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In this paper we carefully assess the theory prediction for R(s) below charm threshold, R, and address
tensions with the existing data, notably with the 2021 BES-III results. We analyze the uncertainty of the
perturbative quantum chromodynamics description in the light of renormalons making use of the large-f,
limit and the renormalon-free gluon-condensate scheme. We provide a reliable estimate of the duality
violation contributions; we show they are sizable up to 2.5 GeV and improve the agreement between theory
and data, but are negligible for higher energies. We then combine the available experimental data for R,
and find the datasets to be mutually compatible. Finally, we compare theory and data, both locally and in
their contributions to the anomalous magnetic moment of the muon. Theory is compatible with the
combined data but discrepancies with the BES-III data reach more than 3.
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I. INTRODUCTION

The inclusive hadronic R(s) ratio

3s

_ yo—: 0<0)(e+e— — hadrons(+vy)), (1)

R(s)

where agy is the electromagnetic (EM) fine-structure
constant and ¢*) is a bare (excluding vacuum polarization
effects) photon-inclusive cross section, has played a
fundamental role in the development of quantum chromo-
dynamics (QCD) and is still crucial for several phenom-
enological applications. Experimental results for R(s) are
the basis for the data-driven determination of the hadronic
vacuum polarization (HVP) contribution to the anomalous
magnetic moment of the muon [1], a¥", and remain a
valuable source of information about the charm- and
bottom-quark masses [2-6], as well as about the strong
coupling [7-9], a,. In the present paper, we address the
theory description of R(s) below open-charm threshold,
which we denote R, , and the tension that has emerged in
2021, after new inclusive measurements of R, ,,, between
/s =2.23 GeV and 3.67 GeV, were made public by the
BES-III collaboration [10]. The new BES-III results are
rather precise, but are systematically larger than the
perturbative QCD (pQCD) prediction and than some of
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the previous measurements of R, , notably those by the
KEDR collaboration [11-13].

One of the main reasons to quantitatively assess the
status of perturbative QCD for R, is its aforementioned
connection with the anomalous magnetic moment of the
muon, a,. The new measurements of a,, performed by the
FNAL E989 experiment at Fermilab [14—16], which are in
agreement with the previous, less precise, results from the
Brookhaven National Lab BNL E821 experiment [17], lead
to a combined world experimental average for a, with an
uncertainty of a mere 124 ppb. The status of the determi-
nation of this quantity in the Standard Model (SM)
has recently been reviewed in the 2025 g—2 Theory
Initiative (TI) white paper (WP) [1], based on results from
Refs. [18-77]. Progress has been achieved in several fronts
since the previous version of the g — 2 TT WP [78] (notably
in the lattice-QCD evaluation of a;;"") but the main source

of uncertainty in the SM result remains a;"'*. Using as

input the lattice-QCD results for a;"*, the SM determi-
nation of a, is in agreement with the experimental result
within 0.6 ¢. The situation for the data-driven approach to
af¥?, based on data for R(s), is less clear, since the CMD-3
results [79,80] for the cross sections eTe™ — 27~ show a
strong tension with previous measurements of the same
quantity. Data-driven results that use the CMD-3 cross
sections lead to agreement with lattice-QCD [81-85] and
with the experimental determination of a,, [1], while results
based on a combination of previous measurements of the
same cross sections lead to a data-driven determination of
a, that disagrees with experimental results and show a

significant tension with lattice-QCD [1,46,85,86]. Finally,
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data-driven results based on 7 — 7~ 7%, measurements,

that must rely on nontrivial model-dependent isospin-
breaking corrections [87-94], are lower but compatible
with the recent lattice-QCD determinations.

In the data-driven approach to a;*", in the energy region
of interest to this paper—between 1.8 GeV and 3.7 GeV—
some works use the available experimental data [46,95]
while others turn to the use of pQCD expressions [86,96].
The latter approach assumes, of course, that pQCD is valid
and leads to a smaller final error for this contribution to
af!V®, since the pQCD prediction has smaller errors than the
experimental determinations of R(s). Given the size of the
contribution of this energy region to the final data-driven
assessment of aj'® (~30 x 107'°), the resolution of this
tension is not nearly as crucial as the issues in exclusive
measurements of ete™ — z"z~. Nevertheless, a strong
disagreement between experimental results for R,,;, and the
prediction in pQCD—presently known at five loops, or
O(a?) [97,98]—besides having phenomenological impli-
cations, is disconcerting at a conceptual level since, as we
will discuss, the uncertainties on the pQCD theory pre-
diction are very small and a large portion of this energy
region is sufficiently far from resonances for one to expect
that pQCD should already provide a good description
of R(s) measurements, especially for the higher-energy
portion of the R,;, domain. Furthermore, a discrepancy
between theory and R,,;, measurements has implications
for a; and charm-quark mass determinations from relativ-
istic sum rules, since in those studies the R, ;, background
must be subtracted from the inclusive four-flavor R(s)
measurements above charm threshold [2-6,8,9].

Our aim in this paper is to, first, carefully assess the
present knowledge of the pQCD description of R, 4, with a
reliable estimate of uncertainties due to missing higher
orders. Potential convergence issues in the pQCD series
are quantified using what is known about renormalons
[99-102], supplemented with realistic models for higher-
orders [100,103], as well as employing the recently
introduced renormalon-free (RF) gluon-condensate scheme
[104-106] and the large-f, limit of QCD. After discussing
the small quark-mass corrections, we employ the knowl-
edge available about quark-hadron duality violations (DVs)
[107-109] in e™e~ — hadrons [7], as well as in the isospin-
related process 7 — hadrons + v, [110,111], to estimate
this nonperturbative contribution. We show that the DVs
can be sizable for /s < 2.5 GeV and that this contribution
improves the agreement between theory and data. We are
then in a position to produce state-of-the-art theory results
with a realistic and reliable uncertainty both locally, for
R,45(s), as well as in integrated results for a;/¥ in the R 4,
region. We then turn to the experimental data. With the
algorithm of Refs. [46,95] (see also Ref. [110]), we
combine the experimental data for R,; to produce a
combined experimental result for a;* in the R, ;, region

while assessing the compatibility of the different exper-
imental results. We also compute, in two different energy
windows, the contribution to a};"* implied by individual
datasets for R, . Finally, we quantify the local as well as
the integrated discrepancy between the pQCD prediction
with and without DVs, the different experiments, and the
combined experimental results.

This paper is organized as follows. In Sec. II we give an
overview of the theoretical framework. In Sec. III we
discuss in detail the pQCD contribution and its uncertainty.
Other corrections are discussed in Sec. IV, with a special
focus on the DV contribution. In Sec. V, we give theory
predictions for R,; with all corrections included. In
Sec. VI, we combine the available datasets and perform
a quantitative comparison between theory and data.
Our conclusions are given in Sec. VII. Some of the details
of the implementation of the RF scheme are relegated
to Appendix.

II. THEORETICAL FRAMEWORK

We start with a brief recollection of well-known results.
The result for R, in pQCD can be obtained, with the use
of the optical theorem, from the massless Adler function.
Mass corrections can then be added perturbatively, but for
R, s they are very small, as we will discuss. We remind
that, because of the quark charges involved, R, ;, does not
receive contributions from singlet diagrams. Therefore, the
results can be cast in terms of the vector correlator of two
(massless) nonsinglet quark-field currents

1, (4%) = (9,9, — 9uwa*)1(q?)
=i [ e @), @)
with jy (x) = ity,d(x). It is customary to work with the

renormalization-group invariant Adler function, D(g?),
defined as

D(g?) = 2 5 TI(g?) =55 (14 D). (3

where we also defined the reduced Adler function, D(g?),
which starts at O(ay).

The result for IT(g?), or for the associated Adler function,
can be organized in terms of the operator product expansion
(OPE). The leading contribution, stemming from the
identity operator, with dimension zero, is the purely
perturbative contribution. The general perturbative expan-
sion of D(s) in QCD is given by

Dper(q?) = i a (4?) kz: ke, {log (‘_‘12)] - L@

2
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where y is a renormalization scale and a,(u?) = a,(u*) /7.
The independent coefficients that must be calculated
perturbatively are the ¢, ;, while the ¢, ;-.; can be obtained
with the renormalization group. For R, 4, and in accor-
dance with our definitions, only the nonsinglet c,;
coefficients intervene. Presently, these coefficients are
known exactly up to ¢4 [97,98] (five loops). Several
estimates exist for c¢s; and higher. Here, when estimating
the fifth-order term, we will use ¢s; = 280 & 140, which
covers the existing estimates for cs; obtained with
various methods [97,100,103,112].

The connection with R, is made with the spectral
function, defined as

p(s) = %Iml’[(s +i0), (5)

with ¢*> = 5. Because the correlator TI(s) satisfies the
Schwarz reflection principle, the following integral repre-
sentation for the spectral function associated with D(s) can
be obtained with the use of Cauchy’s theorem

1 [fs=i0 D(s') 1 dx
p(s) = — ds' =— —D(sx), (6
pls) 2ri [Ho ST 2mi 7{1 X (sx), (6)

where the integral on the left-hand side can be written as the
difference of integrals over s just above and below the cut
by a change of variables. In the representation of the right-
hand side, where x = s’/s, which will be used from now
on, we will always consider a circular contour of integration
in the complex plane with |x| = 1. In this form, the spectral
function becomes a particular case of integrated moments
of the Adler function of the type

1 dx o
— — D 7
g R ACL ) 7

with W ,(x) = 1. These moments intervene in the analysis
of a, from hadronic 7 decays and they have been exten-
sively studied in the literature (see, e.g., Refs. [100-
103,105,113-116]). In particular, for a long time there
was a discrepancy in the results obtained from the two most
widely used prescriptions for the renormalization-scale
setting when using Eq. (4) in the integral of Eq. (7)—
the question of fixed order perturbation theory (FOPT)
[100] versus contour improved perturbation theory (CIPT)
[117,118]. This discrepancy, unlike what is expected for a
residual renormalization-scale dependence, did not become
smaller with the calculation of the O(a?) coefficient.
Results from FOPT, obtained with a fixed > = s in the
integrand of Eq. (7), are systematically different from the
results from CIPT, obtained with a running scale U = —sx,
thereby resumming the logarithms of Eq. (4). The same
ambiguity appears for the perturbative spectral function
but, fortunately, the problem is now very well understood

[104,119-122] and it is clear that the standard CIPT
prescription is not consistent with the usual OPE and must
either be dropped or remedied. The discrepancy arises
because CIPT always retains a sensitivity to infrared (IR)
renormalons, which then leads to a systematic nonpertur-
bative difference between the two results. The CIPT series
can be fixed, for practical purposes, if the leading IR
renormalon is consistently removed, for example with the
use of the renormalon-free (RF) gluon-condensate (GC)
scheme of Refs. [104—106], leading to consistent results
between the two series at higher orders.

Beyond perturbation theory in the chiral limit, the D = 2
contributions arise from the perturbative quark-mass
corrections. In our case, since the masses of the light
quarks u and d are tiny, we can safely consider only the
my corrections. Those are known perturbatively up o}
[123,124] and are discussed in detail in Sec. I'V. As we will
show, these corrections are small and mass corrections with
higher dimension, starting at O(m$/s?), can safely be
neglected.

Higher-dimension nonperturbative OPE corrections to
II(s) can be cast in the form

M(s)p%5 =

= C2k(s) (8)

= (=s)*

where the coefficients Cy;(s) encode both the perturbative
Wilson coefficients and the condensates formed from
Lorentz- and gauge-invariant operators of dimension
D = 2k. These higher-dimension corrections are, however,
strongly suppressed for p(s). The reason for that is that the
s dependence in the C,; coefficients arises solely from
a,-suppressed logarithms from higher-order corrections. In
the contour integration of Eq. (7), a monomial x* (with
k = 2,3...) in the weight function W,,(x) picks up the non-
a,-suppressed contribution with D = 2k. Since for p(s) the
weight function is W,(x) =1, only the a,-suppressed
terms survive the contour integration and there is a
strong suppression of all OPE condensate contributions.
Neglecting these small a,-suppressed contributions from
OPE condensates, about which little is known from exact
calculations,' is standard in integrated moments of the
Adler function [116,126,127], and we will therefore neglect
them henceforth.

An additional source of nonperturbative contributions is
the DVs. The OPE is strictly valid in the Euclidean. For s

"The exception is the gluon condensate, for which the Wilson
coefficient is known to order o’ [125]. In this case, it can be
explicitly verified that neglecting a,-suppressed contributions
to polynomial moments of the Adler function is fully justified
[126,127]. Estimates for the contribution of a,-suppressed terms
from D = 6 condensates also exist [127], albeit relying on
assumptions about the different condensates that contribute
in this case. These estimates also support the neglect of
a,-suppressed terms.
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sufficiently large, however, one expects that, far away from
resonances, pQCD should provide a good description of
R(s). In this regime, the DV contribution quantifies the
residual oscillations around pQCD due to superimposing
tails of higher resonances, that can still be manifest in the
data. DVs cannot be obtained from first principles, but an
asymptotic parametrization for their effects can be obtained
from well accepted assumptions about the QCD spectrum,
such as asymptotic Regge trajectories and large N, con-
siderations [107-109]. This type of parametrization has
been used in several studies of 7 — hadrons + v, spectral
functions [108,110,111,126,128] as well as eTe™ —
hadrons [7,82,83], and these results can be used to estimate
DV effects in R, , as discussed in Sec. I'V.

For R, the relevant current is the EM current which
reads

jEM = Qum//ﬂ’t + Qdc_lyﬂd + Qsi}/ys

1, - 1 _ - _
=5 (y,u — dy,d) + g (@y,u + dy,d —25y,s), (9)

where on the right-hand side we have given the decom-
position in isospin / = 1 and /I = 0 parts, which will be
useful later on. Due to the aforementioned cancellation of
singlet contributions proportional to (>, Q;)?, the pertur-
bative contribution to R, is directly obtained from the
nonsinglet Adler function.

The observable R, ;, can then be written as

R45(s) = 1277 ppyi(s)

=N Y Q2146 +6pm+06, +8pys).  (10)
q=u,d,s

with the a, corrections encoded in 5((,(3) and where Og) is the
leading EM correction, 5m§ represents quark-mass correc-
tions, and dpy, the contribution from DVs. We will discuss
and quantify these corrections in the remainder of the paper.

Finally, the contribution to a/f** from the energy interval
51 <5 <5, can be expressed in terms of R(s) as

aVP[s, 5] = ("’EM”’”>2/ dsk;j)ze(s), (11)

kY4

where m,, is the muon mass and the slowly varying kernel
function K(s) [129,130] can be found in Ref. [1].

III. PERTURBATIVE QCD AND THE EXPECTED
HIGHER-ORDER BEHAVIOR

We begin with a discussion of what can be considered
the standard treatment of pQCD in the case of R(s). Using
FOPT, which amounts to setting 4> = s in the integrand of
Eq. (7), the result for the spectral function is written in

terms of integrals over powers of log(—x) (which can be
obtained analytically), as

n+1 1
i

0 > n dx -
Who=d (> kenizp  Tlog (=, (12
n=1 k=1

where the strong coupling at the scale y> = s is obtained
with the five-loop QCD f function [131]. These are the
dominant corrections to R, (s). The explicit results for
these a, corrections in FOPT, for three quark flavors
(Ny=3) and up to a3, are

5 (s) = a,(s) + 1.639842(s) — 10.28443(s)
—106.88a%(s) + (cs; — 779.58)a5(s) + - - -
(13)

In the O(a3) term, we have kept explicit the contribution of
¢s.1, which is not known from perturbative calculations,
while the —779.58 includes the contributions from c¢s,,
¢s53, and ¢s 4, which can be written in terms of the known
coefficients ¢, s | as well as known f-function coefficients.
For s = (2 GeV)?, with a,(4 GeV?) = 0.2949(61),” the
numerical result is

55 (4 GeV?2) = 0.09387 + 0.01445 — 0.008506
— 0.008298 — 0.0036(10),,, + - -
= 0.0879(21), (14)

where we have given the numerical result for each term
order by order, including our estimate of the o contribution
and its associated error from the uncertainty in the value
of c¢5 . In the total result, the uncertainty reflects that of a;
added quadratically with an estimate for the error asso-
ciated with the truncation of the perturbative series. The
latter is taken as the maximum between the error obtained
from variations of ¢s; and the one stemming from the
difference between the results at O(a?) and O(a3).”

It is noteworthy that the exactly known coefficients of

5 change sign starting at O(c} ). Also, the third and fourth

order terms are of similar magnitude, which is uncommon
for other moments of the Adler function, with the exception
of moments that have a high sensitivity to the leading IR
renormalon, which entails a runaway behavior in the
perturbative expansion [101]. In the case of p(s), however,

*This value corresponds to the current Particle Data Group
average a,(m%) = 0.1180(9) [132] which we will use throughout
this work.

3This choice is conservative. We checked that renormalization
scale variations lead to smaller errors than the truncation error we
consider.
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there is no such sensitivity to the leading IR renormalon, as
we show next.

The perturbative QCD behavior of Adler function
moments has been studied in several papers
[100-105,113-115]. Since the perturbative series is
(at best) asymptotic, it is very common to study it in terms
of its Borel transform. For y?> = —g*> = O one can rewrite
the expansion of D, Eq. (4), as

D) =3 rai(0?). (15)
n=0

with 7, = ¢, 1 /a"*! and define the Borel transform,
which is an inverse-Laplace transform, as in Ref. [100]

z)zf:rn;—':. (16)

n=0

The Borel-sum of the series is then defined by the Laplace
transform of B[D](1)

D(a) = / ” dt e B[D)(1). (17)

0

This defines the true value of the series, up to potential
imaginary ambiguities when there are singularities (renor-
malons) that obstruct the integration path.

The large-f limit of QCD [99] is often used as a starting
point for the analysis of the series behavior at higher orders.
In a nut shell, the large-f, limit is obtained from results
taking Ny — oo while keeping N a; ~ O(1). The quark
bubble-loop corrections to the gluon propagator, which are
proportional to Ny, must then be summed to all orders.
Gluon self-interactions are introduced with the procedure
known as naive non-Abelianization [133,134], where the
fermionic contribution to the leading order QCD f function
is replaced by its full QCD result, thereby effectively
introducing a set of non-Abelian contributions.

In this limit, where the series is known to all orders
in a;, and the asymptotic character of the perturbative
series is manifest, the Borel transformed Adler function
can be obtained exactly. The large-f, result for B[D](r)
reads [135,136]

sl -5 (%) e T
(18

where u = f8,t/(2z) and C is a renormalization-scheme
dependent constant; in the MS-scheme, C = -5 /3. In this
form, the renormalons, which are the singularities in u
associated with the factorial growth of series coefficients,
can be easily studied. The IR singularities (z > 0) always

have simple and a double pole terms, with the sole
exception of the leading IR pole, at u = 2, associated with
the D =4 OPE contribution from the gluon condensate,
which is a simple pole. IR poles also entail an imaginary
ambiguity in the Borel sum, since they obstruct the
integration path in Eq. (17) and must be circumvented,
which is usually done with the principal value prescription.
The UV poles (u < 0) all exhibit the simple plus double
structure. IR poles are associated with fixed-sign series
while UV singularities generate alternating-sign coeffi-
cients. Since the pole closest to the origin is the leading
UV at u = —1 the series, eventually, is dominated by this
pole and displays sign alternation at high orders [100].

Since in the large-f, limit the series is known to all
orders, it is interesting to study 5{(,(\),) in this limit and
confront the results with the full QCD expression. It is
simple to obtain the Borel transformed pgg in the large-f,
limit using the integral representation of Eq. (17) in Eq. (7),
which gives

sin(7u)

B[ﬁFO.LﬁO] = B[DLﬁO}(”)- (19)

u

This result shows that the leading IR pole of B[D, ](u) is
exactly canceled by a zero of sin(zu) while the other IR
poles are all reduced from double to simple. The cancella-
tion of the leading IR pole is crucial for a good perturbative
behavior since moments of the Adler function that are
sensitive to this IR pole tend to have a run-away pattern,
and never stabilize [101,102,104]. Furthermore, the can-
cellation of all simple IR poles means that B[pgo](u) is
much less singular than B[D](u), which tends to be
associated with better behaved perturbative series [102].

Reconstructing the a, expansion of prg in the large-f,
limit from B[D](u) one finds,

60, = a,(s) + 1.56a3(s) — 0.944a3(s) — 52.9a(s)
—283a3(s) — 2241a8(s) + - - - (20)

The leading correction is, by construction, the same as
in QCD, while the higher-orders can be considered
“predictions” in the large-f, limit. Comparing with the
QCD result, Eq. (13), the large-f, limit reproduces very
well the a? term and predicts correctly the signs of the other
known coefficients. The a) term is also similar to the
estimated result in Eq. (13). This general pattern gives us
some confidence that the large-f, result is able to capture
the essence of the QCD series. It is worth mentioning that
in large ﬁo a systematic sign alternation sets in starting from
the O(a!) term. Therefore, at intermediate orders, the flip
in sign is still due to a competition of IR and UV
renormalons and does not yet reflect the asymptotic
dominance of the leading UV renormalon, which takes
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FIG. 1. Results for 5&?) in FOPT (blue squares) and in RF-CIPT (red triangles) in the large-f, limit (left-hand panel) and in full QCD
(right-hand panel) for s = (2 GeV)2. The horizontal line in large-f, represents the Borel sum of the series (the imaginary ambiguity is
very small in this case and cannot be seen in the plot). In QCD, results beyond O(a}) employ an estimate for the unknown series
coefficients (see text for details). The band in the QCD plot shows the uncertainty due to the unknown coefficients in the FOPT result.

over from O(a!). For s = 4 GeV?, the numerical result,
order by order, is now, up to O(a3)

81,5 (4 GeV?) = 0.09387 + 0.01372 — 0.000781

—0.00411 - 0.002062 + - - - (21)
Returning to the QCD result, with a convenient change
to the so-called C scheme for a, [137], it is possible to
obtain the QCD equivalent of Eq. (19). It turns out, as
shown in Ref. [9], that Eq. (19) retains its form in QCD in
the C scheme provided an adequate choice of a modified
Borel transform is used [138]. This means that a similar
mechanism of partial cancellation of renormalon singular-
ities is at work in QCD as well, which is another indication
that large-f3, can be used as a guide to the behavior of the
series at higher orders, and lends additional support to the
similarities between the series in Eqgs. (14) and (21).

In Fig. 1, we compare the FOPT perturbative series
(shown with blue squares) for 5((,(3) in the large-f, limit,
Eq. (21), and in QCD, Eq. (14), at s = (2 GeV)?. In QCD,
we use c5; = 280 £ 140 and for the higher-order coef-
ficients, c,~s5 1, we employ the results obtained with Padé
approximants in Ref. [103]. The use of other models for the
higher-order coefficients [100,105,112] would lead to
similar results. In the large-f, result we see that, in spite
of the change in sign at O(a?), the result does approach the
Borel sum and is relatively stable around it at orders 6 to 8.
The numerical shift from order 4 to 6 leads to a further
correction of —0.36%, which is not very significant given
the size of other errors involved in the evaluation of R, ;.
Therefore, although the behavior of this perturbative series
is somewhat peculiar, there is no indication of any major
convergence issue (in the sense of an asymptotic series),
and the result at O(a?) already provides a good represen-
tation for the true value of the series, and even more so the
result at O(a3). The behavior in QCD is very similar, even
though the results tend to stabilize at lower values. It is,
therefore, reasonable to assume that in QCD the results at

order O(at) are also approaching the true value
from above.

A. Renormalon free scheme

In order to corroborate the conclusions of the previous
section, it is worth investigating another renormalization-
scale setting which, effectively, should generate a different
asymptotic series to the same true value.

As we have mentioned, an alternate prescription that has
been used for a long time in the computation of Adler
function moments is CIPT [117,118], which consists in
setting 4> = —sx when using Eq. (4) in the integral of
Eq. (7). The series thus obtained is no longer a power series
in ay, since the running of the coupling is resummed to all
orders along the contour of integration. For a long time, the
discrepancy between the results obtained in CIPT and those
obtained in FOPT was puzzling, especially given that the
difference became larger when the O(a?) term became
available, contradicting the expectation that both series
were valid asymptotic expansions to the same true value.

This issue is now fully understood. It turns out that CIPT
defines a different series, with a different Borel sum, and
the expectation that it should agree with FOPT at higher
orders was incorrect [119]. The systematic difference
between the two procedures was dubbed “asymptotic
separation” and can be calculated exactly if sufficient
knowledge is available, such as in the large-f, limit
[119-121]. This difference is driven by the CIPT sensitivity
to IR renormalons: in large-f;, more than 99% of this
difference is due to the leading IR renormalon, associated
with the gluon condensate. This means that, if a consistent
procedure is used in order to remove this renormalon, one
can then define a modified CIPT which, for all practical
purposes, agrees with FOPT. This was demonstrated in
Refs. [104,105] where the RF GC scheme was introduced.

In large-f;, where exact knowledge about the Borel
transform is available, it is possible to implement the RF
GC scheme exactly, by the consistent subtraction of the
leading IR renormalon. The details of how this is done in
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practice are summarized in Appendix but can be found in
the original works [104,105]. In the RF scheme, the new
CIPT series, to which we refer as RF-CIPT, agrees with
FOPT at higher orders—defining two proper asymptotic
series to the same true value. The results for RF-CIPT in the
large-f, limit are shown in red in the left-hand panel of
Fig. 1.* The series approaches the Borel sum from below,
with smaller steps at intermediate orders and without
overshooting the true value for low orders. It shows that
both series, once properly defined, are fully consistent for
sufficiently high orders.

In QCD, the implementation of the RF GC scheme is less
simple because the norm of the gluon condensate renor-
malon is not exactly known. However, as shown in
Ref. [105], sufficient knowledge exists to allow a reliable
extraction of this norm with sufficient precision for the
implementation of the subtracted scheme. The series that is

obtained for 65,?) in RF-CIPT is, order by order, the
following

88 oy = 0.07559 + 0.006716 + 0.001795
+0.001258 + 0.000884(75)

Cs1°

This series shows a monotonic growth, fixed signs, and a
systematic reduction of each consecutive term. It is dis-
played as the red triangles on the right-hand panel of Fig. 1
together with the previous FOPT result. What we see is that
the series, although with a rather different behavior, does
seem to approach the same value as FOPT at higher orders,
in accordance with the expectation of the RF GC scheme.
What is more, at O(a]) the two asymptotic series are
already very similar, which corroborates that no big
surprise should be expected for even higher orders. The
results in QCD are very similar, qualitatively, to those
obtained in the large-f; limit, where the Borel sum is
known. This further corroborates that the true value of the
series is very likely well approximated by the results

at O(a3).

IV. OTHER CORRECTIONS TO R, (s)

A. Duality violations

The use of pQCD to describe R(s) is predicated on the
assumption of quark-hadron duality. For sufficiently large s
and far away from resonances one expects that pQCD
should provide a good approximation to R,,. At inter-
mediate values of s, residual oscillations due to super-
imposing tails of higher resonances can still be present, and

“Here, we use as the IR subtraction scale required for the
implementation of the RF GC scheme the value 5 = 0.7s.
Variations of this scale lead to a spread in the values obtained
in the RF GC scheme, as discussed in Ref. [104], but this residual
scale uncertainty, governed by the renormalization group, is
irrelevant to the present discussion.

represent an intrinsic limitation of pQCD in the
Minkowski. These damped oscillations around pQCD
are what we refer to as the DVs.

Their description, however, cannot be obtained solely
from first principles, and one must rely on assumptions
about the QCD spectrum in order to derive a reasonable
parametrization for the DV contribution. The DV contri-
bution is encoded in the function A(z), which represents
the deviations of I1(z) from the OPE description

(z) = Mopg(z) + [T(z) — Hopg(2)] = Mope(z) + A(z).
(22)

Then, the DV contribution to pgy(s) is simply pRV(s) =
(1/7)ImA(s). A formulation of the problem in terms of
the Borel-Laplace transform of T1(¢?) and hyperasymp-
totics was presented in Ref. [109]. With the assumption that
the QCD spectrum is Regge-like for high energies and in
the N. — oo limit, one can derive the following para-
metrization valid for large s

pPVS(s) = e~ sin(a + fs). (23)

The general form of the subleading corrections to this
parametrization can be found in Ref. [109] and were
investigated recently [110,127], but these corrections have
been shown to be small, in the case of 1/s corrections, or
too slowly varying in s, in the case of 1/logs corrections,
to have an impact in the description of experimental data.
We will therefore use the parametrization as given
in Eq. (23).

Since DVs are related to resonances their quantitative
description is channel specific. In hadronic = decays, e.g.,
where they have been studied for a number of years
[110,111,116,126], the vector-isovector and axial-vector-
isovector contributions intervene. In R(s), one must con-
sider the vector-isoscalar contribution as well. The inclu-
sion of the I = 0 channel is not so straightforward because
the parametrization of Eq. (23) was obtained in the chiral
limit, and it is not clear how to systematically include
effects. Here we follow the strategy of Ref. [7]. Ignoring the
small disconnected contribution and taking into account the
quark charges one arrives at the following parametrization
for the DVs in the EM spectral function

5 .
PBY(8) = 3 751 sinfa + i)
1
+ 5 e~%077% sin(ag + fos). (24)

In this form, the term proportional to 5/9, corresponds, in
the isospin limit, to the vector-isovector DV contribution
that appears in hadronic = decays. Given the observation
that the p meson spectrum is nearly degenerate with the @
spectrum one expects that the DVs in /=1 and 1 =0
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channels are degenerate in shape for large s. Therefore,
an additional assumption was made in Ref. [7], which
consists in assuming that f, = f; and y, = y,. With this
assumption, that we adopt here as well, the vector-isoscalar
DV contribution contains only two new parameters with
respect to the vector-isovector counterpart, namely &,
and ay.

Since the parametrization of Eq. (24) is valid only for
large s, the use of this parametrization is predicated on the
assumption that the large s regime is already attained. This
assumption is supported by data since the z-based I = 1
vector analyses [110,111] show that good fits can be
obtained for s > 1.4 GeV?. For the I = 0 part, the analyses
of Ref. [7] support the notion that this limit is reached for
s 2 2.9 GeV?. Therefore, for the description of the inclu-
sive R(s) data, where s > 3.24 GeV?, our parametrization
is expected to be valid as well.

The DV contribution to R, (s) parametrized as in
Eq. (10) is finally written as

Spvs = 67°piag’ (5), (25)
where pRV¥e(s) is given in Eq. (24).

Here, the vector-isovector DV parameters, &1, y;, &, and
1, will be fixed using results from a recent hadronic =
decay analysis [110], in which an improved inclusive
vector-isovector spectral function was built from the
combination of the available 7 — 2zv,, 7 — 4zv,, and
7 — KKr data supplemented with smaller contributions
from higher multiplicity channels obtained from e*e™ —
hadrons cross sections using CVC [111]. In particular, we
use the parameters from the fit of Table 2 of Ref. [110] with
spin = 1.5747 GeV? which read

5, = 3.01(39), (26)
y1 = 0.87(24) GeV~2, (27)
a = —1.34(73), (28)
f1 = 3.78(38) GeV—2. (29)

Their full covariance matrix is used in error propagations.

To fix the two additional isoscalar parameters, &, and «,
we employ the strategy of Ref. [7] which consists in fitting
the R, ,, data obtained from the measurements of exclusive
channels in the interval 3.3 GeV? < s <4 GeV2. We use
the data from the combination of exclusive-channel cross
sections of Ref. [95], to which we refer as KNT. With the
I = 1 parameters quoted above, we obtain

8, = 0.96(22), (30)

ay = 0.80(27). (31)

These values are similar to those quoted in Ref. [7] but
can be considered as an update of those numbers given
the new knowledge about the [/ =1 parameters. The
correlation of 45% among these values is considered in
error propagations.

With this set of parameters, the DV contribution to R,
in the inclusive region is fixed and, for s > 4 GeV2, is an
extrapolation of results obtained at lower energies and from
fits to other datasets (hadronic 7 decays [111] and exclusive
R,4(s) data [7,95]). We have also tried fits of I =0
parameters to the inclusive R, ;, data but we obtain results
that are very similar to those based on the extrapolations,
with no significant difference. Therefore, we prefer to use
the description based on the extrapolation as our central
value, since in this case the DVs are fixed by external
information, which is arguably more interesting.

B. Quark-mass corrections

Beyond perturbation theory in the chiral limit, one
should consider the quark-mass corrections. These are
known up to &’ [123,124,139]. Corrections from m, and
m, can safely be neglected and, for R,,;,, one can consider
only those from my. Since the contribution is numerically
small, with an overall scale at s = (4 GeV?) set by

2

mi(S) 55y 1073

where we used the MS value m(2 GeV) = 93.5(8) MeV
[132], we consider these corrections up to O(a?), as done,
e.g., in Refs. [81,86]. The result for 5,,15, defined in Eq. (10),

is then

S .m0 (i

my s

227
+ 2a, +Ea% + - > (32)

When estimating the uncertainty on this contribution we
consider the uncertainty from the value of m(2 GeV) as
well as that from a.

C. Electromagnetic corrections

Because the R(s) data include EM corrections we have
to consider these in our description of R, (s). The only
numerically important contribution arises from one-photon
exchange [140-142] and leads, in the decomposition of
Eq. (10), to [7]

e = 4 (33)
T

where we use agy = 1/137.0356 [132]. Since this con-
tribution is numerically very small, its uncertainty can
safely be neglected.
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TABLE I. Results for R, in the inclusive region and the respective breakdown into the different corrections
defined in Eq. (10).

V5 (GeV) Rugs o) Fovs 82 S
2.0 2.12(14) 0.0879(21) —-0.030(69) 0.002960(56) 0.00058
2.5 2.181(19) 0.0822(15) 0.0060(93) 0.001621(28) 0.00058
3.0 2.1576(46) 0.0776(12) —0.0004(19) 0.001009(17) 0.00058
35 2.1502(22) 0.0739(11) —0.00003(13) 0.000683(12) 0.00058

V. RESULTS FOR R,

With the contributions from pQCD in the FOPT pre-
scription, Eq. (14), the contributions from DVs of Eq. (25),
the strange-mass corrections, Eq. (32), and the EM cor-
rection of Eq. (33), we can obtain the complete results for
R, as parametrized in Eq. (10). In Table I we give
representative values of R, in the inclusive region with
the breakdown into the different corrections. The contri-
bution from pQCD is always the dominant one, but for
lower energies in the inclusive region, DVs can also be
relevant. For /s = 2 GeV, e.g., pQCD represents a ~9%
correction, with a negative ~3% correction from the DV
contribution, followed by a ~0.3% m, correction and a
much smaller contribution from EM. At /s = 2.5 GeV the
DV contribution is at the subpercent level, while pQCD is
still ~8%, and for /s > 3.0 GeV the DV contribution is
already insignificant. The DV parameters, however, are not
well controlled given the present knowledge; the error
associated with the DVs is large and, at lower energies,
strongly dominates the total error of R, 4. In Fig. 2 we can
see that, in spite of the large errors, the central value from
the description that includes the DVs (dashed blue line)
reproduces remarkably well the oscillations seen in KEDR
data. We remind that this result is not a fit to the data shown
in Fig. 2, it is, rather, an extrapolation from the description

with I = 1 parameters fixed by 7 decay data [110] and I = 0
parameters fixed by exclusive region R, data [7,95].

VI. COMPARISON BETWEEN THEORY
AND DATA

We turn now to a quantitative comparison between
theory and the available experimental inclusive data for
R, As already shown in Fig. 2, two recent datasets play a
prominent role in this comparison, namely the BES-III [10]
and the KEDR [11-13] analyses. The BES-III measure-
ments are the most precise, but not many data points are
available below 3.4 GeV, while KEDR, albeit with larger
errors, provide data in the whole interval of Fig. 2. In
addition to these more recent and precise measurements,
we consider BES1 [143], BES2 [144], BES3 [145], BES4
[146], and BESS5 [147] datasets (to which we sometimes
refer collectively as BES) and the PLUTO collaboration
results of Ref. [148], as these remain relevant within the
considered energy region. For the BES-III dataset, a non-
trivial covariance matrix can be built from the information
given in the original publication, while the KEDR experi-
ment gives their covariance matrix explicitly. In cases
where no information on nontrivial correlations is pro-
vided, we assume fully correlated systematic uncertainties
and uncorrelated statistical ones.

28:‘ : Eggg+nvb [ EE:? k-
F 8 e $ s
2.6 - BES1 PLUTO 1 J‘q/; '4[)(25) ]
@ 2.4:— Q‘ * &} 3
RIPTE. T}}ililhl h" } P4ty % fills
_ ,T e T T =TT
2.0r a
18: I R S S SR B U S SRR I
1.8 20 22 24 26 28 30 32 34 36

Vs (GeV)

FIG. 2.

Inclusive data for R, ;, from several experiments compared with pQCD (black line) and pQCD + DVs (blue-dashed line). The

description including DVs is not a fit to the data shown in the figure and is obtained extrapolating from hadronic z-decay and exclusive
R, data analyses [7,95,110]. Both curves include the small strange-quark mass and EM corrections.
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FIG. 3.

Local discrepancies of data points from BES-III, KEDR, and BES with respect to pure pQCD (upper panel) and pQCD + DVs

(lower panel). In both cases small m; and EM corrections are taken into account.
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FIG. 4. Data combination (red triangles) with 19 clusters using the algorithm discussed in the text. The red error bars show errors
before error inflation. The gray band gives the errors after error inflation is applied to account for local tensions between data points in

the same cluster (the effect is small).

We start by investigating the local discrepancies between
the experimental data points and the theory description of
R, . At lower energies, as shown in Fig. 2, KEDR results
show signs of an oscillation around perturbation theory,
while they are systematically above it for larger energies
below charm threshold. The BES-III data, on the other
hand, are always systematically above pQCD, with the data
points with /s > 3.4 GeV being particularly discrepant
with theory predictions. In Fig. 3, we show the significance

of the discrepancy with respect to theory for the KEDR,
BES-III, and all BES datasets, point by point; excluding the
last BES-III data point at 3.671 GeV since it may be too
close to the y(3770) resonance.” The KEDR data, although
systematically larger than pure pQCD for most of the

>Since the J /w and the y(2S) are extremely narrow [132], we
do not exclude points on the basis of their proximity to these
narrow charm resonances.
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1.0 altVP[1.8;3.66] altVP[2.23; 3.60]
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FIG. 5. Local p-value for each of the 19 clusters of the data ST BT — s %

combination shown in Fig. 4. The red dashed line shows the value
5% to guide the eye.

interval, is in agreement with theory within less than 2o.
The inclusion of the DV contribution reduces even more the
discrepancy, not only because the central values are in
better agreement but, more importantly, because the theory
errors become much larger. Several of the BES-III data
points have a tension with pure pQCD above 20, with 8
points showing ~3¢ discrepancies with theory, especially
above 3.4 GeV. One should note, however, that the BES-III
data points at these higher energies are highly positively
correlated (> 86%) and less information is available than
Fig. 2 seems to indicate. The inclusion of DVs in the theory
description significantly reduces the discrepancy for the
first two data points, at lower energies, but has essentially
no effect for the rest of the data. The BES data points, in
turn, are, in general, compatible with theory within less
than 20, although the BES2 dataset also tend to be
systematically above pQCD.

In the spirit of data-driven a}** analyses, it is interesting
to combine the available experimental data in a single
dataset, which condenses the available information and
allows for a more quantitative assessment of the compat-
ibility between the different measurements. Here, we
combine the data of Fig. 2 using the KNT algorithm of
Refs. [46,95]. We stress, however, that, contrary to the KNT
analyses, the scope of our data combination is more modest
as it is restricted to the energy interval of Fig. 2, with the
aim of investigating R, 4, and is not influenced by the data

ap V" x 1010 ap V" x 1010

FIG. 6. Results for af¥* in two energy intervals from theory
and data. Left panel: 1.8 GeV < /s < 3.66 GeV, results from
KEDR and the combined data compared with pure pQCD and
pQCD + DVs (always including small m, and EM corrections).
Right panel: 2.23 GeV < /s < 3.66 GeV, results from KEDR
[11-13], BES-III [10], BES [143-147], and the combined data
compared with pure pQCD and pQCD + DVs.

points that lie outside this energy region, through, for
example, long-distance correlations.

Here, we describe the KNT algorithm succinctly, and we
refer to the original works [46,95] and related applications
of the same algorithm [110] for a detailed description. In a
nutshell, the KNT data combination algorithm starts with
the definition of the number of clusters, N . To each cluster
m, withm =1, ..., N, one assigns consecutive data points
from different experiments. The cluster sizes can vary along
the spectrum, but one must avoid over- and underpopulated
clusters. The final set of N combined R data points sit
at the energies E (m) which are referred to as cluster centers,
determined by the weighted average of the energy values of
each data point belonging to cluster m. The fit procedure is
initialized with R values that are simply weighted
averages of the R(s) values of data points inside cluster m.
A representation of R,,,, denoted R(s; R"™), is obtained
from the R values by a piecewise linear interpolation
between consecutive R values (extrapolation is used for
data points that lie outside the interval defined by the

TABLEIL  Results for allVP x 10 for two energy intervals: 1.8 GeV < /s < 3.66 GeV and 2.23 GeV < /s < 3.66 GeV. We give
theory results from pure pQCD and pQCD + DVs (in both cases including small m, and EM corrections), as well as results obtained
from the experimental data from BES-III [10], KEDR [11-13], and BES [143-147]. The result from the data combination (Comb.) of
Fig. 4 is shown in the last column.

Vs [GeV] pQCD pQCD + DVs BESIII KEDR BES Comb.
[1.8;3.66] 33.135(51) 33.0(1.3) 33.91(78) 33.86(56)
[2.23;3.66] 17.875(23) 17.85(18) 19.21(39) 18.34(34) 19.21(60) 18.42(23)
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TABLE III. Discrepancies between the results for af}vp from theory and data (see Fig. 6) in two energy intervals 1.8 GeV < /s <
3.66 GeV and 2.23 GeV < /s < 3.66 GeV.

BES-III KEDR BES Combined
/s [GeV] pQCD w/DVs pQCD w/DVs pQCD w/DVs pQCD w/DVs
[1.8;3.60] 1.00 0.60 1.30 0.60
[2.23;3.66] 340 320 l.40 1.36 220 220 240 2.00

cluster centers). The final results are obtained from a y? fit
of R(s; R"™) to all of the experimental data points d;, with
as free parameters the N, values of R, This y? function
can then be written as

X (dj - R(s»'R(m))), (34)

where N is the total number of data points and C is the
covariance-matrix of the data points. For a linear piecewise
R(s; R"™), this x> can be minimized analytically.®

An interesting by-product of this type of data combina-
tion is that one can quantify the compatibility between
different experimental data points by inspecting the y?
contribution and the respective p-value from individual
clusters, y2, and p,,-values, respectively. Clusters with
small p,,-values contain conflicting data points. One can
account for the tension between data points in clusters with
low p,,-values by applying an error inflation procedure.
Here, when y2,/(d.o.f.),, > 1 we rescale the final error in
R by a factor \/m [95].

A combination as described above of the available data
between 1.8 GeV and 3.66 GeV (56 data points) with 19
clusters is shown in Fig. 4 (red triangles and gray band).
This combination has a y*>/d.o.f. = 41.67/37 = 1.13 with
an associated global p-value of 27.5%. This shows that
the data are, on average, compatible. An inspection of the
p-value per cluster, shown in Fig. 5, reveals that the
smallest is 6.6%, which is not alarming. Therefore, local
discrepancies in each cluster are also relatively mild, in
spite of the visible tensions that exist in the datasets.
Locally, the combined results differ from the theory
prediction by at most 2.4, which happens for the cluster
with /s = 2.6 GeV.

We turn now to a comparison of integrated values for
a;V? in two different energy intervals. First, we consider
the full range of inclusive R,; data below charm, i.e.,
1.8 GeV to 3.66 GeV (again excluding the last BES-III data
point, with bin center at 3.671 GeV). In this range, we

®We have checked that using quadratic interpolation between
the R(™ data points we obtain essentially the same results.

compute ay"*[1.8;3.66] from KEDR data and from the
combined dataset and compare them with the theory
predictions from pure pQCD and pQCD + DVs. The
results appear in the second row of Table II and on
the left-hand panel of Fig. 6. Results from KEDR and
the combined data are larger than the theory prediction by
about 0.8 x 107!° but agree with theory within 0.6¢ for
pQCD + DVs and within a little over 1o for pure pQCD.
The second energy interval that we investigate is the
interval for which we have the BES-III dataset, 2.23 GeV
to 3.66 GeV. In this interval we can also compute
aVP[2.23;3.66] from KEDR, the BES datasets, and the

combined data.” Results for a!i V" are again given in Table II
and Fig. 6, while the discrepancies with respect to theory
are quantified in Table III. The BES-III result differs by
3.4 with respect to pure pQCD result, and by 3.2¢ with
respect to the pQCD+ DVs result. Results from the BES
datasets show a tension of 2.2¢, while KEDR are compat-
ible with either of the theory descriptions within ~1.4¢.
The result for a}/V?[2.23;3.66] from the combined data are
2.4¢ apart from pure pQCD and 2.0¢ from pQCD + DVs.
Although the discrepancy for affV*[2.23;3.66] from
BES-III and pQCD is larger than 30, the result obtained
from the BES-III data is only 1.4 x 107! larger, which is
not a large discrepancy in absolute terms for the total a;"",
given the present uncertainties and the much larger dis-
crepancies that appear in the contribution from the p-meson
peak [1].

VII. CONCLUSIONS

In this paper, we have investigated the theory description
of R(s) below open-charm threshold within a framework
that includes pQCD and DV contributions, as well as small
quark-mass and EM corrections. Discrepancies between
theory and data for R,,;, have conceptual implications for
the validity of pQCD, and can impact the SM assessment of
g — 2 of the muon, as well as determinations of @, and the
charm-quark mass.

First, we have shown that the pQCD a,-expansion
obtained in standard FOPT has a somewhat peculiar

"To integrate all datasets in the same interval, we interpolate
between data points, when necessary, taking into account all
correlations.
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behavior: it apparently overshoots the true value in the first
few orders and only later approaches a more stable result at
higher orders at the expense of a change in sign for the
coefficients. We used the large-f3, limit and a model for
pQCD higher-order coefficients to corroborate the con-
clusion that this series, albeit not completely standard, does
not show signs of a problem and that the results at O(a?),
known exactly [97,98], or order O(a;), which can be
estimated, are, very likely, reasonable approximations to
the true value of the series given our present precision. This
conclusion was further corroborated with the use of the RF
GC scheme [104,105], designed to eliminate the leading IR
renormalon of the pQCD series. The RF-CIPT series
approaches the true value in the large-f, limit monoton-
ically from below, and displays a very similar behavior in
pQCD when we extend the series with Padé-approximant
results for higher orders. This again reinforces that pQCD is
under control and is not likely to change significantly with
unknown higher-order terms. We have performed a careful
estimate of the error associated with the truncation of
perturbation theory, and this error is very small when
compared with the experimental uncertainties. In conclu-
sion, there is very little room for changes in the pQCD
contribution.

We then investigated quantitatively the DV contribution,
which account for the exponentially damped residual
oscillations in the spectral function. Our description of
DVs is based on previous works [107-109]. The free DV
parameters were fixed with external information from a
hadronic z-decay analysis [110] and an analysis of exclu-
sive KNT R(s) data below 2.0 GeV [7]. The results
obtained from this pQCD-+ DVs description nicely follow
the oscillations observed in the KEDR dataset, seen in
Fig. 2. Because the DV parameters are not well known,
especially y; o and f3 , the error on the DV contribution is
still very large. Although very visible for the lower-energy
part of the inclusive R,;, data, the DV contribution is
essentially insignificant for /s > 2.8 GeV, and can safely
be neglected. These conclusions are predicated on the
assumptions that underlie the DV parametrization that we
employ, especially the assumption that the large s regime is
already attained. But one can also see the nice agreement of
the central values with respect to KEDR data points as a test
of these assumptions—a test that the description passes
successfully, although one should bear in mind that errors
are large.

We have then shown that the KEDR data are in good
agreement with pQCD or the pQCD + DV description of
the R, , data, albeit the KEDR data tend to be systemati-
cally larger than theory. The BES-III data, on the other
hand, are always larger than pQCD and many data points
show a tension of the order of 30 with pQCD results,
especially for the set of data points with /s > 3.4 GeV.
The inclusion of DVs improves the agreement between
data and theory only for the first two data points, with

\/E < 2.4 GeV. The BES datasets also have a tendency to
be larger than pQCD, but agree with theory within 2¢ for
most of the points.

We have also performed a combination of the available
experimental data using the algorithm of Refs. [46,95]. The
data combination shows that the different datasets are
statistically compatible, in spite of a few local tensions
that we account for by applying an error inflation pro-
cedure. The combined data are compatible with theory
within at most 2.46.

Results for the integrated contributions to a}* in two
different intervals show that the KEDR data lead to results
fully compatible with pQCD and pQCD + DVs. Results
from the BES experiments are larger than the theory
counterparts but are also compatible within 2.26. The
combined data, with smaller errors, also lead to a
aiVP[2.23;3.66] marginally compatible with pQCD
(2.40) and compatible with the result that includes the
DV contribution. Finally, the BES-III data lead to a result
for a}iV*[2.23;3.66] more than 3¢ away from pQCD.

In conclusion, below 2.5 GeV there is room for a
potentially sizable DV contribution, which could soften
some of the discrepancies between theory and data points
that are observed in R, ;. This is not the case for the data
with /s > 2.8 GeV, where the DVs are tiny. For these
energies, there is very little room for change in the theory
description and any incompatibility between data and
theory is disconcerting. In particular, we cannot find any
mechanism to account for the larger values obtained by the
BES-III collaboration for /s > 3.4 GeV. We hope the
present work will encourage further experimental inves-
tigations of R, in this energy range.
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APPENDIX: RENORMALON-FREE
GLUON-CONDENSATE SCHEME

We give here an overview of the main steps in the
construction of the RF GC scheme, which is designed to
consistently remove the # = 2 renormalon ambiguity from
the Adler function perturbative series and, as a conse-
quence, from the pQCD expansion of its integrated
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moments [104-106]. To convey the main ideas, it is
sufficient to discuss the implementation in the large-f,
limit, avoiding some of the technical aspects that appear in
full QCD, that we outline in the end.

The contribution of the # = 2 IR renormalon to the Borel
transformed Adler function in the large-f, limit, associated
with condensates of D = 4, can be written as

Ny 3293
2—u 3z2-u’

B[D]p_y(u) = (A1)

where we considered y> = Q and we work in the MS
scheme, where C = —5/3 in the results of Eq. (18). The
constant N4 = 32¢'%3/(3x) is exactly known in large-f
(but not in full QCD).

This renormalon gives a fixed sign contribution to the
Adler function expansion of the form

R 320103 &
Dposla) =5 —> rlat.  (A2)
E n=0
with coefficients given by
) _F(n—|—1) ﬁ n
== |5, ) (A3)

A D =4 term in the OPE is associated with the contri-
butions of the u = 2 pole. In the chiral limit and in large-§,
it is given by

(G?)

DYFE(-Q?) =2 o

(A4)

where the only condensate with dimension D = 4 is the
gluon condensate that we define as (G*) = (a,G%,G**).

IR poles obstruct the integration contour for the Borel
integral and therefore lead to an intrinsic imaginary
ambiguity in the true value of the Adler function. This
cannot be physical and the GC contribution in the OPE is
expected to provide the correction that would eliminate this
ambiguity. The RF GC scheme consists in making this
explicit by a consistent redefinition of the GC such as to
exactly cancel the imaginary ambiguity associated with the
u = 2 renormalon. This redefinition is done in terms of an
IR subtraction scale, that we call R. This idea is based on
previous works that implement similar renormalon sub-
tractions in other contexts [149-151].

We then redefine the GC, order by order, as

00
— R4Ngz I",(14>a?+1(R2) +NgCO(R2),
n=0

<G2>(n) — <G2>RF

(AS)

where N, = N,/2 is the GC norm and the new GC in the
RF scheme is (G?)RF. In this redefinition, a,(R?) is
calculated at the IR subtraction scale but, at the end, one
must consistently reexpand it in terms of a,(s) and powers
of log (R?/s). The function c,(R?) is introduced such that
the new GC is formally RG invariant. A function that
accomplishes this goal is, essentially, the Borel sum of the
u = 2 renormalon

2 00 ) 1
co(R?) = R* (FT) PV A du e=1/3:(R?) T

where we introduced the notation @, = f,a,/(2z) and PV
means the Cauchy principal value. This function should not
be expanded, i.e., its role is not to generate terms in an
asymptotic expansion, and it must be kept in the closed
form given by the Borel integral.

When this redefinition is used in the GC OPE contri-
bution, and one reshuffles all R-dependent terms into the
perturbative series, the perturbative expansion of the Adler
function becomes, with the choice y?> = Q% = —s,

(A6)

o0 0

DRF(S) = Z rpatt(=s) — —N4 Z rn a1 (R?)

n=0

+ Nyco(R?). (A7)
In practice, the sums in the perturbative series have to be
truncated at an order n* (which here is taken to be n* = 5).
The second term contributes to the cancellation of the
u = 2 contributions from the first sum up to this order. Note
that the modification that is done to the perturbative series
is minimal, in the sense that differences with respect to the
original series are formally O(a? *1). It is possible to show
that the imaginary ambiguity from the pole at u =2 is
exactly canceled by the imaginary ambiguity of ¢,(R?), and
the Adler function is no longer singular at u = 2. This is a
consequence of the fact that the Borel integral is scale
independent and to show it, it is crucial to consistently write
a,(R?) in terms of a,(Q?). Finally, another nice feature of
the RF GC scheme is that the real part of the Borel sum of
the new RF Adler function is the same as before and that the
OPE GC correction retains its form

Liag

DY (-0?) = (A8)

Once the RF scheme is implemented, the # = 2 IR pole
is consistently removed, while keeping the Borel integral,
1.e., the true value of the Adler function, unaltered. It is now
well established that this pole is responsible for more than
99% of the difference between CIPT and FOPT [119-121].
Therefore, in the RF scheme the two series now approach
the same value, as shown in Fig. 1.
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The implementation of the RF scheme in QCD follows
the same steps. The main complications are (i) that the
structure of the renormalon singularity is more complicated
and (ii) that we do not know the GC norm, N ;. To deal with
the first difficulty, it is convenient to, as an intermediate
step, switch to another scheme for «y, the C-scheme [137],
in which the f# function and the general structure of the
renormalon singularities are greatly simplified. One can

then, after the RF scheme is implemented, reexpand «; to
return to the usual MS scheme (as done in Refs. [104,105]).
Finally, the value of the GC norm N, can be estimated with
sufficient precision with, e.g., the three methods of
Ref. [105]. The final uncertainty in N, which is estimated
to be of about 40%), is not too large and partially cancels in
final results due to the two contributions in Eq. (A5) having
different signs.

[1] R. Aliberti et al., The anomalous magnetic moment of the
muon in the standard model: An update, Phys. Rep. 1143,
1 (2025).

[2] K. G. Chetyrkin, J. H. Kuhn, A. Maier, P. Maierhofer, P.
Marquard, M. Steinhauser ef al., Charm and bottom quark
masses: An update, Phys. Rev. D 80, 074010 (2009).

[3] K. Chetyrkin, J.H. Kuhn, A. Maier, P. Maierhofer, P.
Marquard, M. Steinhauser er al., Precise charm- and
bottom-quark masses: Theoretical and experimental un-
certainties, Theor. Math. Phys. 170, 217 (2012).

[4] B. Dehnadi, A. H. Hoang, V. Mateu, and S. M. Zebarjad,
Charm mass determination from QCD charmonium sum
rules at order o, J. High Energy Phys. 09 (2013) 103.

[5] B. Dehnadi, A.H. Hoang, and V. Mateu, Bottom and
charm mass determinations with a convergence test, J.
High Energy Phys. 08 (2015) 155.

[6] J. Erler, P. Masjuan, and H. Spiesberger, Charm quark
mass with calibrated uncertainty, Eur. Phys. J. C 77, 99
(2017).

[7] D. Boito, M. Golterman, A. Keshavarzi, K. Maltman, D.
Nomura, S. Peris et al., Strong coupling from ete™ —
hadrons below charm, Phys. Rev. D 98, 074030 (2018).

[8] D. Boito and V. Mateu, Precise a, determination from
charmonium sum rules, Phys. Lett. B 806, 135482 (2020).

[9] D. Boito and V. Mateu, Precise determination of «, from
relativistic quarkonium sum rules, J. High Energy Phys. 03
(2020) 094.

[10] BESIII Collaboration, Measurement of the cross section
for ete™ — hadrons at energies from 2.2324 to
3.6710 GeV, Phys. Rev. Lett. 128, 062004 (2022).

[11] KEDR Collaboration, Precise measurement of R, ;, and R
between 1.84 and 3.72 GeV at the KEDR detector, Phys.
Lett. B 788, 42 (2019).

[12] KEDR Collaboration, Measurement of R,,;, and R between
3.12 and 3.72 GeV at the KEDR detector, Phys. Lett. B
753, 533 (2016).

[13] KEDR Collaboration, Measurement of R between 1.84 and
3.05 GeV at the KEDR detector, Phys. Lett. B 770, 174
(2017).

[14] Muon g — 2 Collaboration, Measurement of the positive
muon anomalous magnetic moment to 0.46 ppm, Phys.
Rev. Lett. 126, 141801 (2021).

[15] Muon g — 2 Collaboration, Measurement of the positive
Muon anomalous magnetic moment to 0.20 ppm, Phys.
Rev. Lett. 131, 161802 (2023).

[16] Muon g — 2 Collaboration, Measurement of the positive
Muon anomalous magnetic moment to 127 ppb, Phys. Rev.
Lett. 135, 101802 (2025).

[17] Muon g — 2 Collaboration, Final report of the muon E821
anomalous magnetic moment measurement at BNL, Phys.
Rev. D 73, 072003 (20006).

[18] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio,
Complete tenth-order QED contribution to the Muon
g — 2, Phys. Rev. Lett. 109, 111808 (2012).

[19] S. Volkov, Calculating the five-loop QED contribution to
the electron anomalous magnetic moment: Graphs without
lepton loops, Phys. Rev. D 100, 096004 (2019).

[20] S. Volkov, Calculation of the total 10th order QED
contribution to the electron magnetic moment, Phys.
Rev. D 110, 036001 (2024).

[21] T. Aoyama, M. Hayakawa, A. Hirayama, and M. Nio,
Verification of the tenth-order QED contribution to the
anomalous magnetic moment of the electron from dia-
grams without fermion loops, Phys. Rev. D 111, L031902
(2025).

[22] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Miiller,
Measurement of the fine-structure constant as a test of the
standard model, Science 360, 191 (2018).

[23] L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khélifa,
Determination of the fine-structure constant with an
accuracy of 81 parts per trillion, Nature (London) 588,
61 (2020).

[24] X. Fan, T. G. Myers, B. A.D. Sukra, and G. Gabrielse,
Measurement of the electron magnetic moment, Phys. Rev.
Lett. 130, 071801 (2023).

[25] A. Czarnecki, W. J. Marciano, and A. Vainshtein, Refine-
ments in electroweak contributions to the muon anomalous
magnetic moment, Phys. Rev. D 67, 073006 (2003).

[26] C. Gnendiger, D. Stockinger, and H. Stockinger-Kim, The
electroweak contributions to (g — 2),, after the Higgs boson
mass measurement, Phys. Rev. D 88, 053005 (2013).

[27] J. Liidtke, M. Procura, and P. Stoffer, Dispersion relations
for the hadronic VVA correlator, J. High Energy Phys. 04
(2025) 130.

[28] M. Hoferichter, J. Liidtke, L. Naterop, M. Procura, and
P. Stoffer, Improved evaluation of the electroweak con-
tribution to muon g — 2, Phys. Rev. Lett. 134, 201801
(2025).

[29] RBC Collaboration and UKQCD Collaboration, Calcula-
tion of the hadronic vacuum polarization contribution to

094052-15


https://doi.org/10.1016/j.physrep.2025.08.002
https://doi.org/10.1016/j.physrep.2025.08.002
https://doi.org/10.1103/PhysRevD.80.074010
https://doi.org/10.1007/s11232-012-0024-7
https://doi.org/10.1007/JHEP09(2013)103
https://doi.org/10.1007/JHEP08(2015)155
https://doi.org/10.1007/JHEP08(2015)155
https://doi.org/10.1140/epjc/s10052-017-4667-2
https://doi.org/10.1140/epjc/s10052-017-4667-2
https://doi.org/10.1103/PhysRevD.98.074030
https://doi.org/10.1016/j.physletb.2020.135482
https://doi.org/10.1007/JHEP03(2020)094
https://doi.org/10.1007/JHEP03(2020)094
https://doi.org/10.1103/PhysRevLett.128.062004
https://doi.org/10.1016/j.physletb.2018.11.012
https://doi.org/10.1016/j.physletb.2018.11.012
https://doi.org/10.1016/j.physletb.2015.12.059
https://doi.org/10.1016/j.physletb.2015.12.059
https://doi.org/10.1016/j.physletb.2017.04.073
https://doi.org/10.1016/j.physletb.2017.04.073
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1103/PhysRevLett.131.161802
https://doi.org/10.1103/PhysRevLett.131.161802
https://doi.org/10.1103/7clf-sm2v
https://doi.org/10.1103/7clf-sm2v
https://doi.org/10.1103/PhysRevD.73.072003
https://doi.org/10.1103/PhysRevD.73.072003
https://doi.org/10.1103/PhysRevLett.109.111808
https://doi.org/10.1103/PhysRevD.100.096004
https://doi.org/10.1103/PhysRevD.110.036001
https://doi.org/10.1103/PhysRevD.110.036001
https://doi.org/10.1103/PhysRevD.111.L031902
https://doi.org/10.1103/PhysRevD.111.L031902
https://doi.org/10.1126/science.aap7706
https://doi.org/10.1038/s41586-020-2964-7
https://doi.org/10.1038/s41586-020-2964-7
https://doi.org/10.1103/PhysRevLett.130.071801
https://doi.org/10.1103/PhysRevLett.130.071801
https://doi.org/10.1103/PhysRevD.67.073006
https://doi.org/10.1103/PhysRevD.88.053005
https://doi.org/10.1007/JHEP04(2025)130
https://doi.org/10.1007/JHEP04(2025)130
https://doi.org/10.1103/PhysRevLett.134.201801
https://doi.org/10.1103/PhysRevLett.134.201801

DIOGO BOITO and MARCELLE CARAM

PHYS. REV. D 112, 094052 (2025)

the muon anomalous magnetic moment, Phys. Rev. Lett.
121, 022003 (2018).

[30] ETM Collaboration, Electromagnetic and strong isospin-
breaking corrections to the muon ¢g—2 from Lattice
QCD + QED, Phys. Rev. D 99, 114502 (2019).

[31] S. Borsényi et al., Leading hadronic contribution to the
muon magnetic moment from lattice QCD, Nature
(London) 593, 51 (2021).

[32] C. Lehner and A.S. Meyer, Consistency of hadronic
vacuum polarization between lattice QCD and the R-ratio,
Phys. Rev. D 101, 074515 (2020).

[33] yQCD Collaboration, Muon g — 2 with overlap valence
fermions, Phys. Rev. D 107, 034513 (2023).

[34] C. Aubin, T. Blum, M. Golterman, and S. Peris, Muon
anomalous magnetic moment with staggered fermions: Is
the lattice spacing small enough?, Phys. Rev. D 106,
054503 (2022).

[35] M. C¢ et al., Window observable for the hadronic vacuum
polarization contribution to the muon g — 2 from lattice
QCD, Phys. Rev. D 106, 114502 (2022).

[36] ETM Collaboration, Lattice calculation of the short and
intermediate time-distance hadronic vacuum polarization
contributions to the muon magnetic moment using twisted-
mass fermions, Phys. Rev. D 107, 074506 (2023).

[37] RBC Collaboration and UKQCD Collaboration, Update of
Euclidean windows of the hadronic vacuum polarization,
Phys. Rev. D 108, 054507 (2023).

[38] S. Kuberski, M. Ce¢, G. von Hippel, H.B. Meyer, K.
Ottnad, A. Risch et al., Hadronic vacuum polarization in
the muon g —2: The short-distance contribution from
lattice QCD, J. High Energy Phys. 03 (2024) 172.

[39] A. Boccaletti et al., High precision calculation of the
hadronic vacuum polarisation contribution to the muon
anomaly, arXiv:2407.10913.

[40] S. Spiegel and C. Lehner, High-precision continuum limit
study of the HVP short-distance window, Phys. Rev. D
111, 114517 (2025).

[41] RBC Collaboration and UKQCD Collaboration, The long-
distance window of the hadronic vacuum polarization for
the muon g — 2, Phys. Rev. Lett. 134, 201901 (2025).

[42] D. Djukanovic, G. von Hippel, S. Kuberski, H. B. Meyer,
N. Miller, K. Ottnad et al., The hadronic vacuum polari-
zation contribution to the muon g — 2 at long distances, J.
High Energy Phys. 04 (2025) 098.

[43] ETM Collaboration, Strange and charm quark contribu-
tions to the muon anomalous magnetic moment in lattice
QCD with twisted-mass fermions, Phys. Rev. D 111,
054502 (2025).

[44] Fermilab Lattice Collaboration, HPQCD Collaboration,
and MILC Collaboration, Hadronic vacuum polarization
for the muon ¢g—2 from lattice QCD: Complete short
and intermediate windows, Phys. Rev. D 111, 094508
(2025).

[45] A. Bazavov et al., Hadronic vacuum polarization for the
muon g—2 from lattice QCD: Long-distance and full
light-quark connected contribution, Phys. Rev. Lett. 135,
011901 (2025).

[46] A. Keshavarzi, D. Nomura, and T. Teubner, g —2 of
charged leptons, a(M%), and the hyperfine splitting of
muonium, Phys. Rev. D 101, 014029 (2020).

[47] L. Di Luzio, A. Keshavarzi, A. Masiero, and P. Paradisi,
Model-independent tests of the hadronic vacuum polari-
zation contribution to the Muon g — 2, Phys. Rev. Lett.
134, 011902 (2025).

[48] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser,
Hadronic contribution to the muon anomalous magnetic
moment to next-to-next-to-leading order, Phys. Lett. B
734, 144 (2014).

[49] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer,
Dispersion relation for hadronic light-by-light scattering:
Theoretical foundations, J. High Energy Phys. 09 (2015)
074.

[50] P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole
contribution to the (g, —2): A rational approach, Phys.
Rev. D 95, 054026 (2017).

[51] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer,
Dispersion relation for hadronic light-by-light scattering:
two-pion contributions, J. High Energy Phys. 04 (2017)
161.

[52] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P.
Schneider, Dispersion relation for hadronic light-by-light
scattering: Pion pole, J. High Energy Phys. 10 (2018) 141.

[53] G. Eichmann, C.S. Fischer, E. Weil, and R. Williams,
Single pseudoscalar meson pole and pion box contribu-
tions to the anomalous magnetic moment of the muon,
Phys. Lett. B 797, 134855 (2019).

[54] J. Bijnens, N. Hermansson-Truedsson, and A. Rodriguez-
Sanchez, Short-distance constraints for the HLbL contri-
bution to the muon anomalous magnetic moment, Phys.
Lett. B 798, 134994 (2019).

[55] J. Leutgeb and A. Rebhan, Axial vector transition form
factors in holographic QCD and their contribution to the
anomalous magnetic moment of the muon, Phys. Rev. D
101, 114015 (2020).

[56] L. Cappiello, O. Cata, G. D’ Ambrosio, D. Greynat, and A.
Iyer, Axial-vector and pseudoscalar mesons in the hadronic
light-by-light contribution to the muon (g — 2), Phys. Rev.
D 102, 016009 (2020).

[57] P. Masjuan, P. Roig, and P. Sdnchez-Puertas, The interplay
of transverse degrees of freedom and axial-vector mesons
with short-distance constraints in g — 2, J. Phys. G 49,
015002 (2022).

[58] J. Bijnens, N. Hermansson-Truedsson, L. Laub, and A.
Rodriguez-Sanchez, Short-distance HLbL contributions to
the muon anomalous magnetic moment beyond perturba-
tion theory, J. High Energy Phys. 10 (2020) 203.

[59] J. Bijnens, N. Hermansson-Truedsson, L. Laub, and A.
Rodriguez-Sanchez, The two-loop perturbative correction
to the (g —2), HLbL at short distances, J. High Energy
Phys. 04 (2021) 240.

[60] I. Danilkin, M. Hoferichter, and P. Stoffer, A dispersive
estimate of scalar contributions to hadronic light-by-light
scattering, Phys. Lett. B 820, 136502 (2021).

[61] D. Stamen, D. Hariharan, M. Hoferichter, B. Kubis, and P.
Stoffer, Kaon electromagnetic form factors in dispersion
theory, Eur. Phys. J. C 82, 432 (2022).

[62] J. Leutgeb, J. Mager, and A. Rebhan, Hadronic light-by-
light contribution to the muon g —2 from holographic
QCD with solved U(1), problem, Phys. Rev. D 107,
054021 (2023).

094052-16


https://doi.org/10.1103/PhysRevLett.121.022003
https://doi.org/10.1103/PhysRevLett.121.022003
https://doi.org/10.1103/PhysRevD.99.114502
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1103/PhysRevD.101.074515
https://doi.org/10.1103/PhysRevD.107.034513
https://doi.org/10.1103/PhysRevD.106.054503
https://doi.org/10.1103/PhysRevD.106.054503
https://doi.org/10.1103/PhysRevD.106.114502
https://doi.org/10.1103/PhysRevD.107.074506
https://doi.org/10.1103/PhysRevD.108.054507
https://doi.org/10.1007/JHEP03(2024)172
https://arXiv.org/abs/2407.10913
https://doi.org/10.1103/mj3d-yq87
https://doi.org/10.1103/mj3d-yq87
https://doi.org/10.1103/PhysRevLett.134.201901
https://doi.org/10.1007/JHEP04(2025)098
https://doi.org/10.1007/JHEP04(2025)098
https://doi.org/10.1103/PhysRevD.111.054502
https://doi.org/10.1103/PhysRevD.111.054502
https://doi.org/10.1103/PhysRevD.111.094508
https://doi.org/10.1103/PhysRevD.111.094508
https://doi.org/10.1103/d583-yhfs
https://doi.org/10.1103/d583-yhfs
https://doi.org/10.1103/PhysRevD.101.014029
https://doi.org/10.1103/PhysRevLett.134.011902
https://doi.org/10.1103/PhysRevLett.134.011902
https://doi.org/10.1016/j.physletb.2014.05.043
https://doi.org/10.1016/j.physletb.2014.05.043
https://doi.org/10.1007/JHEP09(2015)074
https://doi.org/10.1007/JHEP09(2015)074
https://doi.org/10.1103/PhysRevD.95.054026
https://doi.org/10.1103/PhysRevD.95.054026
https://doi.org/10.1007/JHEP04(2017)161
https://doi.org/10.1007/JHEP04(2017)161
https://doi.org/10.1007/JHEP10(2018)141
https://doi.org/10.1016/j.physletb.2019.134855
https://doi.org/10.1016/j.physletb.2019.134994
https://doi.org/10.1016/j.physletb.2019.134994
https://doi.org/10.1103/PhysRevD.101.114015
https://doi.org/10.1103/PhysRevD.101.114015
https://doi.org/10.1103/PhysRevD.102.016009
https://doi.org/10.1103/PhysRevD.102.016009
https://doi.org/10.1088/1361-6471/ac3892
https://doi.org/10.1088/1361-6471/ac3892
https://doi.org/10.1007/JHEP10(2020)203
https://doi.org/10.1007/JHEP04(2021)240
https://doi.org/10.1007/JHEP04(2021)240
https://doi.org/10.1016/j.physletb.2021.136502
https://doi.org/10.1140/epjc/s10052-022-10348-3
https://doi.org/10.1103/PhysRevD.107.054021
https://doi.org/10.1103/PhysRevD.107.054021

PERTURBATIVE QCD BELOW CHARM THRESHOLD: THEORY ...

PHYS. REV. D 112, 094052 (2025)

[63] M. Hoferichter, B. Kubis, and M. Zanke, Axial-vector
transition form factors and ete™ — fiz"x~, J. High
Energy Phys. 08 (2023) 209.

[64] M. Hoferichter, P. Stoffer, and M. Zillinger, An optimized
basis for hadronic light-by-light scattering, J. High Energy
Phys. 04 (2024) 092.

[65] E.J. Estrada, S. Gonzalez-Solis, A. Guevara, and P. Roig,
Improved 71'0,17, ' transition form factors in resonance
chiral theory and their a}/*** contribution, J. High Energy
Phys. 12 (2024) 203.

[66] O. Deineka, I. Danilkin, and M. Vanderhaeghen, Disper-
sive estimate of the a((980) contribution to (g — 2),,, Phys.
Rev. D 111, 034009 (2025).

[67] G. Eichmann, C. S. Fischer, T. Haeuser, and O. Regenfelder,
Axial-vector and scalar contributions to hadronic light-by-
light scattering, Eur. Phys. J. C 85, 445 (2025).

[68] J. Bijnens, N. Hermansson-Truedsson, and A. Rodriguez-
Sénchez, Constraints on the hadronic light-by-light tensor
in corner kinematics for the muon g — 2, J. High Energy
Phys. 03 (2025) 094.

[69] M. Hoferichter, P. Stoffer, and M. Zillinger, Dispersion
relation for hadronic light-by-light scattering: Subleading
contributions, J. High Energy Phys. 02 (2025) 121.

[70] S. Holz, M. Hoferichter, B.-L. Hoid, and B. Kubis,
Dispersion relation for hadronic light-by-light scattering:
n and 1’ poles, J. High Energy Phys. 04 (2025) 147.

[71] L. Cappiello, J. Leutgeb, J. Mager, and A. Rebhan, Tensor
meson transition form factors in holographic QCD and the
muon g — 2, J. High Energy Phys. 07 (2025) 033.

[72] G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and
P. Stoffer, Remarks on higher-order hadronic corrections to
the muon g — 2, Phys. Lett. B 735, 90 (2014).

[73] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C.
Jung et al., Hadronic light-by-light scattering contribution
to the Muon anomalous magnetic moment from Lattice
QCD, Phys. Rev. Lett. 124, 132002 (2020).

[74] E.-H. Chao, R. J. Hudspith, A. Gérardin, J. R. Green, H. B.
Meyer, and K. Ottnad, Hadronic light-by-light contribution
to (g —2),, from lattice QCD: A complete calculation, Eur.
Phys. J. C 81, 651 (2021).

[75] E.-H. Chao, R.J. Hudspith, A. Gérardin, J. R. Green, and
H. B. Meyer, The charm-quark contribution to light-by-
light scattering in the muon (g — 2) from lattice QCD, Eur.
Phys. J. C 82, 664 (2022).

[76] RBC and UKQCD Collaboration, Hadronic light-by-light
contribution to the muon anomaly from lattice QCD with
infinite volume QED at physical pion mass, Phys. Rev. D
111, 014501 (2025).

[77] Z. Fodor, A. Gérardin, L. Lellouch, K. K. Szabé, B. C.
Toth, and C. Zimmermann, Hadronic light-by-light scat-
tering contribution to the anomalous magnetic moment of
the muon at the physical pion mass, Phys. Rev. D 111,
114509 (2025).

[78] T. Aoyama et al., The anomalous magnetic moment of the
muon in the standard model, Phys. Rep. 887, 1 (2020).

[79] CMD-3 Collaboration, Measurement of the pion form
factor with CMD-3 detector and its implication to the
hadronic contribution to Muon (g — 2), Phys. Rev. Lett.
132, 231903 (2024).

[80] CMD-3 Collaboration, Measurement of the ete™ — 77~
cross section from threshold to 1.2 GeV with the CMD-3
detector, Phys. Rev. D 109, 112002 (2024).

[81] D. Boito, M. Golterman, K. Maltman, and S. Peris,
Evaluation of the three-flavor quark-disconnected con-
tribution to the muon anomalous magnetic moment
from experimental data, Phys. Rev. D 105, 093003
(2022).

[82] D. Boito, M. Golterman, K. Maltman, and S. Peris, Data-
based determination of the isospin-limit light-quark-
connected contribution to the anomalous magnetic mo-
ment of the muon, Phys. Rev. D 107, 074001 (2023).

[83] G. Benton, D. Boito, M. Golterman, A. Keshavarzi, K.
Maltman, and S. Peris, Data-driven determination of the
light-quark connected component of the intermediate-
window contribution to the Muon g — 2, Phys. Rev. Lett.
131, 251803 (2023).

[84] G. Benton, D. Boito, M. Golterman, A. Keshavarzi, K.
Maltman, and S. Peris, Data-driven estimates for light-
quark-connected and strange-plus-disconnected hadronic
g—2 window quantities, Phys. Rev. D 109, 036010
(2024).

[85] G. Benton, D. Boito, M. Golterman, A. Keshavarzi, K.
Maltman, and S. Peris, Data-driven results for light-quark
connected and strange-plus-disconnected hadronic g — 2
short- and long-distance windows, Phys. Rev. D 111,
034018 (2025).

[86] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, A new
evaluation of the hadronic vacuum polarisation contribu-
tions to the muon anomalous magnetic moment and to
a(m?), Eur. Phys. J. C 80, 241 (2020).

[87] P. Masjuan, A. Miranda, and P. Roig, 7z data-driven
evaluation of Euclidean windows for the hadronic vacuum
polarization, Phys. Lett. B 850, 138492 (2024).

[88] J. A. Miranda and P. Roig, New z-based evaluation of the
hadronic contribution to the vacuum polarization piece of
the muon anomalous magnetic moment, Phys. Rev. D 102,
114017 (2020).

[89] M. Hoferichter, G. Colangelo, B.-L. Hoid, B. Kubis, J. R.
de Elvira, D. Schuh et al., Phenomenological estimate of
isospin breaking in hadronic vacuum polarization, Phys.
Rev. Lett. 131, 161905 (2023).

[90] G. Colangelo, M. Hoferichter, B. Kubis, and P. Stoffer,
Isospin-breaking effects in the two-pion contribution to
hadronic vacuum polarization, J. High Energy Phys. 10
(2022) 032.

[91] M. Davier, A. Hoecker, G. Lopez Castro, B. Malaescu,
X.H. Mo, G. Toledo Sanchez et al., The discrepancy
between 7 and e e~ spectral functions revisited and the
consequences for the Muon magnetic anomaly, Eur. Phys.
J. C 66, 127 (2010).

[92] M. Davier, A. Hoecker, A.-M. Lutz, B. Malaescu, and Z.
Zhang, Tensions in e *77(y) measurements: The
new landscape of data-driven hadronic vacuum polariza-
tion predictions for the muon g — 2, Eur. Phys. J. C 84, 721
(2024).

[93] M. Davier, B. Malaescu, and Z. Zhang, Data-based form
factor corrections between the two-pion 7 and ete”
spectral functions, arXiv:2504.13789.

e -7

094052-17


https://doi.org/10.1007/JHEP08(2023)209
https://doi.org/10.1007/JHEP08(2023)209
https://doi.org/10.1007/JHEP04(2024)092
https://doi.org/10.1007/JHEP04(2024)092
https://doi.org/10.1007/JHEP12(2024)203
https://doi.org/10.1007/JHEP12(2024)203
https://doi.org/10.1103/PhysRevD.111.034009
https://doi.org/10.1103/PhysRevD.111.034009
https://doi.org/10.1140/epjc/s10052-025-14055-7
https://doi.org/10.1007/JHEP03(2025)094
https://doi.org/10.1007/JHEP03(2025)094
https://doi.org/10.1007/JHEP02(2025)121
https://doi.org/10.1007/JHEP04(2025)147
https://doi.org/10.1007/JHEP07(2025)033
https://doi.org/10.1016/j.physletb.2014.06.012
https://doi.org/10.1103/PhysRevLett.124.132002
https://doi.org/10.1140/epjc/s10052-021-09455-4
https://doi.org/10.1140/epjc/s10052-021-09455-4
https://doi.org/10.1140/epjc/s10052-022-10589-2
https://doi.org/10.1140/epjc/s10052-022-10589-2
https://doi.org/10.1103/PhysRevD.111.014501
https://doi.org/10.1103/PhysRevD.111.014501
https://doi.org/10.1103/wdrk-7nrt
https://doi.org/10.1103/wdrk-7nrt
https://doi.org/10.1016/j.physrep.2020.07.006
https://doi.org/10.1103/PhysRevLett.132.231903
https://doi.org/10.1103/PhysRevLett.132.231903
https://doi.org/10.1103/PhysRevD.109.112002
https://doi.org/10.1103/PhysRevD.105.093003
https://doi.org/10.1103/PhysRevD.105.093003
https://doi.org/10.1103/PhysRevD.107.074001
https://doi.org/10.1103/PhysRevLett.131.251803
https://doi.org/10.1103/PhysRevLett.131.251803
https://doi.org/10.1103/PhysRevD.109.036010
https://doi.org/10.1103/PhysRevD.109.036010
https://doi.org/10.1103/PhysRevD.111.034018
https://doi.org/10.1103/PhysRevD.111.034018
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://doi.org/10.1016/j.physletb.2024.138492
https://doi.org/10.1103/PhysRevD.102.114017
https://doi.org/10.1103/PhysRevD.102.114017
https://doi.org/10.1103/PhysRevLett.131.161905
https://doi.org/10.1103/PhysRevLett.131.161905
https://doi.org/10.1007/JHEP10(2022)032
https://doi.org/10.1007/JHEP10(2022)032
https://doi.org/10.1140/epjc/s10052-009-1219-4
https://doi.org/10.1140/epjc/s10052-009-1219-4
https://doi.org/10.1140/epjc/s10052-024-12964-7
https://doi.org/10.1140/epjc/s10052-024-12964-7
https://arXiv.org/abs/2504.13789

DIOGO BOITO and MARCELLE CARAM

PHYS. REV. D 112, 094052 (2025)

[94] G. Colangelo, M. Cottini, M. Hoferichter, and S. Holz,
Improved calculation of radiative corrections to v — zav
decays, arXiv:2510.26871.

[95] A. Keshavarzi, D. Nomura, and T. Teubner, Muon g — 2
and a(M2%): A new data-based analysis, Phys. Rev. D 97,
114025 (2018).

[96] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang,
Reevaluation of the hadronic vacuum polarisation contri-
butions to the standard model predictions of the muon
g — 2 and a(m%) using newest hadronic cross-section data,
Eur. Phys. J. C 77, 827 (2017).

[97] P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Order aﬁ
QCD corrections to Z and 7 decays, Phys. Rev. Lett. 101,
012002 (2008).

[98] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A.
Vogt, On Higgs decays to hadrons and the R-ratio at N*LO,
J. High Energy Phys. 08 (2017) 113.

[99] M. Beneke, Renormalons, Phys. Rep. 317, 1 (1999).

[100] M. Beneke and M. Jamin, a, and the 7 hadronic width:
Fixed-order, contour-improved and higher-order perturba-
tion theory, J. High Energy Phys. 09 (2008) 044.

[101] M. Beneke, D. Boito, and M. Jamin, Perturbative expan-
sion of 7 hadronic spectral function moments and o
extractions, J. High Energy Phys. 01 (2013) 125.

[102] D. Boito and F. Oliani, Renormalons in integrated spectral
function moments and «; extractions, Phys. Rev. D 101,
074003 (2020).

[103] D. Boito, P. Masjuan, and F. Oliani, Higher-order QCD
corrections to hadronic 7 decays from Padé approximants,
J. High Energy Phys. 08 (2018) 075.

[104] M. A. Benitez-Rathgeb, D. Boito, A. H. Hoang, and M.
Jamin, Reconciling the contour-improved and fixed-order
approaches for 7 hadronic spectral moments. Part I
Renormalon-free gluon condensate scheme, J. High En-
ergy Phys. 07 (2022) 016.

[105] M. A. Benitez-Rathgeb, D. Boito, A. H. Hoang, and M.
Jamin, Reconciling the contour-improved and fixed-order
approaches for 7z hadronic spectral moments. Part II
Renormalon norm and application in @, determinations,
J. High Energy Phys. 09 (2022) 223.

[106] M. A. Benitez-Rathgeb, D. Boito, A. H. Hoang, and M.
Jamin, Reconciling the FOPT and CIPT predictions for the
hadronic Tau decay rate, SciPost Phys. Proc. 16, 007
(2025).

[107] O. Cata, M. Golterman, and S. Peris, Duality violations
and spectral sum rules, J. High Energy Phys. 08 (2005)
076.

[108] O. Cata, M. Golterman, and S. Peris, Unraveling duality
violations in hadronic tau decays, Phys. Rev. D 77, 093006
(2008).

[109] D. Boito, I. Caprini, M. Golterman, K. Maltman, and S.
Peris, Hyperasymptotics and quark-hadron duality viola-
tions in QCD, Phys. Rev. D 97, 054007 (2018).

[110] D. Boito, A. Eiben, M. Golterman, K. Maltman, L. M.
Mansur, and S. Peris, Strong coupling from hadronic
7-decay data including 7 — z~7%, from Belle, Phys.
Rev. D 111, 074010 (2025).

[111] D. Boito, M. Golterman, K. Maltman, S. Peris, M. V.
Rodrigues, and W. Schaaf, Strong coupling from an

improved 7 vector isovector spectral function, Phys.
Rev. D 103, 034028 (2021).

[112] 1. Caprini, Higher-order perturbative coefficients in QCD
from series acceleration by conformal mappings, Phys.
Rev. D 100, 056019 (2019).

[113] G. Abbas, B. Ananthanarayan, I. Caprini, and J. Fischer,
Expansions of 7 hadronic spectral function moments in a
nonpower QCD perturbation theory with tamed large order
behavior, Phys. Rev. D 88, 034026 (2013).

[114] 1. Caprini, J. Fischer, G. Abbas, and B. Ananthanarayan,
Perturbative expansions in QCD improved by conformal
mappings of the borel plane, arXiv:1711.04445.

[115] 1. Caprini, Renormalization-scheme variation of a QCD
perturbation expansion with tamed large-order behavior,
Phys. Rev. D 98, 056016 (2018).

[116] A. Rodriguez-Sanchez, Hadronic tau decays, arXiv:2504
21732,

[117] E. Le Diberder and A. Pich, The perturbative QCD
prediction to R, revisited, Phys. Lett. B 286, 147 (1992).

[118] A. A. Pivovarov, Renormalization group analysis of the
7-lepton decay within QCD, Sov. J. Nucl. Phys. 54, 676
(1991).

[119] A.H. Hoang and C. Regner, Borel representation of 7
hadronic spectral function moments in contour-improved
perturbation theory, Phys. Rev. D 105, 096023 (2022).

[120] A.H. Hoang and C. Regner, On the difference between
FOPT and CIPT for hadronic tau decays, Eur. Phys. J.
Special Topics 230, 2625 (2021).

[121] M. Golterman, K. Maltman, and S. Peris, Difference
between fixed-order and contour-improved perturbation
theory, Phys. Rev. D 108, 014007 (2023).

[122] N. G. Gracia, A. H. Hoang, and V. Mateu, Mathematical
aspects of the asymptotic expansion in contour improved
perturbation theory for hadronic tau decays, Phys. Rev. D
108, 034013 (2023).

[123] K. G. Chetyrkin and A. Kwiatkowski, Mass corrections to
the tau decay rate, Z. Phys. C 59, 525 (1993).

[124] K. G. Chetyrkin and J. H. Kuhn, Mass corrections to the Z
decay rate, Phys. Lett. B 248, 359 (1990).

[125] R. Briiser, A. H. Hoang, and M. Stahlhofen, Three-loop
OPE Wilson coefficients of dimension-four operators for
(axial-)vector and (pseudo-)scalar current correlators, J.
High Energy Phys. 12 (2024) 103.

[126] D. Boito, O. Cata, M. Golterman, M. Jamin, K. Maltman,
J. Osborne et al., A new determination of «; from hadronic
7 decays, Phys. Rev. D 84, 113006 (2011).

[127] D. Boito, M. Golterman, K. Maltman, and S. Peris, Quark-
hadron duality and the determination of as from hadronic =
decay: Facts vs myths, Phys. Rev. D 111, 074019 (2025).

[128] M. Gonzalez-Alonso, A. Pich, and J. Prades, Violation of
quark-hadron duality and spectral chiral moments in QCD,
Phys. Rev. D 81, 074007 (2010).

[129] S.J. Brodsky and E. De Rafael, Suggested boson-lepton
pair couplings and the anomalous magnetic moment of the
muon, Phys. Rev. 168, 1620 (1968).

[130] B.E. Lautrup and E. De Rafael, Calculation of the
sixth-order contribution from the fourth-order vacuum
polarization to the difference of the anomalous magnetic
moments of muon and electron, Phys. Rev. 174, 1835 (1968).

094052-18


https://arXiv.org/abs/2510.26871
https://doi.org/10.1103/PhysRevD.97.114025
https://doi.org/10.1103/PhysRevD.97.114025
https://doi.org/10.1140/epjc/s10052-017-5161-6
https://doi.org/10.1103/PhysRevLett.101.012002
https://doi.org/10.1103/PhysRevLett.101.012002
https://doi.org/10.1007/JHEP08(2017)113
https://doi.org/10.1016/S0370-1573(98)00130-6
https://doi.org/10.1088/1126-6708/2008/09/044
https://doi.org/10.1007/JHEP01(2013)125
https://doi.org/10.1103/PhysRevD.101.074003
https://doi.org/10.1103/PhysRevD.101.074003
https://doi.org/10.1007/JHEP08(2018)075
https://doi.org/10.1007/JHEP07(2022)016
https://doi.org/10.1007/JHEP07(2022)016
https://doi.org/10.1007/JHEP09(2022)223
https://doi.org/10.21468/SciPostPhysProc.16.007
https://doi.org/10.21468/SciPostPhysProc.16.007
https://doi.org/10.1088/1126-6708/2005/08/076
https://doi.org/10.1088/1126-6708/2005/08/076
https://doi.org/10.1103/PhysRevD.77.093006
https://doi.org/10.1103/PhysRevD.77.093006
https://doi.org/10.1103/PhysRevD.97.054007
https://doi.org/10.1103/PhysRevD.111.074010
https://doi.org/10.1103/PhysRevD.111.074010
https://doi.org/10.1103/PhysRevD.103.034028
https://doi.org/10.1103/PhysRevD.103.034028
https://doi.org/10.1103/PhysRevD.100.056019
https://doi.org/10.1103/PhysRevD.100.056019
https://doi.org/10.1103/PhysRevD.88.034026
https://arXiv.org/abs/1711.04445
https://doi.org/10.1103/PhysRevD.98.056016
https://arXiv.org/abs/2504.21732
https://arXiv.org/abs/2504.21732
https://doi.org/10.1016/0370-2693(92)90172-Z
https://doi.org/10.1007/BF01625906
https://doi.org/10.1007/BF01625906
https://doi.org/10.1103/PhysRevD.105.096023
https://doi.org/10.1140/epjs/s11734-021-00257-z
https://doi.org/10.1140/epjs/s11734-021-00257-z
https://doi.org/10.1103/PhysRevD.108.014007
https://doi.org/10.1103/PhysRevD.108.034013
https://doi.org/10.1103/PhysRevD.108.034013
https://doi.org/10.1007/BF01498634
https://doi.org/10.1016/0370-2693(90)90306-Q
https://doi.org/10.1007/JHEP12(2024)103
https://doi.org/10.1007/JHEP12(2024)103
https://doi.org/10.1103/PhysRevD.84.113006
https://doi.org/10.1103/PhysRevD.111.074019
https://doi.org/10.1103/PhysRevD.81.074007
https://doi.org/10.1103/PhysRev.168.1620
https://doi.org/10.1103/PhysRev.174.1835

PERTURBATIVE QCD BELOW CHARM THRESHOLD:

THEORY ... PHYS. REV. D 112, 094052 (2025)

[131] P. A. Baikov, K. G. Chetyrkin, and J. H. Kiihn, Five-loop
running of the QCD coupling constant, Phys. Rev. Lett.
118, 082002 (2017).

[132] Particle Data Group, Review of particle physics, Phys.
Rev. D 110, 030001 (2024).

[133] D.J. Broadhurst and A.G. Grozin, Matching QCD and
heavy-quark effective theory heavy-light currents at two
loops and beyond, Phys. Rev. D 52, 4082 (1995).

[134] M. Beneke and V. M. Braun, Naive nonAbelianization and
resummation of fermion bubble chains, Phys. Lett. B 348,
513 (1999).

[135] D.J. Broadhurst, Large N expansion of QED: Asymptotic
photon propagator and contributions to the muon anomaly,
for any number of loops, Z. Phys. C 58, 339 (1993).

[136] M. Beneke, Large order perturbation theory for a physical
quantity, Nucl. Phys. B405, 424 (1993).

[137] D. Boito, M. Jamin, and R. Miravitllas, Scheme variations
of the QCD coupling and hadronic 7 decays, Phys. Rev.
Lett. 117, 152001 (2016).

[138] L.S. Brown, L.G. Yaffe, and C.-X. Zhai, Large order
perturbation theory for the electromagnetic current current
correlation function, Phys. Rev. D 46, 4712 (1992).

[139] S. G. Gorishnii, A. L. Kataev, and S. A. Larin, Three loop
corrections of order O(m?) to the correlator of electro-
magnetic quark currents, Nuovo Cimento Soc. Ital. Fis.
92A, 119 (1986).

[140] F.J. Yndurain, Electromagnetic corrections to asymptotic
freedom predictions in e"e” annihilation and deep in-
elastic scattering, Nucl. Phys. B136, 533 (1978).

[141] A.L. Kataev, Higher order O(a?) and O(aa,) corrections
to 6., (¢"e” — hadrons) and Z boson decay rate, Phys.
Lett. B 287, 209 (1992).

[142] L.R. Surguladze, O(a"a") corrections in e e~ annihila-
tion and 7 decay, arXiv:hep-ph/9803211.

[143] BES Collaboration, Measurement of the total cross-
section for hadronic production by e™e~ annihilation
at energies between 2.6-5 GeV, Phys. Rev. Lett. 84, 594
(2000).

[144] BES Collaboration, Measurements of the cross-section for
eTe” — hadrons at center-of-mass energies from 2 to
5 GeV, Phys. Rev. Lett. 88, 101802 (2002).

[145] BES Collaboration, Measurements of the cross-sections
for eTe~ — hadrons at 3.650, 3.6648, 3.773 GeV and the
branching fraction for y(3770) — non-DD, Phys. Lett. B
641, 145 (2006).

[146] BES Collaboration, Measurements of the continuum R,
and R values in e"e™ annihilation in the energy region
between 3.650 and 3.872 GeV, Phys. Rev. Lett. 97, 262001
(2006).

[147] BES Collaboration, R value measurements for e'e”
annihilation at 2.60, 3.07 and 3.65 GeV, Phys. Lett. B
677, 239 (2009).

[148] L. Criegee and G. Knies, e e~ physics with the PLUTO
detector, Phys. Rep. 83, 151 (1982).

[149] A. Pineda, Determination of the bottom quark mass
from the Y(1S) system, J. High Energy Phys. 06
(2001) 022.

[150] A.H. Hoang, A. Jain, I. Scimemi, and 1. W. Stewart,
R-evolution: Improving perturbative QCD, Phys. Rev. D
82, 011501 (2010).

[151] A.H. Hoang, A. Jain, C. Lepenik, V. Mateu, M. Preisser,
I Scimemi er al., The MSR mass and the O(Aqcp)
renormalon sum rule, J. High Energy Phys. 04 (2018)
003.

094052-19


https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1103/PhysRevD.110.030001
https://doi.org/10.1103/PhysRevD.110.030001
https://doi.org/10.1103/PhysRevD.52.4082
https://doi.org/10.1016/0370-2693(95)00184-M
https://doi.org/10.1016/0370-2693(95)00184-M
https://doi.org/10.1007/BF01560355
https://doi.org/10.1016/0550-3213(93)90554-3
https://doi.org/10.1103/PhysRevLett.117.152001
https://doi.org/10.1103/PhysRevLett.117.152001
https://doi.org/10.1103/PhysRevD.46.4712
https://doi.org/10.1007/BF02727185
https://doi.org/10.1007/BF02727185
https://doi.org/10.1016/0550-3213(78)90274-2
https://doi.org/10.1016/0370-2693(92)91901-K
https://doi.org/10.1016/0370-2693(92)91901-K
https://arXiv.org/abs/hep-ph/9803211
https://doi.org/10.1103/PhysRevLett.84.594
https://doi.org/10.1103/PhysRevLett.84.594
https://doi.org/10.1103/PhysRevLett.88.101802
https://doi.org/10.1016/j.physletb.2006.08.049
https://doi.org/10.1016/j.physletb.2006.08.049
https://doi.org/10.1103/PhysRevLett.97.262001
https://doi.org/10.1103/PhysRevLett.97.262001
https://doi.org/10.1016/j.physletb.2009.05.055
https://doi.org/10.1016/j.physletb.2009.05.055
https://doi.org/10.1016/0370-1573(82)90012-6
https://doi.org/10.1088/1126-6708/2001/06/022
https://doi.org/10.1088/1126-6708/2001/06/022
https://doi.org/10.1103/PhysRevD.82.011501
https://doi.org/10.1103/PhysRevD.82.011501
https://doi.org/10.1007/JHEP04(2018)003
https://doi.org/10.1007/JHEP04(2018)003

	Perturbative QCD below charm threshold: Theory and tensions with e+e- data
	I. INTRODUCTION
	II. THEORETICAL FRAMEWORK
	III. PERTURBATIVE QCD AND THE EXPECTED HIGHER-ORDER BEHAVIOR
	A. Renormalon free scheme

	IV. OTHER CORRECTIONS TO Ruds(s)
	A. Duality violations
	B. Quark-mass corrections
	C. Electromagnetic corrections

	V. RESULTS FOR Ruds
	VI. COMPARISON BETWEEN THEORY AND DATA
	VII. CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	APPENDIX: RENORMALON-FREE GLUON-CONDENSATE SCHEME
	References


