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In this paper we carefully assess the theory prediction for RðsÞ below charm threshold, Ruds, and address
tensions with the existing data, notably with the 2021 BES-III results. We analyze the uncertainty of the
perturbative quantum chromodynamics description in the light of renormalons making use of the large-β0
limit and the renormalon-free gluon-condensate scheme. We provide a reliable estimate of the duality
violation contributions; we show they are sizable up to 2.5 GeVand improve the agreement between theory
and data, but are negligible for higher energies. We then combine the available experimental data for Ruds

and find the datasets to be mutually compatible. Finally, we compare theory and data, both locally and in
their contributions to the anomalous magnetic moment of the muon. Theory is compatible with the
combined data but discrepancies with the BES-III data reach more than 3σ.
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I. INTRODUCTION

The inclusive hadronic RðsÞ ratio

RðsÞ ¼ 3s
4πα2EM

σð0Þðeþe− → hadronsðþγÞÞ; ð1Þ

where αEM is the electromagnetic (EM) fine-structure
constant and σð0Þ is a bare (excluding vacuum polarization
effects) photon-inclusive cross section, has played a
fundamental role in the development of quantum chromo-
dynamics (QCD) and is still crucial for several phenom-
enological applications. Experimental results for RðsÞ are
the basis for the data-driven determination of the hadronic
vacuum polarization (HVP) contribution to the anomalous
magnetic moment of the muon [1], aHVPμ , and remain a
valuable source of information about the charm- and
bottom-quark masses [2–6], as well as about the strong
coupling [7–9], αs. In the present paper, we address the
theory description of RðsÞ below open-charm threshold,
which we denote Ruds, and the tension that has emerged in
2021, after new inclusive measurements of Ruds, betweenffiffiffi
s

p ¼ 2.23 GeV and 3.67 GeV, were made public by the
BES-III collaboration [10]. The new BES-III results are
rather precise, but are systematically larger than the
perturbative QCD (pQCD) prediction and than some of

the previous measurements of Ruds, notably those by the
KEDR collaboration [11–13].
One of the main reasons to quantitatively assess the

status of perturbative QCD for Ruds is its aforementioned
connection with the anomalous magnetic moment of the
muon, aμ. The new measurements of aμ, performed by the
FNAL E989 experiment at Fermilab [14–16], which are in
agreement with the previous, less precise, results from the
Brookhaven National Lab BNL E821 experiment [17], lead
to a combined world experimental average for aμ with an
uncertainty of a mere 124 ppb. The status of the determi-
nation of this quantity in the Standard Model (SM)
has recently been reviewed in the 2025 g − 2 Theory
Initiative (TI) white paper (WP) [1], based on results from
Refs. [18–77]. Progress has been achieved in several fronts
since the previous version of the g − 2 TI WP [78] (notably
in the lattice-QCD evaluation of aHVPμ ) but the main source
of uncertainty in the SM result remains aHVPμ . Using as
input the lattice-QCD results for aHVPμ , the SM determi-
nation of aμ is in agreement with the experimental result
within 0.6 σ. The situation for the data-driven approach to
aHVPμ , based on data for RðsÞ, is less clear, since the CMD-3
results [79,80] for the cross sections eþe− → πþπ− show a
strong tension with previous measurements of the same
quantity. Data-driven results that use the CMD-3 cross
sections lead to agreement with lattice-QCD [81–85] and
with the experimental determination of aμ [1], while results
based on a combination of previous measurements of the
same cross sections lead to a data-driven determination of
aμ that disagrees with experimental results and show a
significant tension with lattice-QCD [1,46,85,86]. Finally,
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data-driven results based on τ → π−π0ντ measurements,
that must rely on nontrivial model-dependent isospin-
breaking corrections [87–94], are lower but compatible
with the recent lattice-QCD determinations.
In the data-driven approach to aHVPμ , in the energy region

of interest to this paper—between 1.8 GeVand 3.7 GeV—
some works use the available experimental data [46,95]
while others turn to the use of pQCD expressions [86,96].
The latter approach assumes, of course, that pQCD is valid
and leads to a smaller final error for this contribution to
aHVPμ , since the pQCD prediction has smaller errors than the
experimental determinations of RðsÞ. Given the size of the
contribution of this energy region to the final data-driven
assessment of aHVPμ (∼30 × 10−10), the resolution of this
tension is not nearly as crucial as the issues in exclusive
measurements of eþe− → πþπ−. Nevertheless, a strong
disagreement between experimental results for Ruds and the
prediction in pQCD—presently known at five loops, or
Oðα4sÞ [97,98]—besides having phenomenological impli-
cations, is disconcerting at a conceptual level since, as we
will discuss, the uncertainties on the pQCD theory pre-
diction are very small and a large portion of this energy
region is sufficiently far from resonances for one to expect
that pQCD should already provide a good description
of RðsÞ measurements, especially for the higher-energy
portion of the Ruds domain. Furthermore, a discrepancy
between theory and Ruds measurements has implications
for αs and charm-quark mass determinations from relativ-
istic sum rules, since in those studies the Ruds background
must be subtracted from the inclusive four-flavor RðsÞ
measurements above charm threshold [2–6,8,9].
Our aim in this paper is to, first, carefully assess the

present knowledge of the pQCD description of Ruds, with a
reliable estimate of uncertainties due to missing higher
orders. Potential convergence issues in the pQCD series
are quantified using what is known about renormalons
[99–102], supplemented with realistic models for higher-
orders [100,103], as well as employing the recently
introduced renormalon-free (RF) gluon-condensate scheme
[104–106] and the large-β0 limit of QCD. After discussing
the small quark-mass corrections, we employ the knowl-
edge available about quark-hadron duality violations (DVs)
[107–109] in eþe− → hadrons [7], as well as in the isospin-
related process τ → hadronsþ ντ [110,111], to estimate
this nonperturbative contribution. We show that the DVs
can be sizable for

ffiffiffi
s

p
≤ 2.5 GeV and that this contribution

improves the agreement between theory and data. We are
then in a position to produce state-of-the-art theory results
with a realistic and reliable uncertainty both locally, for
RudsðsÞ, as well as in integrated results for aHVPμ in the Ruds

region. We then turn to the experimental data. With the
algorithm of Refs. [46,95] (see also Ref. [110]), we
combine the experimental data for Ruds to produce a
combined experimental result for aHVPμ in the Ruds region

while assessing the compatibility of the different exper-
imental results. We also compute, in two different energy
windows, the contribution to aHVPμ implied by individual
datasets for Ruds. Finally, we quantify the local as well as
the integrated discrepancy between the pQCD prediction
with and without DVs, the different experiments, and the
combined experimental results.
This paper is organized as follows. In Sec. II we give an

overview of the theoretical framework. In Sec. III we
discuss in detail the pQCD contribution and its uncertainty.
Other corrections are discussed in Sec. IV, with a special
focus on the DV contribution. In Sec. V, we give theory
predictions for Ruds with all corrections included. In
Sec. VI, we combine the available datasets and perform
a quantitative comparison between theory and data.
Our conclusions are given in Sec. VII. Some of the details
of the implementation of the RF scheme are relegated
to Appendix.

II. THEORETICAL FRAMEWORK

We start with a brief recollection of well-known results.
The result for Ruds in pQCD can be obtained, with the use
of the optical theorem, from the massless Adler function.
Mass corrections can then be added perturbatively, but for
Ruds they are very small, as we will discuss. We remind
that, because of the quark charges involved, Ruds does not
receive contributions from singlet diagrams. Therefore, the
results can be cast in terms of the vector correlator of two
(massless) nonsinglet quark-field currents

ΠV
μνðq2Þ ¼ ðqμqν − gμνq2ÞΠðq2Þ

¼ i
Z

d4xeiq·xh0jjVμ ðxÞjVν ð0Þ†j0i; ð2Þ

with jVμ ðxÞ ¼ ūγμdðxÞ. It is customary to work with the
renormalization-group invariant Adler function, Dðq2Þ,
defined as

Dðq2Þ ¼ −q2
d
dq2

Πðq2Þ ¼ Nc

12π2
ð1þ D̂ðq2ÞÞ; ð3Þ

where we also defined the reduced Adler function, D̂ðq2Þ,
which starts at OðαsÞ.
The result forΠðq2Þ, or for the associated Adler function,

can be organized in terms of the operator product expansion
(OPE). The leading contribution, stemming from the
identity operator, with dimension zero, is the purely
perturbative contribution. The general perturbative expan-
sion of D̂ðsÞ in QCD is given by

D̂pertðq2Þ ¼
X∞
n¼1

ans ðμ2Þ
Xnþ1

k¼1

kcn;k

�
log

�
−q2

μ2

��
k−1

; ð4Þ
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where μ is a renormalization scale and asðμ2Þ≡ αsðμ2Þ=π.
The independent coefficients that must be calculated
perturbatively are the cn;1, while the cn;k>1 can be obtained
with the renormalization group. For Ruds, and in accor-
dance with our definitions, only the nonsinglet cn;k
coefficients intervene. Presently, these coefficients are
known exactly up to c4;1 [97,98] (five loops). Several
estimates exist for c5;1 and higher. Here, when estimating
the fifth-order term, we will use c5;1 ¼ 280� 140, which
covers the existing estimates for c5;1 obtained with
various methods [97,100,103,112].
The connection with Ruds is made with the spectral

function, defined as

ρðsÞ ¼ 1

π
ImΠðsþ i0Þ; ð5Þ

with q2 ¼ s. Because the correlator ΠðsÞ satisfies the
Schwarz reflection principle, the following integral repre-
sentation for the spectral function associated with D̂ðsÞ can
be obtained with the use of Cauchy’s theorem

ρ̂ðsÞ ¼ 1

2πi

Z
s−i0

sþi0
ds0

D̂ðs0Þ
s0

¼ 1

2πi

I
jxj¼1

dx
x
D̂ðsxÞ; ð6Þ

where the integral on the left-hand side can be written as the
difference of integrals over s just above and below the cut
by a change of variables. In the representation of the right-
hand side, where x ¼ s0=s, which will be used from now
on, wewill always consider a circular contour of integration
in the complex plane with jxj ¼ 1. In this form, the spectral
function becomes a particular case of integrated moments
of the Adler function of the type

1

2πi

I
jxj¼1

dx
x
WmðxÞD̂ðsxÞ; ð7Þ

with WρðxÞ ¼ 1. These moments intervene in the analysis
of αs from hadronic τ decays and they have been exten-
sively studied in the literature (see, e.g., Refs. [100–
103,105,113–116]). In particular, for a long time there
was a discrepancy in the results obtained from the two most
widely used prescriptions for the renormalization-scale
setting when using Eq. (4) in the integral of Eq. (7)—
the question of fixed order perturbation theory (FOPT)
[100] versus contour improved perturbation theory (CIPT)
[117,118]. This discrepancy, unlike what is expected for a
residual renormalization-scale dependence, did not become
smaller with the calculation of the Oðα4sÞ coefficient.
Results from FOPT, obtained with a fixed μ2 ¼ s in the
integrand of Eq. (7), are systematically different from the
results from CIPT, obtained with a running scale μ2 ¼ −sx,
thereby resumming the logarithms of Eq. (4). The same
ambiguity appears for the perturbative spectral function
but, fortunately, the problem is now very well understood

[104,119–122] and it is clear that the standard CIPT
prescription is not consistent with the usual OPE and must
either be dropped or remedied. The discrepancy arises
because CIPT always retains a sensitivity to infrared (IR)
renormalons, which then leads to a systematic nonpertur-
bative difference between the two results. The CIPT series
can be fixed, for practical purposes, if the leading IR
renormalon is consistently removed, for example with the
use of the renormalon-free (RF) gluon-condensate (GC)
scheme of Refs. [104–106], leading to consistent results
between the two series at higher orders.
Beyond perturbation theory in the chiral limit, theD ¼ 2

contributions arise from the perturbative quark-mass
corrections. In our case, since the masses of the light
quarks u and d are tiny, we can safely consider only the
ms corrections. Those are known perturbatively up α3s
[123,124] and are discussed in detail in Sec. IV. As we will
show, these corrections are small and mass corrections with
higher dimension, starting at Oðm4

s=s2Þ, can safely be
neglected.
Higher-dimension nonperturbative OPE corrections to

ΠðsÞ can be cast in the form

ΠðsÞOPED>2 ¼
X∞
k¼2

C2kðsÞ
ð−sÞk ; ð8Þ

where the coefficients C2kðsÞ encode both the perturbative
Wilson coefficients and the condensates formed from
Lorentz- and gauge-invariant operators of dimension
D ¼ 2k. These higher-dimension corrections are, however,
strongly suppressed for ρðsÞ. The reason for that is that the
s dependence in the C2k coefficients arises solely from
αs-suppressed logarithms from higher-order corrections. In
the contour integration of Eq. (7), a monomial xk (with
k ¼ 2; 3…) in the weight functionWmðxÞ picks up the non-
αs-suppressed contribution withD ¼ 2k. Since for ρðsÞ the
weight function is WρðxÞ ¼ 1, only the αs-suppressed
terms survive the contour integration and there is a
strong suppression of all OPE condensate contributions.
Neglecting these small αs-suppressed contributions from
OPE condensates, about which little is known from exact
calculations,1 is standard in integrated moments of the
Adler function [116,126,127], and wewill therefore neglect
them henceforth.
An additional source of nonperturbative contributions is

the DVs. The OPE is strictly valid in the Euclidean. For s

1The exception is the gluon condensate, for which the Wilson
coefficient is known to order α3s [125]. In this case, it can be
explicitly verified that neglecting αs-suppressed contributions
to polynomial moments of the Adler function is fully justified
[126,127]. Estimates for the contribution of αs-suppressed terms
from D ¼ 6 condensates also exist [127], albeit relying on
assumptions about the different condensates that contribute
in this case. These estimates also support the neglect of
αs-suppressed terms.
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sufficiently large, however, one expects that, far away from
resonances, pQCD should provide a good description of
RðsÞ. In this regime, the DV contribution quantifies the
residual oscillations around pQCD due to superimposing
tails of higher resonances, that can still be manifest in the
data. DVs cannot be obtained from first principles, but an
asymptotic parametrization for their effects can be obtained
from well accepted assumptions about the QCD spectrum,
such as asymptotic Regge trajectories and large Nc con-
siderations [107–109]. This type of parametrization has
been used in several studies of τ → hadronsþ ντ spectral
functions [108,110,111,126,128] as well as eþe− →
hadrons [7,82,83], and these results can be used to estimate
DV effects in Ruds, as discussed in Sec. IV.
For Ruds, the relevant current is the EM current which

reads

jEMμ ¼ QuūγμuþQdd̄γμdþQss̄γμs

¼ 1

2
ðūγμu − d̄γμdÞ þ

1

6
ðūγμuþ d̄γμd − 2s̄γμsÞ; ð9Þ

where on the right-hand side we have given the decom-
position in isospin I ¼ 1 and I ¼ 0 parts, which will be
useful later on. Due to the aforementioned cancellation of
singlet contributions proportional to ðPi QiÞ2, the pertur-
bative contribution to Ruds is directly obtained from the
nonsinglet Adler function.
The observable Ruds can then be written as

RudsðsÞ¼ 12π2ρEMðsÞ
¼Nc

X
q¼u;d;s

Q2
qð1þδð0Þαs þδEMþδm2

q
þδDVsÞ; ð10Þ

with the αs corrections encoded in δ
ð0Þ
αs and where δEM is the

leading EM correction, δm2
q
represents quark-mass correc-

tions, and δDVs the contribution from DVs. We will discuss
and quantify these corrections in the remainder of the paper.
Finally, the contribution to aHVPμ from the energy interval

s1 ≤ s ≤ s2 can be expressed in terms of RðsÞ as

aHVPμ ½s1; s2� ¼
�
αEMmμ

3π

�
2
Z

s2

s1

ds
K̂ðsÞ
s2

RðsÞ; ð11Þ

where mμ is the muon mass and the slowly varying kernel
function K̂ðsÞ [129,130] can be found in Ref. [1].

III. PERTURBATIVE QCD AND THE EXPECTED
HIGHER-ORDER BEHAVIOR

We begin with a discussion of what can be considered
the standard treatment of pQCD in the case of RðsÞ. Using
FOPT, which amounts to setting μ2 ¼ s in the integrand of
Eq. (7), the result for the spectral function is written in

terms of integrals over powers of logð−xÞ (which can be
obtained analytically), as

δð0Þαs;FO
¼
X∞
n¼1

ans ðsÞ
Xnþ1

k¼1

kcn;k
1

2πi

I
jxj¼1

dx
x
logk−1ð−xÞ; ð12Þ

where the strong coupling at the scale μ2 ¼ s is obtained
with the five-loop QCD β function [131]. These are the
dominant corrections to RudsðsÞ. The explicit results for
these αs corrections in FOPT, for three quark flavors
(Nf ¼ 3) and up to α5s , are

δð0Þαs ðsÞ ¼ asðsÞ þ 1.6398a2sðsÞ − 10.284a3sðsÞ
− 106.88a4sðsÞ þ ðc5;1 − 779.58Þa5sðsÞ þ � � � :

ð13Þ

In theOðα5sÞ term, we have kept explicit the contribution of
c5;1, which is not known from perturbative calculations,
while the −779.58 includes the contributions from c5;2,
c5;3, and c5;4, which can be written in terms of the known
coefficients cn<5;1 as well as known β-function coefficients.
For s ¼ ð2 GeVÞ2, with αsð4 GeV2Þ ¼ 0.2949ð61Þ,2 the
numerical result is

δð0Þαs ð4GeV2Þ ¼ 0.09387þ 0.01445 − 0.008506

− 0.008298 − 0.0036ð10Þc51 þ � � �
¼ 0.0879ð21Þ; ð14Þ

where we have given the numerical result for each term
order by order, including our estimate of the α5s contribution
and its associated error from the uncertainty in the value
of c5;1. In the total result, the uncertainty reflects that of αs
added quadratically with an estimate for the error asso-
ciated with the truncation of the perturbative series. The
latter is taken as the maximum between the error obtained
from variations of c5;1 and the one stemming from the
difference between the results at Oðα4sÞ and Oðα5sÞ.3
It is noteworthy that the exactly known coefficients of

δð0Þαs change sign starting atOðα3sÞ. Also, the third and fourth
order terms are of similar magnitude, which is uncommon
for other moments of the Adler function, with the exception
of moments that have a high sensitivity to the leading IR
renormalon, which entails a runaway behavior in the
perturbative expansion [101]. In the case of ρ̂ðsÞ, however,

2This value corresponds to the current Particle Data Group
average αsðm2

ZÞ ¼ 0.1180ð9Þ [132] which we will use throughout
this work.

3This choice is conservative. We checked that renormalization
scale variations lead to smaller errors than the truncation error we
consider.
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there is no such sensitivity to the leading IR renormalon, as
we show next.
The perturbative QCD behavior of Adler function

moments has been studied in several papers
[100–105,113–115]. Since the perturbative series is
(at best) asymptotic, it is very common to study it in terms
of its Borel transform. For μ2 ¼ −q2 ¼ Q2 one can rewrite
the expansion of D̂, Eq. (4), as

D̂ðQ2Þ ¼
X∞
n¼0

rnαnþ1
s ðQ2Þ; ð15Þ

with rn ¼ cnþ1;1=πnþ1 and define the Borel transform,
which is an inverse-Laplace transform, as in Ref. [100]

B½D̂�ðtÞ≡X∞
n¼0

rn
tn

n!
: ð16Þ

The Borel-sum of the series is then defined by the Laplace
transform of B½D̂�ðtÞ

D̂ðαÞ ¼
Z

∞

0

dt e−t=αB½D̂�ðtÞ: ð17Þ

This defines the true value of the series, up to potential
imaginary ambiguities when there are singularities (renor-
malons) that obstruct the integration path.
The large-β0 limit of QCD [99] is often used as a starting

point for the analysis of the series behavior at higher orders.
In a nut shell, the large-β0 limit is obtained from results
taking Nf → ∞ while keeping Nfαs ∼Oð1Þ. The quark
bubble-loop corrections to the gluon propagator, which are
proportional to Nf, must then be summed to all orders.
Gluon self-interactions are introduced with the procedure
known as naive non-Abelianization [133,134], where the
fermionic contribution to the leading order QCD β function
is replaced by its full QCD result, thereby effectively
introducing a set of non-Abelian contributions.
In this limit, where the series is known to all orders

in αs, and the asymptotic character of the perturbative
series is manifest, the Borel transformed Adler function
can be obtained exactly. The large-β0 result for B½D̂�ðtÞ
reads [135,136]

B½D̂Lβ0 �ðuÞ ¼
32

3π

�
Q2

μ2

�−u e−Cu

ð2 − uÞ
X∞
k¼2

ð−1Þkk
½k2 − ð1 − uÞ2�2 ;

ð18Þ

where u≡ β1t=ð2πÞ and C is a renormalization-scheme
dependent constant; in the MS-scheme, C ¼ −5=3. In this
form, the renormalons, which are the singularities in u
associated with the factorial growth of series coefficients,
can be easily studied. The IR singularities (u > 0) always

have simple and a double pole terms, with the sole
exception of the leading IR pole, at u ¼ 2, associated with
the D ¼ 4 OPE contribution from the gluon condensate,
which is a simple pole. IR poles also entail an imaginary
ambiguity in the Borel sum, since they obstruct the
integration path in Eq. (17) and must be circumvented,
which is usually done with the principal value prescription.
The UV poles (u < 0) all exhibit the simple plus double
structure. IR poles are associated with fixed-sign series
while UV singularities generate alternating-sign coeffi-
cients. Since the pole closest to the origin is the leading
UV at u ¼ −1 the series, eventually, is dominated by this
pole and displays sign alternation at high orders [100].
Since in the large-β0 limit the series is known to all

orders, it is interesting to study δð0Þαs in this limit and
confront the results with the full QCD expression. It is
simple to obtain the Borel transformed ρ̂FO in the large-β0
limit using the integral representation of Eq. (17) in Eq. (7),
which gives

B½ρ̂FO;Lβ0 � ¼
sinðπuÞ
πu

B½D̂Lβ0 �ðuÞ: ð19Þ

This result shows that the leading IR pole of B½D̂Lβ0 �ðuÞ is
exactly canceled by a zero of sinðπuÞ while the other IR
poles are all reduced from double to simple. The cancella-
tion of the leading IR pole is crucial for a good perturbative
behavior since moments of the Adler function that are
sensitive to this IR pole tend to have a run-away pattern,
and never stabilize [101,102,104]. Furthermore, the can-
cellation of all simple IR poles means that B½ρ̂FO�ðuÞ is
much less singular than B½D̂�ðuÞ, which tends to be
associated with better behaved perturbative series [102].
Reconstructing the αs expansion of ρ̂FO in the large-β0

limit from B½D̂�ðuÞ one finds,

δð0Þαs;Lβ0
¼ asðsÞ þ 1.56a2sðsÞ − 0.944a3sðsÞ − 52.9a4sðsÞ
− 283a5sðsÞ − 2241a6sðsÞ þ � � � ð20Þ

The leading correction is, by construction, the same as
in QCD, while the higher-orders can be considered
“predictions” in the large-β0 limit. Comparing with the
QCD result, Eq. (13), the large-β0 limit reproduces very
well the a2s term and predicts correctly the signs of the other
known coefficients. The a5s term is also similar to the
estimated result in Eq. (13). This general pattern gives us
some confidence that the large-β0 result is able to capture
the essence of the QCD series. It is worth mentioning that
in large-β0 a systematic sign alternation sets in starting from
the Oða7sÞ term. Therefore, at intermediate orders, the flip
in sign is still due to a competition of IR and UV
renormalons and does not yet reflect the asymptotic
dominance of the leading UV renormalon, which takes
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over from Oða7sÞ. For s ¼ 4 GeV2, the numerical result,
order by order, is now, up to Oðα5sÞ

δð0Þαs;Lβ0
ð4 GeV2Þ ¼ 0.09387þ 0.01372 − 0.000781

− 0.00411 − 0.002062þ � � � ð21Þ

Returning to the QCD result, with a convenient change
to the so-called C scheme for αs [137], it is possible to
obtain the QCD equivalent of Eq. (19). It turns out, as
shown in Ref. [9], that Eq. (19) retains its form in QCD in
the C scheme provided an adequate choice of a modified
Borel transform is used [138]. This means that a similar
mechanism of partial cancellation of renormalon singular-
ities is at work in QCD as well, which is another indication
that large-β0 can be used as a guide to the behavior of the
series at higher orders, and lends additional support to the
similarities between the series in Eqs. (14) and (21).
In Fig. 1, we compare the FOPT perturbative series

(shown with blue squares) for δð0Þαs in the large-β0 limit,
Eq. (21), and in QCD, Eq. (14), at s ¼ ð2 GeVÞ2. In QCD,
we use c5;1 ¼ 280� 140 and for the higher-order coef-
ficients, cn>5;1, we employ the results obtained with Padé
approximants in Ref. [103]. The use of other models for the
higher-order coefficients [100,105,112] would lead to
similar results. In the large-β0 result we see that, in spite
of the change in sign at Oðα3sÞ, the result does approach the
Borel sum and is relatively stable around it at orders 6 to 8.
The numerical shift from order 4 to 6 leads to a further
correction of −0.36%, which is not very significant given
the size of other errors involved in the evaluation of Ruds.
Therefore, although the behavior of this perturbative series
is somewhat peculiar, there is no indication of any major
convergence issue (in the sense of an asymptotic series),
and the result at Oða4sÞ already provides a good represen-
tation for the true value of the series, and even more so the
result at Oðα5sÞ. The behavior in QCD is very similar, even
though the results tend to stabilize at lower values. It is,
therefore, reasonable to assume that in QCD the results at

order Oða4sÞ are also approaching the true value
from above.

A. Renormalon free scheme

In order to corroborate the conclusions of the previous
section, it is worth investigating another renormalization-
scale setting which, effectively, should generate a different
asymptotic series to the same true value.
As we have mentioned, an alternate prescription that has

been used for a long time in the computation of Adler
function moments is CIPT [117,118], which consists in
setting μ2 ¼ −sx when using Eq. (4) in the integral of
Eq. (7). The series thus obtained is no longer a power series
in αs, since the running of the coupling is resummed to all
orders along the contour of integration. For a long time, the
discrepancy between the results obtained in CIPTand those
obtained in FOPT was puzzling, especially given that the
difference became larger when the Oðα4sÞ term became
available, contradicting the expectation that both series
were valid asymptotic expansions to the same true value.
This issue is now fully understood. It turns out that CIPT

defines a different series, with a different Borel sum, and
the expectation that it should agree with FOPT at higher
orders was incorrect [119]. The systematic difference
between the two procedures was dubbed “asymptotic
separation” and can be calculated exactly if sufficient
knowledge is available, such as in the large-β0 limit
[119–121]. This difference is driven by the CIPT sensitivity
to IR renormalons: in large-β0, more than 99% of this
difference is due to the leading IR renormalon, associated
with the gluon condensate. This means that, if a consistent
procedure is used in order to remove this renormalon, one
can then define a modified CIPT which, for all practical
purposes, agrees with FOPT. This was demonstrated in
Refs. [104,105] where the RF GC scheme was introduced.
In large-β0, where exact knowledge about the Borel

transform is available, it is possible to implement the RF
GC scheme exactly, by the consistent subtraction of the
leading IR renormalon. The details of how this is done in

FIG. 1. Results for δð0Þαs in FOPT (blue squares) and in RF-CIPT (red triangles) in the large-β0 limit (left-hand panel) and in full QCD
(right-hand panel) for s ¼ ð2 GeVÞ2. The horizontal line in large-β0 represents the Borel sum of the series (the imaginary ambiguity is
very small in this case and cannot be seen in the plot). In QCD, results beyond Oðα4sÞ employ an estimate for the unknown series
coefficients (see text for details). The band in the QCD plot shows the uncertainty due to the unknown coefficients in the FOPT result.
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practice are summarized in Appendix but can be found in
the original works [104,105]. In the RF scheme, the new
CIPT series, to which we refer as RF-CIPT, agrees with
FOPT at higher orders—defining two proper asymptotic
series to the same true value. The results for RF-CIPT in the
large-β0 limit are shown in red in the left-hand panel of
Fig. 1.4 The series approaches the Borel sum from below,
with smaller steps at intermediate orders and without
overshooting the true value for low orders. It shows that
both series, once properly defined, are fully consistent for
sufficiently high orders.
In QCD, the implementation of the RF GC scheme is less

simple because the norm of the gluon condensate renor-
malon is not exactly known. However, as shown in
Ref. [105], sufficient knowledge exists to allow a reliable
extraction of this norm with sufficient precision for the
implementation of the subtracted scheme. The series that is

obtained for δð0Þαs in RF-CIPT is, order by order, the
following

δð0ÞRF-CIPT ¼ 0.07559þ 0.006716þ 0.001795

þ 0.001258þ 0.000884ð75Þc51 :

This series shows a monotonic growth, fixed signs, and a
systematic reduction of each consecutive term. It is dis-
played as the red triangles on the right-hand panel of Fig. 1
together with the previous FOPT result. What we see is that
the series, although with a rather different behavior, does
seem to approach the same value as FOPT at higher orders,
in accordance with the expectation of the RF GC scheme.
What is more, at Oðα5sÞ the two asymptotic series are
already very similar, which corroborates that no big
surprise should be expected for even higher orders. The
results in QCD are very similar, qualitatively, to those
obtained in the large-β0 limit, where the Borel sum is
known. This further corroborates that the true value of the
series is very likely well approximated by the results
at Oðα5sÞ.

IV. OTHER CORRECTIONS TO RudsðsÞ
A. Duality violations

The use of pQCD to describe RðsÞ is predicated on the
assumption of quark-hadron duality. For sufficiently large s
and far away from resonances one expects that pQCD
should provide a good approximation to Ruds. At inter-
mediate values of s, residual oscillations due to super-
imposing tails of higher resonances can still be present, and

represent an intrinsic limitation of pQCD in the
Minkowski. These damped oscillations around pQCD
are what we refer to as the DVs.
Their description, however, cannot be obtained solely

from first principles, and one must rely on assumptions
about the QCD spectrum in order to derive a reasonable
parametrization for the DV contribution. The DV contri-
bution is encoded in the function ΔðzÞ, which represents
the deviations of ΠðzÞ from the OPE description

ΠðzÞ ¼ ΠOPEðzÞ þ ½ΠðzÞ − ΠOPEðzÞ� ¼ ΠOPEðzÞ þ ΔðzÞ:
ð22Þ

Then, the DV contribution to ρEMðsÞ is simply ρDVsEM ðsÞ ¼
ð1=πÞ ImΔðsÞ. A formulation of the problem in terms of
the Borel-Laplace transform of Πðq2Þ and hyperasymp-
totics was presented in Ref. [109]. With the assumption that
the QCD spectrum is Regge-like for high energies and in
the Nc → ∞ limit, one can derive the following para-
metrization valid for large s

ρDVsðsÞ ¼ e−δ−γs sinðαþ βsÞ: ð23Þ

The general form of the subleading corrections to this
parametrization can be found in Ref. [109] and were
investigated recently [110,127], but these corrections have
been shown to be small, in the case of 1=s corrections, or
too slowly varying in s, in the case of 1=log s corrections,
to have an impact in the description of experimental data.
We will therefore use the parametrization as given
in Eq. (23).
Since DVs are related to resonances their quantitative

description is channel specific. In hadronic τ decays, e.g.,
where they have been studied for a number of years
[110,111,116,126], the vector-isovector and axial-vector-
isovector contributions intervene. In RðsÞ, one must con-
sider the vector-isoscalar contribution as well. The inclu-
sion of the I ¼ 0 channel is not so straightforward because
the parametrization of Eq. (23) was obtained in the chiral
limit, and it is not clear how to systematically include ms
effects. Here we follow the strategy of Ref. [7]. Ignoring the
small disconnected contribution and taking into account the
quark charges one arrives at the following parametrization
for the DVs in the EM spectral function

ρDVsEM ðsÞ ¼ 5

9
e−δ1−γ1s sinðα1 þ β1sÞ

þ 1

9
e−δ0−γ0s sinðα0 þ β0sÞ: ð24Þ

In this form, the term proportional to 5=9, corresponds, in
the isospin limit, to the vector-isovector DV contribution
that appears in hadronic τ decays. Given the observation
that the ρ meson spectrum is nearly degenerate with the ω
spectrum one expects that the DVs in I ¼ 1 and I ¼ 0

4Here, we use as the IR subtraction scale required for the
implementation of the RF GC scheme the value η ¼ 0.7s.
Variations of this scale lead to a spread in the values obtained
in the RF GC scheme, as discussed in Ref. [104], but this residual
scale uncertainty, governed by the renormalization group, is
irrelevant to the present discussion.
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channels are degenerate in shape for large s. Therefore,
an additional assumption was made in Ref. [7], which
consists in assuming that β0 ¼ β1 and γ0 ¼ γ1. With this
assumption, that we adopt here as well, the vector-isoscalar
DV contribution contains only two new parameters with
respect to the vector-isovector counterpart, namely δ0
and α0.
Since the parametrization of Eq. (24) is valid only for

large s, the use of this parametrization is predicated on the
assumption that the large s regime is already attained. This
assumption is supported by data since the τ-based I ¼ 1
vector analyses [110,111] show that good fits can be
obtained for s≳ 1.4 GeV2. For the I ¼ 0 part, the analyses
of Ref. [7] support the notion that this limit is reached for
s≳ 2.9 GeV2. Therefore, for the description of the inclu-
sive RðsÞ data, where s > 3.24 GeV2, our parametrization
is expected to be valid as well.
The DV contribution to RudsðsÞ parametrized as in

Eq. (10) is finally written as

δDVs ¼ 6π2ρDVsEM ðsÞ; ð25Þ

where ρDVsEM ðsÞ is given in Eq. (24).
Here, the vector-isovector DV parameters, δ1, γ1, α1, and

β1, will be fixed using results from a recent hadronic τ
decay analysis [110], in which an improved inclusive
vector-isovector spectral function was built from the
combination of the available τ → 2πντ, τ → 4πντ, and
τ → K̄Kπ data supplemented with smaller contributions
from higher multiplicity channels obtained from eþe− →
hadrons cross sections using CVC [111]. In particular, we
use the parameters from the fit of Table 2 of Ref. [110] with
smin
0 ¼ 1.5747 GeV2 which read

δ1 ¼ 3.01ð39Þ; ð26Þ

γ1 ¼ 0.87ð24Þ GeV−2; ð27Þ

α1 ¼ −1.34ð73Þ; ð28Þ

β1 ¼ 3.78ð38Þ GeV−2: ð29Þ

Their full covariance matrix is used in error propagations.
To fix the two additional isoscalar parameters, δ0 and α0,

we employ the strategy of Ref. [7] which consists in fitting
the Ruds data obtained from the measurements of exclusive
channels in the interval 3.3 GeV2 ≤ s ≤ 4 GeV2. We use
the data from the combination of exclusive-channel cross
sections of Ref. [95], to which we refer as KNT. With the
I ¼ 1 parameters quoted above, we obtain

δ0 ¼ 0.96ð22Þ; ð30Þ

α0 ¼ 0.80ð27Þ: ð31Þ

These values are similar to those quoted in Ref. [7] but
can be considered as an update of those numbers given
the new knowledge about the I ¼ 1 parameters. The
correlation of 45% among these values is considered in
error propagations.
With this set of parameters, the DV contribution to Ruds

in the inclusive region is fixed and, for s ≥ 4 GeV2, is an
extrapolation of results obtained at lower energies and from
fits to other datasets (hadronic τ decays [111] and exclusive
RudsðsÞ data [7,95]). We have also tried fits of I ¼ 0
parameters to the inclusive Ruds data but we obtain results
that are very similar to those based on the extrapolations,
with no significant difference. Therefore, we prefer to use
the description based on the extrapolation as our central
value, since in this case the DVs are fixed by external
information, which is arguably more interesting.

B. Quark-mass corrections

Beyond perturbation theory in the chiral limit, one
should consider the quark-mass corrections. These are
known up to α3s [123,124,139]. Corrections from mu and
md can safely be neglected and, for Ruds, one can consider
only those from ms. Since the contribution is numerically
small, with an overall scale at s ¼ ð4 GeV2Þ set by

m2
sðsÞ
s

∼ 2.2 × 10−3;

where we used the MS value msð2 GeVÞ ¼ 93.5ð8Þ MeV
[132], we consider these corrections up to Oðα2sÞ, as done,
e.g., in Refs. [81,86]. The result for δm2

q
, defined in Eq. (10),

is then

δm2
q
¼ m2

sðsÞ
s

�
1þ 2as þ

227

12
a2s þ � � �

�
: ð32Þ

When estimating the uncertainty on this contribution we
consider the uncertainty from the value of msð2 GeVÞ as
well as that from αs.

C. Electromagnetic corrections

Because the RðsÞ data include EM corrections we have
to consider these in our description of RudsðsÞ. The only
numerically important contribution arises from one-photon
exchange [140–142] and leads, in the decomposition of
Eq. (10), to [7]

δEM ¼ αEM
4π

; ð33Þ

where we use αEM ¼ 1=137.0356 [132]. Since this con-
tribution is numerically very small, its uncertainty can
safely be neglected.
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V. RESULTS FOR Ruds

With the contributions from pQCD in the FOPT pre-
scription, Eq. (14), the contributions from DVs of Eq. (25),
the strange-mass corrections, Eq. (32), and the EM cor-
rection of Eq. (33), we can obtain the complete results for
Ruds as parametrized in Eq. (10). In Table I we give
representative values of Ruds in the inclusive region with
the breakdown into the different corrections. The contri-
bution from pQCD is always the dominant one, but for
lower energies in the inclusive region, DVs can also be
relevant. For

ffiffiffi
s

p ¼ 2 GeV, e.g., pQCD represents a ∼9%
correction, with a negative ∼3% correction from the DV
contribution, followed by a ∼0.3% ms correction and a
much smaller contribution from EM. At

ffiffiffi
s

p ¼ 2.5 GeV the
DV contribution is at the subpercent level, while pQCD is
still ∼8%, and for

ffiffiffi
s

p
≥ 3.0 GeV the DV contribution is

already insignificant. The DV parameters, however, are not
well controlled given the present knowledge; the error
associated with the DVs is large and, at lower energies,
strongly dominates the total error of Ruds. In Fig. 2 we can
see that, in spite of the large errors, the central value from
the description that includes the DVs (dashed blue line)
reproduces remarkably well the oscillations seen in KEDR
data. We remind that this result is not a fit to the data shown
in Fig. 2, it is, rather, an extrapolation from the description

with I¼1 parameters fixed by τ decay data [110] and I ¼ 0
parameters fixed by exclusive region Ruds data [7,95].

VI. COMPARISON BETWEEN THEORY
AND DATA

We turn now to a quantitative comparison between
theory and the available experimental inclusive data for
Ruds. As already shown in Fig. 2, two recent datasets play a
prominent role in this comparison, namely the BES-III [10]
and the KEDR [11–13] analyses. The BES-III measure-
ments are the most precise, but not many data points are
available below 3.4 GeV, while KEDR, albeit with larger
errors, provide data in the whole interval of Fig. 2. In
addition to these more recent and precise measurements,
we consider BES1 [143], BES2 [144], BES3 [145], BES4
[146], and BES5 [147] datasets (to which we sometimes
refer collectively as BES) and the PLUTO collaboration
results of Ref. [148], as these remain relevant within the
considered energy region. For the BES-III dataset, a non-
trivial covariance matrix can be built from the information
given in the original publication, while the KEDR experi-
ment gives their covariance matrix explicitly. In cases
where no information on nontrivial correlations is pro-
vided, we assume fully correlated systematic uncertainties
and uncorrelated statistical ones.

FIG. 2. Inclusive data for Ruds from several experiments compared with pQCD (black line) and pQCDþ DVs (blue-dashed line). The
description including DVs is not a fit to the data shown in the figure and is obtained extrapolating from hadronic τ-decay and exclusive
Ruds data analyses [7,95,110]. Both curves include the small strange-quark mass and EM corrections.

TABLE I. Results for Ruds in the inclusive region and the respective breakdown into the different corrections
defined in Eq. (10).

ffiffiffi
s

p
(GeV) Ruds δð0Þαs δDVs δm2

q
δEM

2.0 2.12(14) 0.0879(21) −0.030ð69Þ 0.002960(56) 0.00058
2.5 2.181(19) 0.0822(15) 0.0060(93) 0.001621(28) 0.00058
3.0 2.1576(46) 0.0776(12) −0.0004ð19Þ 0.001009(17) 0.00058
3.5 2.1502(22) 0.0739(11) −0.00003ð13Þ 0.000683(12) 0.00058
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We start by investigating the local discrepancies between
the experimental data points and the theory description of
Ruds. At lower energies, as shown in Fig. 2, KEDR results
show signs of an oscillation around perturbation theory,
while they are systematically above it for larger energies
below charm threshold. The BES-III data, on the other
hand, are always systematically above pQCD, with the data
points with

ffiffiffi
s

p
≥ 3.4 GeV being particularly discrepant

with theory predictions. In Fig. 3, we show the significance

of the discrepancy with respect to theory for the KEDR,
BES-III, and all BES datasets, point by point; excluding the
last BES-III data point at 3.671 GeV since it may be too
close to the ψð3770Þ resonance.5 The KEDR data, although
systematically larger than pure pQCD for most of the

FIG. 3. Local discrepancies of data points from BES-III, KEDR, and BES with respect to pure pQCD (upper panel) and pQCDþ DVs
(lower panel). In both cases small ms and EM corrections are taken into account.

FIG. 4. Data combination (red triangles) with 19 clusters using the algorithm discussed in the text. The red error bars show errors
before error inflation. The gray band gives the errors after error inflation is applied to account for local tensions between data points in
the same cluster (the effect is small).

5Since the J=ψ and the ψð2SÞ are extremely narrow [132], we
do not exclude points on the basis of their proximity to these
narrow charm resonances.
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interval, is in agreement with theory within less than 2σ.
The inclusion of the DV contribution reduces even more the
discrepancy, not only because the central values are in
better agreement but, more importantly, because the theory
errors become much larger. Several of the BES-III data
points have a tension with pure pQCD above 2σ, with 8
points showing ∼3σ discrepancies with theory, especially
above 3.4 GeV. One should note, however, that the BES-III
data points at these higher energies are highly positively
correlated (> 86%) and less information is available than
Fig. 2 seems to indicate. The inclusion of DVs in the theory
description significantly reduces the discrepancy for the
first two data points, at lower energies, but has essentially
no effect for the rest of the data. The BES data points, in
turn, are, in general, compatible with theory within less
than 2σ, although the BES2 dataset also tend to be
systematically above pQCD.
In the spirit of data-driven aHVPμ analyses, it is interesting

to combine the available experimental data in a single
dataset, which condenses the available information and
allows for a more quantitative assessment of the compat-
ibility between the different measurements. Here, we
combine the data of Fig. 2 using the KNT algorithm of
Refs. [46,95]. We stress, however, that, contrary to the KNT
analyses, the scope of our data combination is more modest
as it is restricted to the energy interval of Fig. 2, with the
aim of investigating Ruds, and is not influenced by the data

points that lie outside this energy region, through, for
example, long-distance correlations.
Here, we describe the KNT algorithm succinctly, and we

refer to the original works [46,95] and related applications
of the same algorithm [110] for a detailed description. In a
nutshell, the KNT data combination algorithm starts with
the definition of the number of clusters,Ncl. To each cluster
m, withm ¼ 1;…; Ncl, one assigns consecutive data points
from different experiments. The cluster sizes can vary along
the spectrum, but one must avoid over- and underpopulated
clusters. The final set of Ncl combined RðmÞ data points sit
at the energies EðmÞ which are referred to as cluster centers,
determined by the weighted average of the energy values of
each data point belonging to cluster m. The fit procedure is
initialized with RðmÞ values that are simply weighted
averages of the RðsÞ values of data points inside cluster m.
A representation of Ruds, denoted Rðs;RðmÞÞ, is obtained
from the RðmÞ values by a piecewise linear interpolation
between consecutive RðmÞ values (extrapolation is used for
data points that lie outside the interval defined by the

FIG. 5. Local p-value for each of the 19 clusters of the data
combination shown in Fig. 4. The red dashed line shows the value
5% to guide the eye.

FIG. 6. Results for aHVPμ in two energy intervals from theory
and data. Left panel: 1.8 GeV ≤

ffiffiffi
s

p
≤ 3.66 GeV, results from

KEDR and the combined data compared with pure pQCD and
pQCDþ DVs (always including small ms and EM corrections).
Right panel: 2.23 GeV ≤

ffiffiffi
s

p
≤ 3.66 GeV, results from KEDR

[11–13], BES-III [10], BES [143–147], and the combined data
compared with pure pQCD and pQCDþ DVs.

TABLE II. Results for aHVPμ × 1010 for two energy intervals: 1.8 GeV ≤
ffiffiffi
s

p
≤ 3.66 GeV and 2.23 GeV ≤

ffiffiffi
s

p
≤ 3.66 GeV. We give

theory results from pure pQCD and pQCDþ DVs (in both cases including small ms and EM corrections), as well as results obtained
from the experimental data from BES-III [10], KEDR [11–13], and BES [143–147]. The result from the data combination (Comb.) of
Fig. 4 is shown in the last column.
ffiffiffi
s

p
[GeV] pQCD pQCDþ DVs BESIII KEDR BES Comb.

½1.8; 3.66� 33.135(51) 33.0(1.3) … 33.91(78) … 33.86(56)
½2.23; 3.66� 17.875(23) 17.85(18) 19.21(39) 18.34(34) 19.21(60) 18.42(23)
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cluster centers). The final results are obtained from a χ2 fit
ofRðs;RðmÞÞ to all of the experimental data points di, with
as free parameters the Ncl values of RðmÞ. This χ2 function
can then be written as

χ2ðRðmÞÞ ¼
XN
i¼1

XN
j¼1

�
di −Rðsi;RðmÞÞ

�
ðC−1Þij

×
�
dj −Rðsj;RðmÞÞ

�
; ð34Þ

where N is the total number of data points and C is the
covariance-matrix of the data points. For a linear piecewise
Rðs;RðmÞÞ, this χ2 can be minimized analytically.6

An interesting by-product of this type of data combina-
tion is that one can quantify the compatibility between
different experimental data points by inspecting the χ2

contribution and the respective p-value from individual
clusters, χ2m and pm-values, respectively. Clusters with
small pm-values contain conflicting data points. One can
account for the tension between data points in clusters with
low pm-values by applying an error inflation procedure.
Here, when χ2m=ðd:o:f:Þm > 1 we rescale the final error in
RðmÞ by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2m=ðd:o:f:Þm

p
[95].

A combination as described above of the available data
between 1.8 GeV and 3.66 GeV (56 data points) with 19
clusters is shown in Fig. 4 (red triangles and gray band).
This combination has a χ2=d:o:f: ¼ 41.67=37 ¼ 1.13 with
an associated global p-value of 27.5%. This shows that
the data are, on average, compatible. An inspection of the
p-value per cluster, shown in Fig. 5, reveals that the
smallest is 6.6%, which is not alarming. Therefore, local
discrepancies in each cluster are also relatively mild, in
spite of the visible tensions that exist in the datasets.
Locally, the combined results differ from the theory
prediction by at most 2.4σ, which happens for the cluster
with

ffiffiffi
s

p ¼ 2.6 GeV.
We turn now to a comparison of integrated values for

aHVPμ in two different energy intervals. First, we consider
the full range of inclusive Ruds data below charm, i.e.,
1.8 GeV to 3.66 GeV (again excluding the last BES-III data
point, with bin center at 3.671 GeV). In this range, we

compute aHVPμ ½1.8; 3.66� from KEDR data and from the
combined dataset and compare them with the theory
predictions from pure pQCD and pQCDþ DVs. The
results appear in the second row of Table II and on
the left-hand panel of Fig. 6. Results from KEDR and
the combined data are larger than the theory prediction by
about 0.8 × 10−10 but agree with theory within 0.6σ for
pQCDþ DVs and within a little over 1σ for pure pQCD.
The second energy interval that we investigate is the
interval for which we have the BES-III dataset, 2.23 GeV
to 3.66 GeV. In this interval we can also compute
aHVPμ ½2.23; 3.66� from KEDR, the BES datasets, and the
combined data.7 Results for aHVPμ are again given in Table II
and Fig. 6, while the discrepancies with respect to theory
are quantified in Table III. The BES-III result differs by
3.4σ with respect to pure pQCD result, and by 3.2σ with
respect to the pQCDþ DVs result. Results from the BES
datasets show a tension of 2.2σ, while KEDR are compat-
ible with either of the theory descriptions within ∼1.4σ.
The result for aHVPμ ½2.23; 3.66� from the combined data are
2.4σ apart from pure pQCD and 2.0σ from pQCDþ DVs.
Although the discrepancy for aHVPμ ½2.23; 3.66� from
BES-III and pQCD is larger than 3σ, the result obtained
from the BES-III data is only 1.4 × 10−10 larger, which is
not a large discrepancy in absolute terms for the total aHVPμ ,
given the present uncertainties and the much larger dis-
crepancies that appear in the contribution from the ρ-meson
peak [1].

VII. CONCLUSIONS

In this paper, we have investigated the theory description
of RðsÞ below open-charm threshold within a framework
that includes pQCD and DV contributions, as well as small
quark-mass and EM corrections. Discrepancies between
theory and data for Ruds have conceptual implications for
the validity of pQCD, and can impact the SM assessment of
g − 2 of the muon, as well as determinations of αs and the
charm-quark mass.
First, we have shown that the pQCD αs-expansion

obtained in standard FOPT has a somewhat peculiar

TABLE III. Discrepancies between the results for aHVPμ from theory and data (see Fig. 6) in two energy intervals 1.8 GeV ≤
ffiffiffi
s

p
≤

3.66 GeV and 2.23 GeV ≤
ffiffiffi
s

p
≤ 3.66 GeV.

BES-III KEDR BES Combinedffiffiffi
s

p
[GeV] pQCD w=DVs pQCD w=DVs pQCD w=DVs pQCD w=DVs

½1.8; 3.66� … … 1.0σ 0.6σ … … 1.3σ 0.6σ
½2.23; 3.66� 3.4σ 3.2σ 1.4σ 1.3σ 2.2σ 2.2σ 2.4σ 2.0σ

6We have checked that using quadratic interpolation between
the RðmÞ data points we obtain essentially the same results.

7To integrate all datasets in the same interval, we interpolate
between data points, when necessary, taking into account all
correlations.
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behavior: it apparently overshoots the true value in the first
few orders and only later approaches a more stable result at
higher orders at the expense of a change in sign for the
coefficients. We used the large-β0 limit and a model for
pQCD higher-order coefficients to corroborate the con-
clusion that this series, albeit not completely standard, does
not show signs of a problem and that the results at Oðα4sÞ,
known exactly [97,98], or order Oðα5sÞ, which can be
estimated, are, very likely, reasonable approximations to
the true value of the series given our present precision. This
conclusion was further corroborated with the use of the RF
GC scheme [104,105], designed to eliminate the leading IR
renormalon of the pQCD series. The RF-CIPT series
approaches the true value in the large-β0 limit monoton-
ically from below, and displays a very similar behavior in
pQCD when we extend the series with Padé-approximant
results for higher orders. This again reinforces that pQCD is
under control and is not likely to change significantly with
unknown higher-order terms. We have performed a careful
estimate of the error associated with the truncation of
perturbation theory, and this error is very small when
compared with the experimental uncertainties. In conclu-
sion, there is very little room for changes in the pQCD
contribution.
We then investigated quantitatively the DV contribution,

which account for the exponentially damped residual
oscillations in the spectral function. Our description of
DVs is based on previous works [107–109]. The free DV
parameters were fixed with external information from a
hadronic τ-decay analysis [110] and an analysis of exclu-
sive KNT RðsÞ data below 2.0 GeV [7]. The results
obtained from this pQCDþ DVs description nicely follow
the oscillations observed in the KEDR dataset, seen in
Fig. 2. Because the DV parameters are not well known,
especially γ1;0 and β1;0, the error on the DV contribution is
still very large. Although very visible for the lower-energy
part of the inclusive Ruds data, the DV contribution is
essentially insignificant for

ffiffiffi
s

p
> 2.8 GeV, and can safely

be neglected. These conclusions are predicated on the
assumptions that underlie the DV parametrization that we
employ, especially the assumption that the large s regime is
already attained. But one can also see the nice agreement of
the central values with respect to KEDR data points as a test
of these assumptions—a test that the description passes
successfully, although one should bear in mind that errors
are large.
We have then shown that the KEDR data are in good

agreement with pQCD or the pQCDþ DV description of
the Ruds data, albeit the KEDR data tend to be systemati-
cally larger than theory. The BES-III data, on the other
hand, are always larger than pQCD and many data points
show a tension of the order of 3σ with pQCD results,
especially for the set of data points with

ffiffiffi
s

p
≥ 3.4 GeV.

The inclusion of DVs improves the agreement between
data and theory only for the first two data points, with

ffiffiffi
s

p
≤ 2.4 GeV. The BES datasets also have a tendency to

be larger than pQCD, but agree with theory within 2σ for
most of the points.
We have also performed a combination of the available

experimental data using the algorithm of Refs. [46,95]. The
data combination shows that the different datasets are
statistically compatible, in spite of a few local tensions
that we account for by applying an error inflation pro-
cedure. The combined data are compatible with theory
within at most 2.4σ.
Results for the integrated contributions to aHVPμ in two

different intervals show that the KEDR data lead to results
fully compatible with pQCD and pQCDþ DVs. Results
from the BES experiments are larger than the theory
counterparts but are also compatible within 2.2σ. The
combined data, with smaller errors, also lead to a
aHVPμ ½2.23; 3.66� marginally compatible with pQCD
(2.4σ) and compatible with the result that includes the
DV contribution. Finally, the BES-III data lead to a result
for aHVPμ ½2.23; 3.66� more than 3σ away from pQCD.
In conclusion, below 2.5 GeV there is room for a

potentially sizable DV contribution, which could soften
some of the discrepancies between theory and data points
that are observed in Ruds. This is not the case for the data
with

ffiffiffi
s

p
> 2.8 GeV, where the DVs are tiny. For these

energies, there is very little room for change in the theory
description and any incompatibility between data and
theory is disconcerting. In particular, we cannot find any
mechanism to account for the larger values obtained by the
BES-III collaboration for

ffiffiffi
s

p
≥ 3.4 GeV. We hope the

present work will encourage further experimental inves-
tigations of Ruds in this energy range.
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APPENDIX: RENORMALON-FREE
GLUON-CONDENSATE SCHEME

We give here an overview of the main steps in the
construction of the RF GC scheme, which is designed to
consistently remove the u ¼ 2 renormalon ambiguity from
the Adler function perturbative series and, as a conse-
quence, from the pQCD expansion of its integrated
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moments [104–106]. To convey the main ideas, it is
sufficient to discuss the implementation in the large-β0
limit, avoiding some of the technical aspects that appear in
full QCD, that we outline in the end.
The contribution of the u ¼ 2 IR renormalon to the Borel

transformed Adler function in the large-β0 limit, associated
with condensates of D ¼ 4, can be written as

B½D̂�D¼4ðuÞ ¼
N4

2 − u
¼ 32

3π

e10=3

2 − u
; ðA1Þ

where we considered μ2 ¼ Q2 and we work in the MS
scheme, where C ¼ −5=3 in the results of Eq. (18). The
constant N4 ¼ 32e10=3=ð3πÞ is exactly known in large-β0
(but not in full QCD).
This renormalon gives a fixed sign contribution to the

Adler function expansion of the form

D̂D¼4ðαsÞ ¼
32e10=3

3π

X∞
n¼0

rð4Þn αnþ1
s ; ðA2Þ

with coefficients given by

rð4Þn ¼ Γðnþ 1Þ
2nþ1

�
β1
2π

�
n
: ðA3Þ

A D ¼ 4 term in the OPE is associated with the contri-
butions of the u ¼ 2 pole. In the chiral limit and in large-β0,
it is given by

D̂OPE
D¼4ð−Q2Þ ¼ 2

hG2i
Q4

; ðA4Þ

where the only condensate with dimension D ¼ 4 is the
gluon condensate that we define as hG2i ¼ hαsGa

μνGμν;ai.
IR poles obstruct the integration contour for the Borel

integral and therefore lead to an intrinsic imaginary
ambiguity in the true value of the Adler function. This
cannot be physical and the GC contribution in the OPE is
expected to provide the correction that would eliminate this
ambiguity. The RF GC scheme consists in making this
explicit by a consistent redefinition of the GC such as to
exactly cancel the imaginary ambiguity associated with the
u ¼ 2 renormalon. This redefinition is done in terms of an
IR subtraction scale, that we call R. This idea is based on
previous works that implement similar renormalon sub-
tractions in other contexts [149–151].
We then redefine the GC, order by order, as

hG2iðnÞ ¼ hG2iRF − R4Ng

X∞
n¼0

rð4Þn αnþ1
s ðR2Þ þ Ngc0ðR2Þ;

ðA5Þ

where Ng ¼ N4=2 is the GC norm and the new GC in the
RF scheme is hG2iRF. In this redefinition, αsðR2Þ is
calculated at the IR subtraction scale but, at the end, one
must consistently reexpand it in terms of αsðsÞ and powers
of log ðR2=sÞ. The function c0ðR2Þ is introduced such that
the new GC is formally RG invariant. A function that
accomplishes this goal is, essentially, the Borel sum of the
u ¼ 2 renormalon

c0ðR2Þ ¼ R4

�
2π

β1

�
PV

Z
∞

0

du e−u=ᾱsðR2Þ 1

2 − u
; ðA6Þ

where we introduced the notation ᾱs ¼ β1αs=ð2πÞ and PV
means the Cauchy principal value. This function should not
be expanded, i.e., its role is not to generate terms in an
asymptotic expansion, and it must be kept in the closed
form given by the Borel integral.
When this redefinition is used in the GC OPE contri-

bution, and one reshuffles all R-dependent terms into the
perturbative series, the perturbative expansion of the Adler
function becomes, with the choice μ2 ¼ Q2 ¼ −s,

D̂RFðsÞ ¼
X∞
n¼0

rnαnþ1
s ð−sÞ − R4

s4
N4

X∞
n¼0

rð4Þn αnþ1
s ðR2Þ

þ N4c0ðR2Þ: ðA7Þ

In practice, the sums in the perturbative series have to be
truncated at an order n� (which here is taken to be n� ¼ 5).
The second term contributes to the cancellation of the
u ¼ 2 contributions from the first sum up to this order. Note
that the modification that is done to the perturbative series
is minimal, in the sense that differences with respect to the
original series are formally Oðαn�þ1

s Þ. It is possible to show
that the imaginary ambiguity from the pole at u ¼ 2 is
exactly canceled by the imaginary ambiguity of c0ðR2Þ, and
the Adler function is no longer singular at u ¼ 2. This is a
consequence of the fact that the Borel integral is scale
independent and to show it, it is crucial to consistently write
αsðR2Þ in terms of αsðQ2Þ. Finally, another nice feature of
the RF GC scheme is that the real part of the Borel sum of
the new RFAdler function is the same as before and that the
OPE GC correction retains its form

D̂OPE;RF
D¼4 ð−Q2Þ ¼ 2

hG2iRF
Q4

: ðA8Þ

Once the RF scheme is implemented, the u ¼ 2 IR pole
is consistently removed, while keeping the Borel integral,
i.e., the true value of the Adler function, unaltered. It is now
well established that this pole is responsible for more than
99% of the difference between CIPT and FOPT [119–121].
Therefore, in the RF scheme the two series now approach
the same value, as shown in Fig. 1.
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The implementation of the RF scheme in QCD follows
the same steps. The main complications are (i) that the
structure of the renormalon singularity is more complicated
and (ii) that we do not know the GC norm, Ng. To deal with
the first difficulty, it is convenient to, as an intermediate
step, switch to another scheme for αs, the C-scheme [137],
in which the β function and the general structure of the
renormalon singularities are greatly simplified. One can

then, after the RF scheme is implemented, reexpand αs to
return to the usual MS scheme (as done in Refs. [104,105]).
Finally, the value of the GC norm Ng can be estimated with
sufficient precision with, e.g., the three methods of
Ref. [105]. The final uncertainty in Ng, which is estimated
to be of about 40%, is not too large and partially cancels in
final results due to the two contributions in Eq. (A5) having
different signs.
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