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Abstract: Glioblastomas (GBM) are malignant tumours with poor prognosis. Treatment
involves chemotherapy and/or radiotherapy; however, there is currently no standard treat-
ment for recurrence, and prognosis remains unfavourable. Inflammatory mediators and
microRNAs (miRNAs) influence the aggressiveness of GBM, being involved in the commu-
nication with the cells of the tumour parenchyma, including microglia/macrophages, and
maintaining an immunosuppressive microenvironment. Hence, the modulation of miRNAs
and inflammatory factors may improve GBM treatments. In this study, we investigated
the effects of agathisflavone, a biflavonoid purified from Cenostigma pyramidale (Tul.), on
the growth and migration of GBM cells, on the expression of inflammatory cytokines and
microRNAs, as well on the response of microglia. Agathisflavone (5–30 µM) induced a dose-
and time-dependent reduction in the viability of both human GL-15 and rat C6 cells, as
determined by the MTT test, and reduced cell migration, as determined by cell scratch assay.
RT-qPCR analysis revealed that agathisflavone (5 µM) down-regulated the expression of
miR-125b and miR-155 in the secretome derived from GL-15 cells, which was associated
with upregulation of the mRNA expression of IL-6 and arginase-1 immunoregulatory
factors. Exposure of human microglia/macrophage to the secretome from GL-15 GMB cells
modulated proliferation and morphology, effects that were modulated by agathisflavone
treatment. These results demonstrate the effect of flavonoids on the growth of GBM cells,
which impacts cells in the microenvironment and can be considered for preclinical studies
for adjuvant treatments.

Keywords: polyphenolic compound; cancer; human miRNA; inflammatory media-
tors; microglia
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1. Introduction
Glioblastoma (GBM) is the most prevalent and aggressive primary brain tumor, ex-

hibiting a high degree of invasiveness and resistance to treatment, with a dismal prognosis
and an average life expectancy of approximately 14 months following diagnosis [1]. The
World Health Organization (WHO) has classified GBM as a grade IV astrocytoma [2–4].
The incidence of GBM is estimated to be between 2 and 3 cases per 100,000 individuals,
corresponding to approximately 14.9% of primary brain tumours and 51% of malignant
gliomas. It represents approximately 2% of all types of cancers. The current treatment
for GBM is a combination of surgical resection, radiotherapy, and chemotherapy. Among
chemotherapeutic drugs, nitrosoureas (e.g., carmustine and lomustine) and alkylating
agents, such as temozolomide (TMZ), stand out as particularly efficacious. Nevertheless,
the therapeutic efficacy of this approach has been found to be limited due to the high
recurrence rate, which is associated with the cellular adaptation and modulation of the
surrounding microenvironment observed in GBM). Additionally, studies have indicated
that stem cells present in the glioma microenvironment may contribute to tumour resistance
against therapeutic approaches involving radiochemotherapy [4–7].

Studies have demonstrated that glioma cells regulate the expression of cytokines and
other inflammatory mediators produced by microglial cells, immune cells responsible
for innate immunity in the central nervous system (CNS), and stimulate the secretion of
growth factors such as transforming growth factor β (TGF-β), which contributes to tumour
proliferation [6,8–10]. Most recently, microRNAs (miRNAs), non-coding molecules, and
post-transcriptional silencers have been identified in GBM. These molecules can be found
in the cytosol or packaged in extracellular vesicles designated as exosomes [11,12], and
they appear to be involved in tumour maintenance. Among the miRNAs that have been
the subject of the most extensive study in GBM, miR-124, miR-146a, miR-155, and miR-21
have been identified as key regulators of GBM progression. miR-125 has been shown to
play a crucial role in oncogenic upregulation and is associated with the STAT3 signalling
pathway, contributing to the proliferation, migration, and invasion of the tumour cells.
Furthermore, it has been associated with the growth and differentiation of cancer stem
cells (CSCs) and cellular resistance to radiotherapy and chemotherapy. Another miRNA
involved in glioma proliferation is miR-155. Studies have shown its potential in promoting
glioma cell proliferation by downregulating Max interactor-1 (MXI1), a c-Myc promoter
antagonist involved in transcription activation and promoting cell proliferation [11–16].
However, the precise role of these miRNAs in GBM remains to be elucidated, and their
regulatory mechanisms and involvement in terms of cell proliferation and degree of mi-
croglial activation in the GBM microenvironment have yet to be defined [15,16]. In this
context, there is a growing interest in the investigation of therapeutic alternatives for this
type of tumour and in the identification of new targets that allow for the development of
more effective therapeutic strategies.

Studies have demonstrated the antitumor potential of flavonoids. These molecules are
natural phenolic compounds originating from the secondary metabolites of plants. They
are known for their beneficial effects on health, involving antioxidant, anti-inflammatory,
antiviral, and even anticancer properties [17–23]. Agathisflavone is a biflavonoid prod-
uct of the conjunction of two molecules of apigenin. Its effects on CNS cells have been
characterised, with emphasis on the neuroprotective and immunomodulatory effects on
microglia [18,19]. Recently, we demonstrated that agathisflavone is selectively toxic for
GBM cells of the GL-15 and U-373 lineages and is capable of reducing cell migration and
inducing the differentiation of these cells towards a neural progenitor phenotype expressing
astrocytic markers and neuronal events associated with expression-reduced constitutive
and phosphorylated STAT3 (pSTAT3) [24]. On the other hand, we also demonstrated that
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agathisflavone can act directly on human and murine microglia, modulating inflammatory
phenotypes [19–26]. In this context, the present study investigated whether the flavonoid
agathisflavone is capable of modulating the expression of components of the inflammatory
response and onco and inflammo miRNAs and the association between these effects and
the viability of GBM cells as well as the impact on microglia state of activation.

2. Results
2.1. Agathisflavone Induces Toxicity and Inhibits Migration of Glioma Cells

First, we evaluated the effects of agathisflavone on cell viability in cultures of GL-15
human glioblastoma cells and C6 rat glioma cells. We observed that after 24 h of exposure
of GL-15 and C6 cells to the flavonoid (1–30 µM), there was a dose-dependent reduction in
cell viability, as measured by the MTT test, and in the cellularity from the concentration
of 5 µM (Figure 1A–D). Furthermore, in the scratch test on cell monolayers, the cell-free
area in cultures treated with 5 and 10 µM agathisflavone was preserved, indicating that
the cells did not migrate (Figure 2A,B). On the other hand, in control cultures treated with
DMSO (0.03%) cells that migrated to the scratched area after this period tending to close
the cell monolayer.
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Figure 1. Cytotoxicity of agathisflavone to human GL15 and rat C6 rat glioma cells. The cells
were treated with the flavonoid dilution vehicle (0.03% DMSO) or with agathisflavone (FAB) at a
concentration of 1 to 30 µM, and the cell morphology and cytotoxicity was assessed after 24 h of
exposure. (A,C) Phase contrast photomicrographs of GL15 and C6 cell cultures in control conditions
or exposed to agathisflavone (5 or 10 µM) for 24 h; obj. ×20 scale bar = 100 µm. (B,D) Analysis of
cell viability by the MTT assay in GL15 and C6 cell cultures exposed to agathisflavone at different
concentrations; the results are expressed as the mean percentages ± SD (n = 3) in relation to the
control group, which was considered 100%. (*) Statistically different, significance p < 0.05.
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cell cultures were treated with the flavonoid (FAB) at a concentration of 5 and 10 µM or maintained
under control conditions (0.01% DMSO). Migration was assessed after 24 h exposure by the Scratch
assay; (obj. ×10).

2.2. Agathisflavone Modulates miRNAs and Cytokines Expression in GBM Cells

Once the effects on viability and migration were determined, we evaluated the effect
of agathisflavone on the regulation of expression of miR-146a, miR-125b, miR-21, and
miR-155 miRNAs in human GL-15 GBM cells, exposing cells to an effective but subtoxic
concentration of the flavonoid (5 µM) (Figure 3). Cellular miR-125b, miR-146a, and miR-21
expression levels were detected but were not significantly changed after agathisflavone
treatment. On the other hand, agathisflavone significantly downregulated the expression
of miR-125b and miR-155 in the secretome of GBM cells (Figure 3).

The effects of the flavonoid agathisflavone on the mRNA expression of mediators
involved in inflammation were also investigated in human GL15 cells. We observed that
agathisflavone tended to increase the expression of mRNA for mediators IL1-β, TNF, and
TGFβ and significantly upregulated mRNA transcription coding for IL-6 and arginase-1
(Figure 4).
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different, significance p < 0.0001; (*) Statistically different, significance p < 0.05.
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2.3. Treatment of GBM Cells with Agathisflavone Affects the Microglia State of Proliferation

Considering the effects of agathisflavone on the expression of miRNA and inflamma-
tory factors and the complexity of cell interaction in the tumour microenvironment, we
investigated the effect of treatment with GBM cells on the phenotype and proliferation of
microglia. For this, human C20 microglia was subjected to the conditioned medium (CM)
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from GL-15 cells treated or not for 24 h with the flavonoid (5 µM), and effects on cell mor-
phology and proliferation, two features of the state of activation of microglia/macrophages,
were analysed after 24 h of exposure (Figure 5A,B). We observed that C20 microglia in con-
trol conditions (fresh culture medium, CN) maintained their typical polygonal morphology,
with about 36% of cells in a state of proliferation (Ki67+ cells). In C20 microglia cultures
treated with the condition medium of GL15 GMB cells in control conditions (CGCM),
the cell amoeboid morphology was predominant, and there was a significant increase in
the proportion of proliferating cells (Ki67+). However, in microglia cultures treated with
the CM of GBM cells treated with agathisflavone (5 µM) (FGCM), there was a significant
reduction in the number of proliferating cells compared to cultures treated with control
CM of GBM cells (CGCM), similar to that of negative control cultures, and cells assumed a
branched phenotype.
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Figure 5. Effect of treatment with human GL15 GBM agathisflavone on the morphology and pro-
liferation of human C20 microglia. GBM cells were treated for 24 h with agathisflavone (5 µM) or
maintained in control condition (0.005% DMSO), and conditioned medium (CM) was collected after
24 h treatment. C20 microglia were exposed to fresh control medium (CM), to control CM of GBM
cells (CGCM), or to agathisflavone GL15-treated CM (FGCM) for 24 h. (A) Cell morphology was
assessed by phase contrast microscopy and proliferation by immunofluorescence for Ki67+ expression
(red); the nuclear chromatin was stained with DAPI (blue); Obj. ×20, scale bar = 50 µM; the images
are representative of three independent experiments. (B) Quantification of C20 microglia after 24 h of
treatment in the different conditions; cells were counted in 20 aleatory fields in three independent
cultures and were tested for significance using one-way ANOVA followed by Tukey’s post-hoc test;
data presented as mean changes ± SEM times of controls. (****) Statistically different, significance
p < 0.0001.

3. Discussion
In this work, we explored the antitumor potential of the flavonoid agathisflavone,

evaluating its effect on cytotoxicity, cell migration, and the regulation of tumour microenvi-
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ronment mediators. For this, MTT and scratch assays were performed on both glioma cell
lines, GL-15 and C6, in order to validate the effects and effective concentrations of these
highly proliferative tumor cells. As shown in our results, in monocultures of glioma cells of
the C6 and GL15 lineage treated directly with the flavonoid agathisflavone, concentrations
equal to or greater than 5 µM were cytotoxic, with a significant reduction in cellularity. Here,
we also showed in migration assays the capacity of agathisflavone to negatively regulate the
migration of cells in the culture of C6 and GL15 glioma lineages. The inhibition of tumour
proliferation is a property that has been described in the literature for several classes of
flavonoids, and studies have shown the potential of flavonoids in regulating molecules
associated with tumour cell migration, such as matrix metalloproteinases (MMPs), TGF-β,
and vascular endothelial growth factor (VEGF), among others [20–23]. This finding is in
accord with our previous study that demonstrated a selective effect of agathisflavona for
U251 and U87 GBM cells [24]. Flavonoids such as isorhamnetin inhibited the cell prolif-
eration of human cancer cell lines, negatively interfering with the cell cycle at the G2/M
phase, in addition to inducing programmed cell death and autophagy in human cancer
cells [25–28]. Moreover, we showed that the flavonoids 5-hydroxy-7,4′-dimethoxyflavone,
casticin, apigenin, and penduletin, obtained from Croton betulaster leaves, and the glycosy-
lated flavonoid rutin, obtained from Dimorphandra mollis pods, inhibited the proliferation
of a human GBM cell line (GL15); additionally, rutin and casticin also negatively regulated
the levels of VEGF and TGF-β1 [29], which involved increases in the migration of glioma
cells [30–32].

In the present work, we also observed that agathisflavone was able to positively
regulate the expression of the inflammatory cytokine IL-6 and the regulatory factor arginase,
associated with increased response against the tumour. Here we also demonstrated that
microglia treated with the conditioned medium from GBM cells entered into a state of
activation, an effect that was regulated by exposing the tumour cells to the flavonoid. Some
studies suggest that GBM cells modulate the expression of cytokines, chemokines, and
growth factors present in the tumour microenvironment, where many of these mediators
are produced by microglia [6,33,34]. Microglia present in the tumour microenvironment
can suppress the immune response from the production of arginase 1 (Arg1) and pro-
inflammatory and proliferative microglia have the potential to drive the progression of
GBM [35,36]. Moreover, studies have shown that GBM cells inhibit the ability of microglia
to produce pro-inflammatory cytokines such as TNF, IL-6, and IL1-β and stimulate the
secretion of transforming growth factor β (TGF-β) and IL-10, a phenomenon correlated
with increased expression of STAT-3 [6,9,10,37–39]. Previously, we demonstrated that
reduction in cell viability of both human GL-15 and U373 GBM cells by agathisflavone was
associated with modulation of STAT-3 signalling [24].

Agathisflavone also modulated the expression of miR-146a, miR-125b, and miR-21
in GL-15 human GBM cells and significantly downregulated the expression of miR-125b
and miR-155 in the GL15 secretome. Expression of these miRNAs has been associated
with the regulation of development, growth, and other cellular processes such as prolifera-
tion, differentiation, and metastasis [40–44]. MiR-146a inhibits the gliomagenesis process,
suppressing the migration and proliferation of glioma cells, in addition to its ability to
restrict the formation of glioma stem cells by regulating the Notch1 pathway, reducing
proliferation, and inducing apoptosis. In addition, miR-146a also plays an important
role in modulating the immune response, regulating the production of pro-inflammatory
cytokines, and negatively regulating mediators of the inflammatory signalling pathway
initiated by NF-kB in microglia [8,13,44,45]. Our results showed that miR-146a expressed
in GBM was modulated by the flavonoid agathisflavone, which reinforces its anti-glioma
potential. Studies show the role of miR-125b in up-regulating oncogenic activity and its
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association with the STAT3 signaling pathway, promoting proliferation, migration, and
invasion of tumor cells. However, knowledge about the role of miR-125b in this scenario
is still poor, and little is known about its mechanism of action in tumors. In work with
HCT116 and HEK293 cells cancer cells, it was shown that miR-125b inhibition was as-
sociated with a reduction in cells’ growth and invasion. On the other hand, the use of
miR-R125b mimics promoted the opposite effect [46]. Recently, our group identified that
the flavonoid rutin promotes a significant reduction in the expression levels of miR-125b,
both intracellular and extracellular, in GL-15 human GBM cells [47]. In this study, we also
showed that agathisflavone downregulated the expression of miR-125b in GL-15 human
GBM cells, which is in agree with an antitumor effect. Although the intracellular levels
of this miRNA did not undergo significant changes, there was a significant reduction in
the levels present in the secretome. These results indicate that agathisflavone acts as a
regulator of miR-125b secretion, highlighting its potential role in modulating the tumor
microenvironment. In another study with low-grade paediatric glioma, overexpression
of miR-155 was associated with increased cell proliferation [48]. miR-155 is involved in
glioma proliferation via downregulation of Max interactor-1 (MXI1) factor [11–16]. MXI1 is
a c-Myc promoter antagonist involved in the transcription activation and promoting cell
proliferation, and its downregulation contributes to cell proliferation and growth. In the
work by Wu and Wang (2020) [42], the authors showed that in U87 GBM cells transfected
with miR-155, there was a significant increase in the viability of tumour cells, as well as
an increase in the rate of migration and cell invasiveness. On the other hand, transfection
with an miR-155 inhibitor reduced this effect [14,42]. Studies have demonstrated that
upregulation of miR-21 is associated with the pathogenesis of GBM, acting as an onco-
gene by promoting cell proliferation, invasion, and resistance to apoptosis. Masoudi et al.
(2018) reported that miR-21 is a key factor in the pathogenesis of GBM, highlighting that
overexpression of miR-21 results in a deregulation of crucial signalling pathways, such as
PTEN/PI3K/AKT and TGF-β, contributing to tumour aggressiveness [49]. In this work, we
demonstrated modulation of miR-21 expression after flavonoid treatment. This is relevant
and may indicate that, although agathisflavone cannot directly reduce miR-21, it has the
potential to modulate other crucial pathways.

In this study, we showed a downregulation of mi-R125b and miR-155 expression
in the secretome originating from human GBM cells associated with a reduction in cell
viability and migration, as well mRNA expression for ARG1 and IL-6 regulatory factors.
In this sense, the downregulation of these miRNA in the secretome suggests a possible
effect of the flavonoid on the regulation of cellular interactions and signaling in the tumor
microenvironment. In fact, exposure of microglia to the CM from agathisflavone-treated
GBM cells indicates changes in microglia phenotype and proliferation, which reinforces its
potential as an antitumor molecule.

4. Materials and Methods
4.1. Glioma Cells Lines and Culture

The GL15 cell line was established from a human GBM [50] and was kindly donated
by Marciene Tardy (Université Paris Este -Créteil Val de Marne). C6 glioma cells [51] were
purchased from the Rio de Janeiro Cell Bank (BCRJ 0057) and were chosen for the present
study considering their highly proliferation, migration, invasion, and resistance properties,
similar to the GL15 cells. The glioma cells were cultured as described previously [52] until
confluence in polystyrene plates (TPP, Trasadingen, Switzerland) in Dulbecco’s modified
Eagle’s medium (DMEM; Cultilab, Campinas, Brazil) supplemented with 100 UI/mL
penicillin G, 100 mg/mL streptomycin, 7 mmol/L glucose, 2 mmol/l L-glutamine, 0.011
g/L pyruvic acid, and 10% foetal calf serum (FCS). The immortalized primary human
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microglia C20 cell line was developed and characterized by Garcia–Mesa et al. (2017) [53]
and was cultured in DMEM F12 50/50 medium as described by the authors. Cultures were
maintained in a humidified atmosphere composed of 95% air and 5% CO2 at 37 ◦C. For
experiments, cells were plated at a density of 5 × 104 cells/cm2, and 24 h after plating, the
medium was replaced with serum-free medium (SFM) for treatments.

4.2. Drugs and Treatments

The biflavonoid agathisflavone (FAB) was extracted from Cenostigma pyramidale (Tul.)
E. Gagnon and G. P. Lewis (syn: Poincianella pyramidalis, Caesalpinia pyramidalis), as previ-
ously described by Mendes et al. [54], presenting 99% purity. It was dissolved in dimethyl
sulfoxide (DMSO; Sigma Chemical Co, Saint Louis, MO, USA) at 100 mM, forming a stock
solution, and was kept out of light at 4 ◦C until use. For treatments, the flavonoid was
added directly into the fresh media at a final concentration or equivalent volume of DMSO
and was analysed after 24 h. Control cultures were treated with DMSO (0.005 to 0.03%)
considering the highest equivalent volume of the flavonoid stock solution adopted in
each experiment. The highest concentration (0.03%) showed no significant effect on the
parameters analysed compared to cells that did not receive the diluent.

4.3. Cell Viability Assay

The cytotoxicity of agathisflavone in cultures cells was determined using 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma). Confluent cells
cultured in 96-well plates (TPP, Trasadingen, Switzerland) were exposed to agathisflavone
(1–30 µM) or to the vehicle of dilution (DMSO 0.03%, control) for 24 h. Two hours before
the end of the exposure time, the culture medium was replaced by a solution of MTT
(5 mg/mL), diluted in DMEM, and incubated for 2 h in a humidified atmosphere with 5%
CO2 at 37 ◦C. Thereafter, cells were lysed with 20% (w/v) sodium dodecyl sulphate (SDS),
50% (v/v) acetic acid, and 2.5% (v/v) 1 mol/L HCl. The plates were then kept overnight
at 37 ◦C to allow the formazan crystals to dissolve. The absorbance at 540 nm was mea-
sured using a Varioskan Flash Spectrophotometer (Thermo, Waltham, MA, USA). Three
independent experiments were conducted, with eight replicate wells in each condition.

4.4. Migration Assay

In order to assess whether agathisflavone affects the migration of C6 and GL-15 cells in
isolated cultures or cell migration during glioma by interacting directly (co-cultures) with
microglia, a scratch was created with a 200 µL pipette tip in the cultures. Cultures were
rinsed once with DMEM to remove floating cells and were cultured with fresh serum-free
medium containing DMSO (0.005%) or agathisflavone (5 µM or 10 µM).

4.5. RT-qPCR for Cytokines Expression

In order to assess mRNA expression, we removed the culture medium of GL15 cells
and extracted total RNA using Trizol® reagent (Invitrogen, Life Technologies, Carlsbad,
CA, USA, 15596026) according to the manufacturer’s instructions. We then determined
the RNA concentration and purity using the KASVI Nano Spectrum (cat# K23-0002). The
RNA samples were treated with DNase using the Ambion (Singapore) DNA-free kit.
cDNA was synthesised using SuperScript® VILO™ MasterMix (Waltham, MA, USA).
qPCR was conducted using TaqMan® Gene Expression Assays (Applied Biosystems,
Foster City, CA, USA), which contain specific TaqMan® probes and TaqMan Univer-
sal Master Mix II with UNG (cat# 4440038, Invitrogen, Life Technologies™, Carlsbad,
CA, USA). The assays corresponding to the genes quantified in this study were as fol-
lows: IL1β (Hs00580432_m1), TNFα (Hs00174128_m1), IL-6 (Hs00174131_m1), TGF-β
(Hs00998133_m1), IL-10 (Hs00961622_m1), and arginase (Hs00163660_m1). We used the
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Quant Studio 7 Flex™ Real-Time PCR System (Applied Biosystems, CA, USA) to conduct
real-time PCR. We followed the manufacturer’s instructions. ACTB and HPRT1 were used
as reference genes to normalise gene expression data. The data were analysed using the
2−∆∆Ct method (Schmittgen and Livak, 2008) [55]. The results are the average of three
independent experiments.

4.6. RT-qPCR for miRNA

Cellular miRNAs and the secretome (comprising soluble miRNAs and exosomes)
were purified from GL-15 cells maintained in the control condition (0.005% DMSO) or
treated with 5 µM agathisflavone for 24 h. The isolation of these samples was conducted
in accordance with the previously described methodology [14]. To investigate the cellular
miRNAs, approximately 1 × 106 GL-15 cells were pelleted and mixed with 700 µL of QIAzol
Lysis Reagent from the miRNeasy kit (Qiagen, Hilden, Germany). The isolation of miRNAs
from the cell culture and supernatant was conducted using the miRNeasy Serum/Plasma
Advanced kit (Qiagen). For the supernatant, a volume of QIAzol Lysis Reagent equal to
five times that provided by the manufacturer was added. The samples were then vortexed
for one minute. The recommended volume of chloroform was added to each kit, and the
samples were vigorously mixed for 15 s. They were then incubated at room temperature for
three minutes. Subsequently, the samples were subjected to centrifugation at 12,000× g for
15 min at 4 ◦C. The aqueous phase was then collected and transferred to a new 1.5-mL tube
(approximately 350 µL). A volume of 1.5 times (525 µL) of 100% ethanol was then added
and homogenised. Subsequently, the samples were transferred to the column (RNeasy
MinElute spin column) provided by the manufacturer and were centrifuged for 15 s at a
minimum of 10,000× g at room temperature. The liquid that passed through the column of
each sample was discarded, and the column was washed with a volume of 700 µL of Buffer
RWT and centrifuged for another 15 s at ≥10,000× g. Following the removal of the liquid
that had passed through the column of each sample, the columns were washed with 500 µL
of Buffer RPE and were centrifuged for 15 s at a minimum of 10,000× g at room temperature.
Subsequently, the columns were washed with 500 µL of 80% ethanol and centrifuged for
2 min at a speed of ≥10,000× g at room temperature. Subsequently, the columns were
transferred to newly labelled 1.5 mL tubes and were left with the cap open for five minutes
in order to evaporate residual ethanol. A further 30 µL of RNase-free ultrapure water was
added, after which the columns were centrifuged for one minute at maximum speed. The
samples were subsequently stored at a temperature of −80 ◦C until the subsequent stage of
the procedure was initiated. The miRNeasy Serum/Plasma kit (Qiagen) was employed in
accordance with the manufacturer’s instructions to extract miRNAs from the cell culture
supernatant. The miScript II RT Kit (Qiagen) was employed for cDNA synthesis, with
10 ng of RNA quantified by Nanodrop™ 2000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA), in accordance with the manufacturer’s instructions. The samples
were incubated for 60 min at 37 ◦C, were then heated to 95 ◦C for 5 min, and were finally
placed on ice. A total volume of 10 µL was prepared by combining 5 µL of diluted cDNA
(1:20), 5 µL of SYBR™ Green PCR Master Mix (Thermo Fisher Scientific), and 1 µL of
the commercial primer set miRCURY LNA (Qiagen). The miRNAs under investigation
were miR-146a (hsa-miR-146a-5p), miR-155 (hsa-miR-155), and miR-125b (hsa-miR-125),
which have previously demonstrated a significant impact on the modulation of tumour
cell growth and the inflammatory profile of microglia. The expression of U6 snRNA (hsa,
mmu) miRCURY LNA was employed as an internal control. Data were analysed using the
∆∆Ct method. All experiments were conducted in triplicate and represent at least least
three independent experiments.
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4.7. Microglia Treatments and Staining

In order to analyse the effect of flavonoid treatment of GBM cells on microglia response,
C20 microglia were plated in 24-well plates at a density of 2.5 × 104 cells/cm2 and were
treated with conditioned medium from GBM GL15 cells treated with agathisflavone (5 µM)
or in control conditions. To determine morphology, microglia were stained with Sulforho-
damine B (SRB, Sigma—Aldrich, Saint Louis, MO, USA, 230162). After 24 h treatments, the
medium was removed, and the cells were fixed in situ by gently adding 50 µL of cold 50%
(w/v) trichloroacetic acid solution (final concentration, 10%) incubated for 60 min at 4 ◦C.
The supernatant was discarded, and the wells were washed five times with Milli-Q ultra-
pure water and air-dried. After washing, 50 µL of 0.4% (w/v) SRB solution was added to
each well and incubated for 30 min at room temperature. The unbound dye was recovered,
and the residual dye was removed by washing five times with 1% acetic acid. After three
washes with PBS, the nuclei were stained for 5 min with 4′,6-diamidino-2-phenylindole
(DAPI; Invitrogen; Thermo Fisher Scientific). The experiments were performed in triplicate.
Quantification was analysed using ImageJ software version 1.54f (Wayne Rasband, National
Institutes of Health, Bethesda, MD, USA). Images were observed and photographed using
a fluorescence microscope (Leica, Singapore, DFC7000).

In order to analyze C20 microglial cells proliferation, the conditioned medium was re-
moved 24 h after treatments, and cultures were washed three times with PBS. Then, the cells
were fixed with cold methanol for 10 min at −20 ◦C. The cultures were then washed three
times with PBS followed by 0.3% Triton X-100 treatment at room temperature for 10 min.
The cells were blocked with 5% PBS/BSA for 1 h. Subsequently, they were washed three
times with PBS and exposed to the primary anti-Ki67 antibody (1:100, mouse, eBioscience,
San Diego, CA, USA, Cat# 14-5698, RRID: AB_10853185) diluted in 1% PBS/BSA, and kept
under gentle agitation for 3 h in a dark chamber. The cells were washed three times with
PBS, and the secondary antibody Alexa Fluor 594 goat anti-mouse IgG (1:1000; A11005,
Life Technologies, Carlsbad, CA, USA) was added. The incubation with the secondary
antibody was maintained under gentle agitation for 1 h at room temperature and protected
from light. Afterwards, the cells were washed three times with PBS and incubated with
5.0 µg/mL of 4′,6-diamidino-2-phenylindole (DAPI, Molecular Probes, Eugene, OR, USA)
at room temperature for 5 min for nuclear staining. The cells were washed three times with
PBS. Experiments were performed in triplicate. Quantification of staining was performed
using ImageJ 1.54f software (Wayne Rasband, National Institute of Health). Images were
observed and photographed using a fluorescence microscope (Leica, DFC7000).

4.8. Statistical Analysis

The data were subjected to statistical analysis using GraphPad Prism 10.1.2. The
initial step was to ascertain whether the values exhibited a Gaussian distribution. One- or
two-way analysis of variance (ANOVA) was employed to analyse the results, with Tukey
or Bonferroni post-tests being used for normal samples and Kruskal–Wallis followed by
Dunn’s multiple comparison tests for non-normal samples. Additionally, the paired t-test
was employed to assess the statistical significance of differences between two variables.
The confidence intervals were defined at a 95% confidence level, with p < 0.05 considered
to be statistically significant. Fold changes were calculated by dividing the mean value of
the experimental group by that of the control group. In all figures, error bars represent the
standard error of the mean (SEM) of at least three independent experiments.

5. Conclusions
The ensemble of results presented here reinforces the antitumor effect of the flavonoid

agathisflavone and highlights the regulatory effects modulating onco miRNAs and inflam-
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matory mediators expressed by GBM cells that influence the microglia state of activation.
Considering that modulation of immune cells from the tumour microenvironment consti-
tutes an important strategy for the treatment of malignant brain tumours, agathisflavone
may be considered as a potential adjuvant for GBM treatments; however, further studies
are needed to better understand the mechanisms involved in the effects and regulation of
GBM cells’ interactions with immune effector cells.
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