real-to-real adaptation comprises
clear-to-adverse weather adaptation. In Advent [25], clear-
to-foggy adaptation is explored using the Cityscapes dataset.
CDAC [26] explores domain adaptation at both attention and
output levels, based on a transformer architecture. Source and
target domains are Cityscapes and ACDC [27], respectively.
In the work of [28], the recently proposed Segment Anything
Model (SAM) [29] is employed for refining pseudo-labels in
the self-training of UDASS methods. Their main contribu-
tion resides in the different pseudo-labels fusing strategies so
that to compensate for erroneous predictions for small-area
and rare classes. Real-to-real adaptation is explored from
Cityscapes to ACDC datasets.

Finally, there are also works devoted to day-to-nighttime
adaptation. SePiCo [30] explores real-to-real adaptation from
Cityscapes to various datasets, including: Dark-Zurich [31],
Nighttime Driving [32], BDD100k-night [33], and Foggy
Cityscapes [34]. The authors of MIC [35] propose an input
masking mechanism to enable a teacher-student frame-
work to learn to reconstruct masked pseudo-labels from the
remaining unmasked regions. Consistency learning and Self-
training are employed. Both Cityscapes-to-Dark Zurick and
Cityscapes-to-ACDC are explored for day-to-nighttime and
clear-to-adverse weather adaptation, respectively.

We explore cross-city adaptation. However, unlike all
previous work, we explore temporal information from the
abundant unlabeled video frames to guide the adaptation pro-
cess.

4 ProposedMethod

The proposed method consists of a Self-supervised mech-
anism for learning Temporal Consistency from unlabeled
videos. Besides having shown promising results (Table 1),
this technique is straightforward and can be seamlessly inte-
grated into our base architecture. For that to be possible, we
adapt the widely-adopted IoU metric for building our self-
supervised auxiliary objective.
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In the context of autonomous navigation in urban scenes,
the compromise between inference speed and accuracy is
more crucial than the accuracy taken in isolation. There-
fore, we choose a lightweight model as our base architecture
(Fig. 3), described in the following.

Quantitative evaluation is performed based on Tempo-
ral Consistency and Shannon’s Entropy. In addition to that,
visual inspection is performed on the learned features (acti-
vation maps), uncertainty maps, and segmentation output to
certify the segmentation quality.

4.1 Architecture

Real-time applications, such as autonomous vehicles, need
methods that deliver fast inference at low cost. With that
in mind, and going against the majority of works that build
upon increasingly heavy models, we choose a lightweight
architecture as our base model.

Specifically,webuild our proposal on top of theBisenetV2
model [36]. It has a dual-branch architecture composed
of semantics and detail branches, each with its own goal.
The semantics branch aims at the extraction of meaning-
ful features, with low resolution and high semantic value; it
has higher depth and lower spatial dimensions. The detail
branch, on the other hand, preserves higher feature dimen-
sionality, but operates at lower depths; with that, it tries to
preserve spatial information. Feature fusion is performed
by an attention-like mechanism, just before going through
the final classification. The BisenetV2 model preserves yet
another difference from its predecessorBisenet [37]:multiple
auxiliary segmentation heads to improve feature extraction.
Figure 3 illustrates the BisenetV2 architecture.

Our architecture was built upon MMSegmentation’s [38]
implementation of BiseNet V2. MMSegmentation is an
open-source library specialized in Semantic Segmentation,
that provides implementation and pretrained weights for
several model architectures and datasets. Specifically, we
adopted as our backbone the BiseNet V2model with weights
pretrained for 160k iterations on 1024 × 1024 Cityscapes
images, using batches of 16 images.

Our main goal is to perform self-supervised learning of
temporal consistency to improve domain adaptation.

Self-supervised learning involves exploring the data at
hand to derive new representations to be used as auxiliary
sources of supervision. Image inpainting, image reconstruc-
tion, jigsaw puzzle solving, sequence order prediction and
verification are some examples. Another interesting exam-
ple is self-training, which can also be thought of as a type
of self-supervised learning, since the model iteratively learns
the goal task bymeans of its own predictions, termed pseudo-
labels.

Temporal Consistency builds upon self-training and mea-
sures how coherent consecutive predictions (pseudo-labels)
are. That is, given consecutive frames at times t − 1 and
t (xt−1 and xt , respectively), we measure how similar are
the predictions for frame xt and for frame xt−1 propagated
to time t (xt−1→t ). The propagation, also called warping, is
performed by using the optical flow from frame t−1 to frame
t, ot−1→t— extracted with a FlowNet 2.0 [39] model.

For that, we add an auxiliary module for computing the
self-supervised objective. Therefore, no changes to the base
model are necessary. The only difference to the original
architecture comprises the Total Loss used to perform model
optimization, which is now composed by the combination of

Fig. 3 Bisenet V2 [36] architecture
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Fig. 4 Architecture proposed for performing UDASS by means of self-supervised temporal consistency learning

the Cross-Entropy Loss and the Temporal Consistency Loss.
Our final architecture is illustrated in Fig. 4.

The advantages of such an approach are two-fold: first,
no changes to the model itself are necessary; second, the
auxiliary structures employed during training become non-
operational during inference, so that the model preserves its
inference speed.

4.2 Objective Function

Ourmain task is Semantic Segmentation,whose error is com-
puted using the Cross-Entropy Loss (SegLoss in Eq. 1). It
uses frames from the annotated source dataset and their cor-
responding predictions (in and out in Fig. 4), following the
common training pipeline in supervised learning.

SegLoss = − 1

|I |
I∑

i=1

S∑

s=1

yn,s log(pn,s) (1)

The previous formulation is computed for an image I and
a set of classes S, where |I | = N × X is the image dimen-
sionality (number of pixels).

Our auxiliary objective, the Temporal Consistency Loss,
receives consecutive frames (xt−1 and xt in Fig. 4) drawn
from the target domain, and their corresponding predictions
( yt−1 and yt in Fig. 4). It is implemented as an adaptation
of the mIoU metric [40] (“Similarity Function” in Fig. 5)

so that it operates on prediction probabilities, thus becoming
differentiable (Eq. 2).

˜mIoU ( y′t , ỹt )=
1

|S|
∑

s∈S

∑
i∈I | y′t,s,i · ỹt,s,i |

∑
i∈I | y′t,s,i + ỹt,s,i − ( y′t,s,i · ỹt,s,i )|

(2)

In the previous formulation, ỹt and y′
t are class probabil-

ities, with y′
t = ỹt−1→t being the propagated probabilities

from instant t − 1 to instant t . Additionally, I = H · W is
the number of pixels, and S corresponds to the set of classes
being considered. The final Temporal Consistency Loss is
computed as

TCLoss = 1 − ˜mIoUt (3)

The full pipeline of auxiliary loss computation is orga-
nized in the diagram from Fig. 5, and in Algorithm 1.

In Algorithm 1, len returns the number of samples in
a given batch, and warp represents the prediction warping
process performed based on the optical flow between consec-
utive input images. The variables TClosscurr and TClossaccum
store the current and accumulated temporal consistency loss
values, respectively.

The final loss is then computed as the weighted combina-
tion of the two losses (Eq. 4), where λ is a weighting factor

Fig. 5 Diagram illustrating the
steps involved in calculating
Temporal Consistency loss for
auxiliary supervision
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Algorithm 1 Calculate TCloss = 1 − ˜mIoU ( yt−1, yt).
Require: Segmentation model f (x),

Optical flow model of (xt−1, xt ),
Pair of sequential frames xt−1, and xt
Batch of samples

1: num_samples = len(batch)

2:
3: for xt−1, xt in batch do
4: ot−1→t ⇐ of (xt−1, xt )
5: yt−1 ⇐ f (xt−1)

6: yt ⇐ f (xt )
7: yt−1→t ⇐ warp( yt−1, yt , ot−1→t )

8: TClosscurr ⇐ 1 − ˜mIoU ( yt , yt−1→t )

9: TClossaccum ⇐ TClossaccum + TClosscurr
10: end for
11:
12: TCloss ⇐ TClossaccum /num_samples

for the Temporal Consistency loss.

Total Loss = SegLoss + λ · TCLoss (4)

5 Experiments and Results

This section presents our experimental setup in terms of the
datasets used, the environment configuration, the training and
inference parameters. Afterwards, in Section 5.4, we present
the results obtained, followed by a fruitful discussion on chal-
lenges and open questions to UDASS, in Section 5.5.

The baseline performance for the method trained only on
the source dataset is presented in Table 2.

5.1 Datasets

We adopt as source domain the widely-used Cityscapes
dataset. Specifically, it comprises a set of German and Swiss
urban scenes, from which we leverage the 5000 finely-
annotated subset—obtained by labeling the 20th frame from
each of its video snippets. The images were gathered at dif-
ferent times of the day, with clean and cloudy sky—good
conditions. The dataset also provides a set of 20000 coarsely-
annotated images, disparity maps, and associated camera
parameters.

Our target domain, the ZED2 dataset [41], was captured
by the authors with a ZED2 stereo camera. It comprises a set
of videos (temporally-correlated frames and corresponding
depth maps) from urban scenes in Brazilian streets, account-
ing for over 14, 000 frames. We performed data capture in
good weather conditions: sunny and cloudy, at day time. No
labels are provided. The choice for employing our own unla-
beled data as the target domain can be explained by two
aspects: first, it presents a domain shift from the source
dataset, since it was captured by a different sensor and in Ta
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Fig. 6 Samples from the Cityscapes dataset (left), and from the dataset acquired with the ZED2 stereo camera (right)

an environment where elements and background differ in
appearance with respect to the source domain; second, by
employing this approach, we are closer to a real application
scenario, where we should adapt a pretrained model to a new
target domain where no labels are available.

Figure 6 illustrates examples drawn from both datasets.

5.2 Setup and Training Parameters

Following [42], we employed 30 epochs of fine-tuning start-
ing from Cityscapes pretrained weights. Stochastic Gradient
Descent (SGD) was employed as optimizer, withmomentum
of 0.9 and weight decay of 10−4. The initial learning rate
was set to 10−2, and we adopted a polynomial update policy
defined by (1 − i ter

i tersmax
)p, with p = 0.9.

Random crop, random flip, photometric distortion, and
padding were used as data-augmentation strategies. In all
experiments, batch size was set to 4.

In total, 9weight-resolution configurationswere explored.
That is, different values were tested for the weighting factor
λ of the Temporal Consistency loss term in Eq. 4, includ-
ing 0.3, 0.5 and 0.7. Regarding the input resolutions, we
experimented with images with 256 × 256, 512 × 512 and
1024 × 1024 pixels.

All implementations were based on Python and Pytorch.
Model training and inference were performed on a Google
Colab environment equipped with an NVIDIA A100 GPU.

5.3 Inference

Inference was performed on a demo video from the ZED2
dataset, composed of 500 frames. Image resolution was set
to 512 × 1024, and no data-augmentation strategies were
employed. Results were qualitatively evaluated based on the
Temporal Consistency and Entropy metrics. Visual inspec-
tion was performed on the activations from the last encoder
layer, uncertainty maps, and the model outputs.

Visual inspection was performed on the activation maps
to evaluate the features learned by the model. The visual
inspection of the outputs, in turn, allows for evaluating

model accuracy since we do not have labels in the tar-
get domain, what prevents us from quantitatively evaluating
model precision—which would require a ground-truth.

The Temporal Consistency metric is defined as the mean
Intersection Over Union between the prediction at time t ( yt )
and the prediction at time t − 1 translated to time t ( yt−1→t )
(5).

mIoU ( yt−1→t , yt) = 1

|S|
∑

s∈S

T Ps
T Ps + FPs + FNs

(5)

The prediction at time t is taken as the ground-truth, and
T Ps , FPs , and FNs are the number of true positives, false
positives and false negatives.

Since the Temporal Consistency term is operational only
during training, no computational burden is added during
inference, preserving the original model performance.

5.4 Results

The results from our approach are presented in the following
sections.

Given that we explore Self-supervised learning on a com-
pletely unlabeled target dataset, no supervised metrics are
possible to be calculated. Therefore, we rely on different
strategies for inspecting and validating model performance,
including hypothesis tests of Temporal Consistency and
model uncertainty, as well as visual inspection of model pre-
dictions, uncertainty maps and the features learned by the
network.

5.4.1 Temporal Consistency

Our experiments highlight that increased image resolution
and loss weight lead to the highest gains in Temporal Con-
sistency (Table 2).

Nonetheless, as it can be seen in Fig. 7, such gains are
not necessarily related to gains in accuracy. The best results
were actually observed for the lowest loss weight and image
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Fig. 7 Results from all experimental configurations. We clearly observe improvements derived from the use of unlabeled data from the target
domain. However, higher loss weights and image resolutions lead to performance degradation

resolution: there is a clear improvement in the segmentation
of navigable (street) and non-navigable (sidewalk) regions,
which are critical for autonomous navigation in urban scenes.
Classes such as wall, vegetation, buildings and vehicles also
showed improvements.

This behavior can be understood by considering the nature
of our Temporal Consistency Loss. Intuitively, static objects
covering large regions are preferred, since they do not fluc-
tuate to a greater extent over time. In fact, this is one of the
major downsides of such an approach, since classes charac-
terized by being small and thin—traffic signs (Fig. 8)—are
prone to be disregarded as higher importance is given to the

Temporal Consistency component of the loss. In this regard,
leveragingmodel uncertainty, or class frequency information
from the source domain, can be studied as alternatives to this
problem.

Besides that, an interesting finding relates to the improve-
ment of the overall temporal stability of the predictions.
Figure 9 show that segmentation masks delivered by the
baseline method are highly unstable, losing track of critical
elements, such as cars.Our results—weight 0.3 and256×256
image resolution—are more consistent over time.

The statistical validation of the relevance of our results
was performed using the Student’s T-test on the Temporal

Fig. 8 Perception failures for
small and thin objects in
sequential frames. While the
baseline model (upper row)
identifies the traffic sign, ours
(lower row) does not. Inherently,
the Temporal Consistency loss
encourages the presence of large
static elements
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Fig. 9 Stability improvements
in short-term windows. While
the baseline model (first row)
loses track of the vehicles in the
image, our results (second row)
are consistent over time

Consistency computed for the demo video snippet. The
overall Temporal Consistency distribution of Baseline and
Fine-tuned model is presented in Fig. 10.

We can observe that the Student’s T’test assumptions are
matched since both distributions follow a Gaussian Distri-
bution. We can also observe that they are almost disjoint,
meaning that the results found are relevant. This is confirmed
by a t-statistic of −60.64, and a p-value of 4.26e − 80. That
is, we can confidently reject the null hypothesis, which states
that the means of the two distributions are equal.

We can also perform this analysis for class-wise results
(Fig. 11). Considering critical classes for autonomous robots

navigation, such as road, sidewalk, traffic light, and person,
we observe a strong statistical relevance in the results
obtained.

These findings illustrate that UDASS can be performed
by leveraging Temporal Consistency in unlabeled video
sequences drawn from the target domain. Thus, it stands as a
promising alternative to computationally-heavy approaches,
such as generative-adversarial setups.

However, it is also worth pointing out that the results are
highly dependent on hyperparameter tuning, since majority
of the configurations tested showed performance degradation
in the target domain.

Fig. 10 Distribution of
Temporal Consistency values
for a demo video snippet from
the target domain
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Fig. 11 Class-wise distribution of Temporal Consistency values for a demo video snippet from the target domain

5.4.2 Learned Features

Another commonly used analysis tool is the evaluation of
intermediate activation maps from key layers. This allows
us to verify where the model is focusing to make its pre-
dictions. Therefore, we can have a better understanding of
which features in the input are the most representative for
the model’s current performance.

In our setup, the key layer was chosen as the output from
the Aggregation Layer (Fig. 4).

Figure 4 illustrates activationmaps extracted from the pre-
viously mentioned layer.

The upper row of Fig. 12 illustrates that the activations
from baseline method were scattered over the image. From
the lower row, we can observe that the Self-supervised learn-
ing of Temporal Consistency helped the activation maps to
more consistently focus on critical regions for autonomous
navigation, such as the road and the sidewalk.

5.4.3 Output Uncertainty

In self-supervised learning setups, output uncertainty is a
useful measure of accuracy. In this sense, Shannon Entropy
is widely adopted as a measure of model uncertainty and can
be calculated by the formulation from Eq. 6.

H(X) = −
N∑

i=1

pi log pi (6)

The more uncertain the model predictions (ultimately all
class probabilities equal), the higher the Shannon Entropy’s
value.

When comparing baseline and finetuned models, Fig. 13
shows a significant improvement of overall model uncer-
tainty.

Adopting once again the Student’s T’test, we obtain a t-
statistic of 15.74, and a p-value of 1.06e − 28. That is, we

Fig. 12 Activation maps from
the Aggregation Layer.
Employing Self-supervised
learning of Temporal
Consistency helped improve the
focus of the network to critical
regions for autonomous
navigation, such as road and
sidewalk

123

Page 11 of 15 37



Journal of Intelligent & Robotic Systems (2025) 111:37

Fig. 13 Distribution of
uncertainty values (Shannon
Entropy) for a demo video
snippet from the target domain

can confidently reject the null hypothesis, which states that
the means of the two distributions are equal. Therefore, the
reduction of model uncertainty is statistically relevant.

We can also perform this analysis for class-wise results
(Fig. 14). Considering critical classes for autonomous robots
navigation, such as road, sidewalk, traffic light, and person,
we observe a strong statistical relevance in the results.

Uncertainty maps can also give us a visualization of the
most challenging regions for the model (Fig. 15), i.e. the
regions for which the predictions were uncertain.

As per Fig. 15, we can observe that the proposed approach
mainly helped to reduce model uncertainty for classes with
strong geometric priors, such as road, sidewalk and wall,
which are also less prone to present strong fluctuations in
their optical flow.

Most of the prediction uncertainty now lies in the class
boundaries, which is expected given that perfectly defining
class limits is challenging even for experienced human anno-
tators.

The smoothing effect of the proposed method in the out-
put uncertainty, however, leads to loss of precision for small

and rare classes, such as pole and traffic sign. This behavior
can be explained by the nature of the Temporal Consistency
loss, which is more impacted by large static classes, such
as road.

5.5 Discussion

Unsupervised Domain adaptation is a vibrant research sub-
ject, with several interesting results already demonstrated.
However, there are still many challenges and open questions.

Despite frequent in the literature, global alignment deliv-
ers limited adaptation performance, not accounting for class
specificities. In light of that, a recent trend in adversarial and
contrastive domain adaptation is to perform class-wise adap-
tation.

In real-to-real alignment, it is still difficult to evaluate
model performance in completely unlabeled target datasets.
Feature alignment and output uncertainty can help to validate
model pseudo-labels. Nevertheless, none of them is optimal:
feature alignment is subject to interpretation, and low uncer-
tainty does not necessarily mean high accuracy.

Fig. 14 Class-wise distribution of uncertainty values (Shannon Entropy) for a demo video snippet from the target domain
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Fig. 15 Uncertaintymaps highlight challenging regions for prediction. The proposed approach helped reducemodel uncertainty for classes featuring
strong geometric priors, such as road and sidewalk

Most of the current contributions are concerned with
improving accuracy. However, real-world applications require
faster inference under limited computational resources while
preserving as much accuracy as possible.

The use of temporal data for UDASS also has several chal-
lenges. First, dealing withmultiple frames at a time limits the
batch size and input resolution. In addition, reproducibility
is a major concern. Current contributions usually differ on
the number of classes used for evaluation, not all hyperpa-
rameters are described and code is often not made publicly
available.

Domain-agnostic adaptation has also recently been addre-
ssed. Researches on this subject try to generate a shared rep-
resentation for both domains, which is not biased towards
any of them. For instance, [13] generated class priors based
on word embeddings describing each of the classes.

Exploringmultiple datamodalities can also be a very inter-
esting path. Multi-modal models try to generate more robust
shared representations to enhance adaptation performance.
Depth data is an example that has been employed in multi-
modal domain adaptation because of its strong geometric
information, which suffers less from domain shift than the
RGB images themselves.

Lastly, Open-set Domain Adaptation (source and target
classes are not the same), Few-shot Domain Adaptation
(adaptation performed with very few data), and Source-free
domain adaptation (only the target dataset is available for
training) are all promising directions with enormous practi-
cal relevance to real-world applications.

6 Conclusion

Domain Adaptation for Semantic Segmentation is a very
exciting research field, with elevated practical relevance for
autonomous mobile robots such as autonomous vehicles.
However, the high costs involved in data annotation make
it difficult to have labeled datasets for all possible target
domains. In light of that, Unsupervised Domain Adapta-
tion tries to leverage the promptly-available unlabeled data
to learn useful representations that ultimately enhance adap-
tation performance.

A particularly powerful source of large amounts of unla-
beled information is video streams. Specifically, the temporal
correlation between frames can generate powerful auxiliary
supervisory signals.

In light of that, we proposed a Self-supervisedmechanism
for learning Temporal Consistency between neighboring
frames in unlabeled videos to help boost UDASS. As we
have shown, this is a promising strategy since it does not
incur changes to the basemodel’s structure, and has delivered
promising results in terms of both precision and temporal
consistency.

Despite its appeal, such an approach still finds limited
application. Some reasons that can explain this scenario are
the overload imposed by dealingwithmultiple frames at once
during training, which has as side-effects the limitation of
batch sizes and image resolution.

Nonetheless, we consider that finding ways to better
explore temporal data in UDASS setups is a promising
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research direction, as shown by our findings in a real-to-real
adaptation experiment.

The subject still faces several challenges, delivers limited
accuracy, and leaves several open questions, to which we
invite the reader to contribute, so that to foster and develop
this research field that carries such an enormous practical
relevance.
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