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Abstract. A locating-dominating set of a graph G is a dominating set C of G
such that, for each pair of distinct vertices u and v not in C, the neighborhoods
of u and v in C are distinct. We focus on locating-dominating sets of mini-
mum density in the infinite square, triangular and king grids with finite height.
Optimal results on these grids were known only for height up to 3. We extend
these results showing optimal solutions with density 1/3 for square grids with
height 4, 5 and 6, and show how locating-dominating sets with density 1/3 can
be obtained for any square grid with finite height. We also show optimal solu-
tions for the infinite triangular and king grids with heights 4 and 5.

1. Introduction
In this work, we are concerned with locating-dominating sets of connected infinite graphs.
This concept was first introduced by [Slater 1975] with the motivation of detecting faulty
processors in a network. Other interesting applications are also known. A locating-
dominating set (for short, LDS) of a connected graph G = (V,E) is a set C ⊆ V such
that each vertex v not in C has a neighbor in C (that is, C is a dominating set of G) and
for each pair of distinct vertices u, v not in C, we have that N(u) ∩ C ̸= N(v) ∩ C,
where N(v) is the (open) neighborhood of vertex v. It is immediate that every graph has
an LDS, as the vertex set of the graph is such a set. However, finding an LDS of minimum
cardinality is an NP-hard problem, even for very specific graph classes such as bipartite
[Charon et al. 2003], interval and intersection graphs [Foucaud et al. 2016].

For infinite graphs, instead of cardinality of an LDS, we use the concept of density
of an LDS that captures the measure of the “ratio” of the elements in the LDS with respect
to the whole graph. This parameter is defined in the next section.

Locating-dominating sets have been studied both on finite and infinite graphs.
A well-updated and comprehensive source on this topic and related ones is the bibliog-
raphy maintained by [Jean 2024]. For infinite graphs, studies have focused mostly on
square, triangular, king and hexagonal grids (see Figure 1), all of which have vertex set
Z × Z, and are regular. For these grids, LDS of minimum density have already been
obtained [Slater 2002, Honkala 2006, Honkala and Laihonen 2006]. In this work we are
interested in a special subclass of these infinite grids, all of which are infinite, but have a
finite height (or equivalently, a finite number of rows).

We denote by Sk (resp. Tk and Kk) the square (resp. triangular and king) grid
with k rows. These grids are subgraphs of their corresponding infinite grids, and have
vertex set [k] × Z, where [k] = {1, . . . , k}. While optimal solutions are known for the
unrestricted infinite case, for Sk, Tk and Kk optimal solutions have been found only for
k ≤ 3 [Bouzinif et al. 2019]. We extend these results showing optimal solutions for S4,



S5 and S6; and for k ≥ 7 we prove that 1/3 is an upper bound for the minimum density of
an LDS in Sk. For the grids Tk and Kk, we show optimal solutions when k = 4 and k = 5.
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(a) Square grid GS

d∗(GS) = 3/10
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(b) Triangular grid GT

d∗(GT ) = 13/57
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(c) King grid GK

d∗(GK) = 1/5

Figure 1. Square, triangular and king grids

2. Locating-dominating sets of minimum density on grids with finite height
We define first the concept of density of an LDS, and establish the notation we shall use.

Let G be an infinite graph. If v is a vertex of G and r ≥ 1 is a natural num-
ber, then the r-open neighborhood of v is defined as Nr(v) := {w ∈ V : dist(v, w) ≤ r},
where dist(v, w) denotes the distance between vertices v and w in G. The density of an
LDS C in G, denoted d(C,G), is defined as d(C,G) := inf{dw(C,G) : w ∈ V }, where
dw(C,G) := lim supr→∞

|C∩Nr(w)|
|Nr(w)| . The minimum density of an LDS in G, denoted d∗(G),

is defined as d∗(G) := inf{d(C,G) : C is an LDS of G}.

In this section we describe the algorithm we have implemented to find a minimum
density LDS in the grids Sk, Tk and Kk. This algorithm is based on the notion of a config-
uration digraph and was first introduced by [Jiang 2018] for the identifying code problem
in Sk. Later, [Bouzinif et al. 2019] have used this approach for both the identifying code
and LDS problems in Sk, Tk and Kk.

As the size of the configuration digraph (to be defined in what follows) grows ex-
ponentially with k (the number of rows), implementations of this technique have led to
optimal solutions only for grids with small number of rows. For the identifying code
problem, [Jiang 2018] was able to solve for Sk, when k ≤ 5. For the LDS prob-
lem, [Bouzinif et al. 2019] proved that d∗(S2) = 3/8, d∗(S3) = 1/3; d∗(T2) = 1/3,
d∗(T3) = 3/10; d∗(K2) = 1/2 and d∗(K3) = 4/15. The grids S1, T1 and K1 are all
isomorphic to an infinite path P∞, and it is easy to prove that d∗(P∞) = 2/5.

In their solution, [Bouzinif et al. 2019] used the periodicity of the powers of a
matrix associated with the configuration digraph to find the mean of a minimum mean
cycle in it. Due to the size of the matrices, they were able to find solutions only for grids
with height at most 3. For our solution, we construct a digraph with weights on the arcs,
and find a minimum mean cycle in this digraph. This description is given in what follows.

Let Gk denote one of the grids Sk, Tk or Kk, k ≥ 2. The following two concepts
are fundamental: ℓ-bar and a barcode. Let ℓ be a natural number, ℓ ≥ 4. An ℓ-bar of Gk

is a subgraph of it induced by the vertices in the set [k]× {j1, . . . , jℓ}, where j1, . . . , jℓ
are ℓ consecutive columns of the grid. Let R be an ℓ-bar of Gk, and let C be a subset of
vertices of R (those which are candidates to be in an LDS of the grid – indicated in black
in the figures). We say that C is a barcode of R if the following holds for the (ℓ− 2)-bar,
say R′, indexed by the columns 2 to ℓ − 1 (i.e., the interior columns of the ℓ-bar R): for
each vertex v in R′ \C, we have N(v)∩C ̸= ∅, and for each pair of distinct vertices u, v
in R′ \C, we have N(u)∩C ̸= N(v)∩C. (Note that a barcode is an ℓ-bar together with



a subset C of selected vertices satisfying the mentioned properties; but for simplicity, we
refer only to those vertices in C, as the subjacent ℓ-bar is fixed).

Construction of (G,w), the configuration digraph G with weight w(.) on the arcs.

(i) Each vertex vB of G represents a distinct barcode B of a 4-bar;
(ii) There is an arc (vB, vB′) in G if the last three columns of barcode B

are identical to the first three columns of barcode B′, and the 5-bar formed by
their overlap (on the identical columns) is a barcode; the weight of this arc is the
number of vertices in C present in the last column of the barcode B′.

(a) (b) (c)

Figure 2. Two barcodes ((a) and (b)), and the barcode ((c)) formed by their overlap.

We can see that the number of vertices (resp. arcs) in G is at most 24k (resp.
25k). Let C∗ be a minimum (weight) mean cycle of the configuration digraph. The mean
of C∗ is defined as the total weight of the arcs in C∗ divided by the number of arcs in C∗.
The next theorem shows that a minimum mean cycle of the configuration digraph G is
intrinsically related to a minimum-density LDS in the corresponding grid. We observe
that [Jiang 2018] proved such a result for identifying codes on square grids. Our proof for
LDS on grids is different. Owing to space limitation, we provide only a sketch of the proof.
For polynomial-time algorithms to find minimum mean cycle on weighted digraphs we
refer to [Karp 1978] and [Hartmann and Orlin 1993].

We use the term pattern to refer to each feasible periodic solution (that is, an LDS
of a grid). And we say that a pattern is optimal when it corresponds to a minimum-
density LDS. In the grids shown in the next figures, two red consecutive vertical dashed
bars indicate the beginning and the end of the corresponding optimal periodic pattern.

Theorem 1. For a fixed integer k ≥ 2, let Gk denote one of the grids Sk, Tk or Kk, and
let (G,w) be the weighted configuration digraph constructed as defined previously. A
pattern P defined by a set C ⊆ V (Gk) is a periodic LDS of Gk with n columns if, and only
if, G has a cycle Ĉ with n arcs and weight w(Ĉ) that is equal to the number of vertices
of C in the pattern P , and the overlapping of consecutive barcodes associated with the
vertices in Ĉ makes the pattern P . Moreover, if λ is the mean of a minimum mean cycle
of G, then the minimum density of an LDS in Gk is given by d∗(Gk) = λ/k.

(Sketch of a proof of Theorem 1.) The way we defined the graph G (its vertices
and arcs), gives us immediately the correspondence between a periodic pattern P in Gk

and a cycle in G. If we take the pattern of a cycle with mean λ, it is immediate that it has
density λ/k. To prove that λ/k is a lower bound for any LDS, we notice that if there were
a pattern with smaller density, then there would be a cycle in G with mean smaller than λ.

Thus, to find a minimum-density LDS in Gk, all we have to do is find a minimum
mean cycle in the configuration digraph G (it may not be unique). We implemented in
C++ the algorithm that we have described. As the digraph for Kk is much larger than the
digraph for Sk, we were able to find an optimal solution for S6 but not for K6.

The next theorems summarize the results we obtained with our code.
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Figure 3. Optimal LDS for S3, S4, S5 and S6, all of them with density 1/3.
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Figure 4. Optimal LDS for T4 and T5, with d∗(T4) = 5/18 and d∗(T5) = 4/15.

Theorem 2. The locating-dominating sets shown in Figure 3 are of minimum density on
the square grids S4, S5, and S6. Their densities are d∗(S4) = d∗(S5) = d∗(S6) = 1/3.

Theorem 3. The locating-dominating sets shown in Figure 4 are of minimum density on
the triangular grids T4 and T5. Their densities are d∗(T4) = 5/18 and d∗(T5) = 4/15.

Theorem 4. The locating-dominating sets shown in Figure 5 are of minimum density on
the king grids K4 and K5. Their densities are d∗(K4) = 1/4 and d∗(K5) = 6/25.

3. An upper bound for the density of an LDS on the square grid with any
bounded height

Figure 3 shows an optimal LDS for S3. We may notice that the optimal pattern shown
for S6 consists of two stacked copies of the pattern for S3. From this, it is clear that
we can stack any number of these S3 patterns to construct a pattern for any square grid
S3m with m ≥ 3, maintaining a density of 1/3, and thus, d∗(S3m) ≤ 1/3. To obtain
LDS for square grids with different number of rows, we may combine (vertically and/or
horizontally) optimal patterns, whenever such a combination gives a feasible solution.
More formally, we can proceed as follows.

Let Pi and Pj be patterns of LDS Ci and Cj for grids Si and Sj , with periods p
and q, respectively. Let t = lcm(p, q). Construct patterns P ∗

i and P ∗
j by repeating Pi

and Pj horizontally t/p and t/q times, respectively. Clearly, the densities of P ∗
i and P ∗

j

are the same as those of Pi and Pj , respectively. Let P ∗ be the pattern formed by taking P ∗
i

on the first i rows of Si+j and P ∗
j on the next j rows. If P ∗ keeps the desired properties

for an LDS in the transition from the ith row to the (i+1)th row, then P ∗ is a pattern of an
LDS on Si+j with density given by d(P ∗, Si+j) =

(
i · d(P ∗

i , Si) + j · d(P ∗
j , Sj)

)
/(i+ j).

We note that we can stack the optimal pattern shown for S4 in Figure 3 on top of
the optimal pattern shown for S3, and obtain a pattern for S7. Similarly, we can stack the
optimal pattern for S5 on top of the optimal pattern for S3, and obtain a pattern for S8.
See Figure 6. Thus, we have that d∗(S7) ≤ 1/3 and d∗(S8) ≤ 1/3. Furthermore, since we
can stack as many patterns for S3 beneath these newly obtained patterns, we can construct
patterns for Sk, k ≥ 10, with density 1/3. Thus, we have the following result.

Theorem 5. Let Sk be the square grid with k rows. Then d∗(Sk) = 1/3 for 3 ≤ k ≤ 6,
and d∗(Sk) ≤ 1/3 for k ≥ 7.
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Figure 5. Optimal LDS for K4 and K5, with d∗(K4) = 1/4 and d∗(K5) = 6/25.
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Figure 6. Feasible LDS for the grids S7 and S8, with density 1/3.

Conclusion. We are currently working on the triangular and king grids with height at
least 6, and also on the hexagonal grid with bounded height. In the moment, we only have
some preliminary results, but we hope to be able to extend them soon.
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