
Highlights

Automating Behavioral Analysis in Neuroscience: Development of an Open-Source Python Software for More Consistent

and Reliable Results

Cerveira, A.J.D.O.1, Ramalho, B.A.C.1, de Souza, C.C.B., Spadaro, A.P., Ramos, B.A., Wichert-Ana, L., Padovan-Neto, F.E., de

Lacerda, K.J.C.C.

• Development of an automated analysis protocol for the

Morris Water Maze (MWM) and Open Field (OF) tests

using the OpenCV library in Python.

• Utilization of the OpenCV library in Python for efficient

and accurate tracking and navigation identification in the

MWM and assessment of mice behavior in the OF test.

• Time-saving and reduction of human errors achieved

through automated analysis, providing more consistent in-

formation about animal behavior during the tests.

• Advancement in experimental techniques, offering re-

searchers a valuable tool for objective and efficient data

analysis in neuroscience studies.

Automating Behavioral Analysis in Neuroscience: Development of an Open-Source
Python Software for More Consistent and Reliable Results

Cerveira, A.J.D.O.1a, Ramalho, B.A.C.1b, de Souza, C.C.B.a, Spadaro, A.P.b, Ramos, B.A.a, Wichert-Ana, L.c, Padovan-Neto,

F.E.a, de Lacerda, K.J.C.C.a,c
aDepartment of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil,

bDepartment of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil,
cNuclear Medicine & Molecular Imaging Section, Image Science and Medical Physics Center, Internal Medicine Department and Postgraduate Program, Ribeirão

Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil,

Abstract

Background: The application of automated analyses in neuroscience has become a practical approach. With automation, the algo-

rithms and tools employed perform fast and accurate data analysis. It minimizes the inherent errors of manual analysis performed

by a human experimenter. It also reduces the time required to analyze a large amount of data and the need for human and financial

resources. Methods: In this work, we describe a protocol for the automated analysis of the Morris Water Maze (MWM) and the

Open Field (OF) test using the OpenCV library in Python. This simple protocol tracks mice navigation with high accuracy. Results:

In the MWM, both automated and manual analysis revealed similar results regarding the time the mice stayed in the target quadrant

(p = 0.109). In the OF test, both automated and manual analysis revealed similar results regarding the time the mice stayed in the

center (p = 0.520) and in the border (p = 0.503) of the field. Conclusions: The automated analysis protocol has several advantages

over manual analysis. It saves time, reduces human errors, can be customized, and provides more consistent information about

animal behavior during tests. We conclude that the automated protocol described here is reliable and provides consistent behavioral

analysis in mice. This automated protocol could lead to deeper insight into behavioral neuroscience.

Keywords: Automated analysis using python, Morris water maze test, Open Field test, openCV image processing

1. Introduction

Automated analysis of experiments is an advanced approach

that uses automated algorithms and tools to analyze the results

of scientific experiments and uncover valuable insights from

the data[1, 2, 3]. This approach presents several advantages

over manual analysis, making it a common choice in many

research and development areas. One of the programming

languages that has been assisting in the development of

software for automated data analysis is Python [4, 5, 6, 7].

Python is an open-source programming language that has

been gaining popularity in research and development areas.

Email addresses: ferpadovan@usp.br (Padovan-Neto, F.E.),

kleython_lacerda@usp.br (de Lacerda, K.J.C.C.)

One of the main reasons for this is its ease of use, flexibility,

and processing power. This makes it an attractive option for

automated analysis of experiments, as it allows researchers to

develop sophisticated and efficient algorithms more quickly

and easily[4, 5, 6, 7]. Using Python for the development of

algorithms applied to automated experiment analysis offers

several advantages because it has several libraries and modules

that are specially designed for data analysis[8, 9]. Furthermore,

Python is a well-documented programming language with a

wide community of users, which means that there are a large

number of online resources available to help developers learn

and use the language. This includes open-source libraries,

discussion forums, and online tutorials, which allow users

to learn the language and develop advanced data analysis

Preprint submitted to Journal of Neuroscience Methods August 3, 2023

mailto:ferpadovan@usp.br
mailto:kleython_lacerda@usp.br

2

algorithms quickly and efficiently[10, 11, 12].

The OpenCV (Open Source Computer Vision

Library)[13, 14, 15] is a powerful tool for image process-

ing and computer vision, with comprehensive features,

portability, ease of use, and a large community of users.

Launched in 2000 by Intel, it is open source for computer

vision and image processing[13]. Since then, it has become

one of the most popular libraries for image processing and

computer vision in various areas, such as robotics, artificial

intelligence, gaming, medicine, and many others. One of

the main qualities of OpenCV is its wide range of image-

processing features[13, 14, 15]. The library supports a variety

of image-processing tasks, such as object detection, face recog-

nition, object tracking, motion analysis, and much more. In

addition, it has highly optimized and efficient computer vision

algorithms, allowing users to process images in real time.

Another advantage of OpenCV is its portability. The library is

compatible with several platforms, including Windows, Linux,

macOS, Android, and iOS. This means that users can write

code on one platform and use it on another without significant

modifications, making the development of cross-platform

applications easier[14]. OpenCV is also an easy-to-use library

with clear and extensive documentation. It is written in C++

but has a Python interface, allowing users to develop Python

applications without in-depth knowledge of C++[16].

In this work, we present a protocol for the Morris Water

Maze (MWM) and the Open Field Test (OF) in mice and a

Python algorithm for their automated analysis that can be used

for recordings made with any type of digital camera. The au-

tomated analysis of these tests in Python using the OpenCV li-

brary is a technique that uses image processing tools to identify

the behavior of mice in a controlled environment, performed

through edge detection techniques[8], binarization, segmenta-

tion, and object tracking[13, 14, 15, 16, 17, 18, 19]. The MWM

is a widely used neuroscientific assessment tool for evaluat-

ing spatial memory and animal’s learning. However, the ac-

curacy and objectivity of the data obtained from this test can

be improved through the use of the OpenCV library, which en-

ables the detection and tracking of mouse movements in the

maze. Similarly, the OF test is frequently used for the eval-

uation of general locomotor activity, anxiety levels, and ex-

ploratory behavior. The OpenCV library offers the ability to

mark the quadrants of the field and quantify how much time

each mouse spends at the center area versus the edge of the

environment, which is a variable commonly used to assess

anxiety-like behavior[20]. The library could also assess other

variables such as exploration and locomotor activity levels,

which include the number of quadrants traversed by the animal

during their movement[21, 23]. By utilizing the OpenCV li-

brary in these assessments, researchers can obtain more precise

and reliable data to enhance their analysis and understanding

of animal’s behavior. Taken together, this automated approach

saves time and resources, minimizes human observers bias in

interpreting results, is efficient and reliable, and provides cru-

cial information for neuroscience research[24, 25, 26].

2. Materials and Methods

2.1. Animals

Male B6129SF2/J mice (eight months old, n=8) were used in

the MWM test. Male C57BL/6 mice (seven months old, n=10)

were used in the OF test. Animals were housed in groups of

three to five per cage in a temperature-controlled room (24 ± 1

C) with a 12/12 h light/dark cycle with free access to food and

water[22]. All animals were tested during the light cycle and

animal procedures were approved by the Ethics Committee for

Animal Experimentation (CEUA) from the Faculty of Philoso-

phy, Sciences and Letters of Ribeirao Preto at the University of

Sao Paulo (protocol number 22.1.195.59.0).

2.2. Morris Water Maze

Richard G. Morris, a psychologist, created the Morris Wa-

ter Maze test in 1982[27]. The MWM has been widely used

in neuroscience studies to evaluate the role of different brain

3

regions in spatial learning[28]. The test comprises a circu-

lar platform that is submerged in water. Animals use distal

cues to locate a submerged platform to escape from the wa-

ter. For instance, this test has been used to evaluate the effi-

cacy of drugs or other interventions in preclinical models of

Alzheimer’s disease[29, 30, 31, 32]. Its widespread use in neu-

roscience research and neurodegenerative disease investigation

has contributed to the advancement of knowledge about brain

function and the development of effective treatments for neuro-

logical diseases.

2.2.1. Behavioral Apparatus

A circular polyethylene pool with a diameter of 100 cm and

a height of 60 cm with non-reflective interior surfaces was used

in this study. The pool was filled with water containing 100 g of

skim milk powder (0.637g/L) at room temperature (25 +/- 1ºC)

up to a level of 20 cm. The pool was divided into four quadrants

based on the coordinates N, S, E, and W. The quadrants were

named as: LT (Left-Top), LB (Left-Bottom), RT (Right-Top) e

RB (Right-Bottom). Each quadrant contained a visual cue of a

different shape and color (i.e., an orange square, a green circle,

a blue star and a red cross respectively). A circular transparent

platform with a diameter of 8 cm was placed 0.5 cm above the

opaque water level in the target quadrant (i.e., LT quadrant).

2.2.2. Training

Each animal underwent to a session of four trials per day dur-

ing five consecutive days. Each trial lasted 60 seconds, and it

was followed by a 10-minute interval. During each trial, the an-

imals were pseudo-randomly positioned in a different quadrant

so they could face a different visual cue. If the mouse could

not find the platform within 60 seconds, an experimenter gently

guided the animal to the platform. Once on the platform, the

experimenter ensured that each mouse stayed off the water for

15 seconds. After each trial, the mouse was dried and put back

in its cage.

2.2.3. Test

The platform was eliminated during the test. Each mouse

was left in the pool for a duration of 120 seconds. Even when

the platform is absent, animals tend to spend more time in the

target quadrant[33]. The percentage of time spent in the tar-

get quadrant is indicative of the level of spatial memory reten-

tion (also known as reference memory)[31]. We determined the

amount of time each animal spent in the designated quadrant,

as well as the number of crossings between quadrants.

2.3. Open Field Test

The open field is one of the most frequently used test in ani-

mal behavior research, especially in neuroscience[22, 34, 35].

The test was created by Calvin S. Hall in 1934[36] and

has undergone numerous modifications to its experimental

protocol and method, including changes to the dimensions

and configuration of the testing arenas and the length of the

experimental session[37]. The test distinguishes itself as

a versatile evaluation instrument, able to provide valuable

insights regarding locomotor activity, exploratory behavior,

and anxiety levels[38].

2.3.1. Behavioral Apparatus

The experiment was conducted in a single session in a square

arena (45 x 45 x 35 cm) made of Plexiglass. The test involves

placing the animal in the center of the apparatus and allowing

it to explore for 10 minutes. A video camera was positioned

above the arena to record animal’s activity.

2.4. Automated algorithm for the analysis of the Morris Water

Maze and Open Field test in Python using the OpenCV

library

OpenCV (Open Source Computer Vision Library) is an open

source library designed to provide a more developer-friendly

infrastructure for computer vision applications. It currently has

more than 500 functions. It can, for instance, detect and rec-

ognize features, identify objects, extract three-dimensional ob-

ject models, and identify and track moving objects. Integration

4

with other libraries, such as Numpy and Matplotlib, increases

processing capacity and applications. OpenCV is compatible

with Windows, Linux, Android, and Mac OS, and it supports a

wide range of programming languages, including Python, C++,

Java, and MATLAB.

2.4.1. The algorithm

The algorithm requires the installation and proper configura-

tion of the following libraries: OpenCV version 4.7.0, Tkinter

version 8.6 or later, and Matplotlib version 3.5.3 or later. These

can be installed in the terminal or command prompt using the

following commands:

pip install opencv-python==4.7.0

pip install matplotlib>= 3.5.3 pip install python-tk

Wait until the libraries and their dependencies have been

downloaded and installed. Depending on your operating system

and configurations, it may be necessary to add administrative

privileges or use a virtual environment to install the package.

import cv2

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.patches as patches

import math

import tkinter as tk

from tkinter import filedialog

import os

The tkinter library then provides a dialog window for the user

to select a video file. The file name is then extracted, and the

extension is eliminated.

source video = filedialog.askopenfilename()

filename = os.path.basename(source video)

filename WE = os.path.splitext(filename)[0]

The algorithm will prompt the user to choose which test type

to analyze (MWM or OF). For MWM analysis, the user must

select ”1” and for OF analysis, ”2”. This response will be saved

to the test variable. Identify the animal and specify the time the

analysis should start (in seconds). Note that in the event that the

recording of the video precedes the introduction of the animal

in the apparatus by the experimenter, the algorithm provides

the option for the user to select a specific time (in seconds) to

start the analysis (i.e., the specific time that the animal has been

introduced into the behavioral apparatus). Finally, specify the

total analysis time (in minutes).

test = int(input(”Please, press 1 to analyze the Morris Water

Maze or 2 to analyze the Square Open Field: ”))

if test == 1:

escapeLatency = int(input(”To calculate the escape

latency, press 1. To do something else, press 2: ”))

The variable identification stores the animal’s identification

number in the test.

identification = input(”Type the animal identification: ”)

The following variables will be initialized: milliseconds, tan,

totalTime, and finalTime. milliseconds correspond to time the

analysis should start. totalTime corresponds to the entire dura-

tion of the test. The user determines the duration of the test in

minutes, and the variable totalTime converts it to milliseconds.

milliseconds = int(input(”Please, enter the initial analysis

time in seconds: ”))*1000

tan = milliseconds

totalTime = int(input(”Please, enter the total analysis time in

minutes: ”))*60000

finalTime = milliseconds + totalTime

cap.set(cv2.CAP PROP POS MSEC, milliseconds)

If the directory containing the algorithm does not have a

folder named ”result”, a new one will be created in the same di-

rectory. This folder will be populated with two text files. These

text files will be labeled according to animal identification and

will store the analyzed data.

if not os.path.exists(’result’):

os.makedirs(’result’)

5

arq = open(f’result/position-identification.txt’, ’a’)

data = open(f’result/data-identification.txt’, ’a’)

It is necessary to define variables that will subsequently be

used in the code:

contrast = 80

cp = [0, 0, 0, 0]

tp = [0, 0, 0, 0]

posx = []

posy = []

pi = 0

pVerification = 0

r0 = 0

kx = []

ky = []

rc = []

circle = []

elVerification = 0

tel = [0]

The ”selectROIfromFrame” function permits the selection of

a region of interest (ROI). This function returns the coordinates

and dimensions of the specified region of interest.

def selectROIfromFrame(frame):

box = cv2.selectROI(”SELECT ROI”, frame,

fromCenter=False, showCrosshair=False)

return box

The ”roi” function enables the selection of a region of inter-

est using the cv2 library from OpenCV. In the top-left corner,

where the user starts selecting the ROI corresponding to the

arena area, the coordinate 0,0 is defined. When the user selects

the entire arena, 4 horizontal and 4 vertical lines (depending on

the height and width selected by the user) are created, forming

16 equal squares. The code pre-establishes that the 4 central

squares represent the central area, while the remaining squares

correspond to the border area. Note that this section is only

executed for the OF test.

def roi(frame):

roi = cv2.selectROI(frame)

x, y, w, h = roi

rect width = int(w / 4)

rect height = int(h / 4)

rect coords = []

for i in range(4):

for j in range(4):

rect x = x + i * rect width

rect y = y + j * rect height

rect coords.append((rect x, rect y))

rc.extend((rect coords[5],rect coords[15]))

cv2.destroyAllWindows()

The following segment of the algorithm is only executed for

the MWM test. The ”click event” function is an external func-

tion that is called when a mouse event is detected in an im-

age window displayed using the cv2 library from OpenCV. If it

detects a left mouse button click, the function will print the x

and y coordinates of the click location in the terminal and store

these coordinates in a list. For the MWM, four initial clicks

are required to designate the cardinal coordinates (N, S, E, and

W). The position of each of these clicks is stored so that the

algorithm can delineate the 4 quadrants. After each click, the

corresponding letter is drawn on the selection window using the

putText function from the cv2 library. Once all four clicks are

registered, the function closes all the opened windows.

def click event(event, x, y, flags, params):

if event == cv2.EVENT LBUTTONDOWN:

kx.append(x)

ky.append(y)

if len(kx) == 1:

loc = ’B’

elif len(kx) == 2:

loc = ’T’

elif len(kx) == 3:

loc = ’L’

elif len(kx) == 4:

6

loc = ’R’

cv2.destroyAllWindows()

else:

sw = ’L’

font = cv2.FONT HERSHEY SIMPLEX

cv2.putText(img, loc, (x,y), font, 1, (0, 0, 255), 2)

cv2.imshow(’image’, frame)

if c1 <y:

sh = ’T’

else:

The ”quadOF” function is used when the OF test is selected.

It examines two coordinates (c0 and c1) to determine if they

fall within the central square previously recorded in the ”rc”

variable. If c0 and c1 are located within this square, the function

returns the letter ’C’ to indicate that the coordinates are located

within the central square. Otherwise, the function returns ’B’

to indicate that the coordinates are on the square’s border.

def quadOF(c0,c1):

if rc[0][0] <= c0 <= rc[1][0] and rc[0][1] <= c1 <=

rc[1][1]:

lq = ’C’

else:

lq = ’B’

return lq

When the selected test is the MWM, the ”quadMMW” func-

tion employs four reference points to divide the image into four

quadrants and determines in which quadrant the input coordi-

nate is located. The function returns whether the coordinate is

to the left (L) or right (R) and above (T) or below (B) the im-

age’s center.

def quadMMW(c0, c1):

p1 = [kx[1],ky[1]]

p2 = [kx[0],ky[0]]

p3 = [kx[2],ky[2]]

p4 = [kx[3],ky[3]]

m1 = (p2[1]-p1[1])/(p2[0]-p1[0])

m2 = (p4[1]-p3[1])/(p4[0]-p3[0])

x = ((c1 - p2[1]) + m1*p2[0])/m1

y = m2*c0 - m2*p3[0] + p3[1]

if c0 >x :

sw = ’R’

sh = ’B’

return sw, sh

The ”increase brightness” function takes an image (in BGR

format) and a brightness value that should be added to all pixels

of the image. The function converts the image from BGR to

HSV (Hue, Saturation, Value), increases the value of the pixels

by the specified value units (by default, the value is set to 30),

limits them to a maximum of 255, and then converts it back to

BGR before returning the resulting image. This function can be

used to increase the brightness of an image in a straightforward

way.

def increase brightness(img, value=30):

hsv = cv2.cvtColor(img, cv2.COLOR BGR2HSV)

h, s, v = cv2.split(hsv)

lim = 255 - value

v[v >lim] = 255

v[v <= lim] += value

final hsv = cv2.merge((h, s, v))

img = cv2.cvtColor(final hsv, cv2.COLOR HSV2BGR)

return img

If the user wants to calculate the escape latency, the follow-

ing methods have been inserted so that the user can define the

region in which the escape platform is located and check if the

ROI is enclosed in the circle:

def plataform():

ret, frame = cap.read()

frame = cv2.resize(frame, (new width, new height))

frame = increase brightness(frame, contrast)

box = selectROIfromFrame(frame)

cv2.destroyAllWindows()

x, y, w, h = box

7

circle.append(x)

circle.append(y)

circle.append(x + w // 2)

circle.append(y + h // 2)

circle.append(min(w, h) // 2)

def isCircle(c0,c1,actualTime):

global elVerification

distance = math.sqrt((c0 - circle[2])**2 + (c1 -

circle[3])**2)

if distance <= circle[4] and elVerification == 0:

tel[0] = actualTime

elVerification += 1

The subsequent phase is a conditional structure that deter-

mines whether the module is being executed as the main pro-

gram. The program resizes and brightens the initial image cap-

ture.

if name == ” main ”:

ret, frame = cap.read()

frame = cv2.resize(frame, (new width, new height))

frame = increase brightness(frame,contrast)

If the designated test is the MWM in a conditional structure,

the program will display the image and wait for a computer

mouse selection from the user. If test 1 (MWM) was not se-

lected, the ”roi” function is called to perform object detection

in a ROI associated with the OF test.

if teste == 1:

cv2.imshow(’image’, frame)

cv2.setMouseCallback(’image’, click event)

cv2.waitKey(0)

cv2.destroyAllWindows()

else:

roi(frame)

The following snippet aims to capture the first frame of the

video, resize the image, and increase its brightness. Then, a

ROI is selected from the frame, ff the user selects the escape la-

tency option, the function for region selection with the platform

is called, and animal tracking is initiated using the OpenCV li-

brary.

ret, first frame = cap.read()

first frame = cv2.resize(first frame, (new width,

new height))

first frame = increase brightness(first frame, contrast)

box = selectROIfromFrame(first frame)

tracker = cv2.TrackerCSRT create()

ok = tracker.init(first frame, box)

cv2.destroyAllWindows()

if test == 1 and escapeLatency == 1:

plataform()

The algorithm updates the position of a tracked object using

a tracking algorithm and draws a rectangle around it in the out-

put image. In addition, the code stores the position’s x and y

coordinates in lists and writes them to one of the files created

within the ”results” folder. The progression of the algorithm’s

analysis varies depending on the test selected at the beginning

of the analysis.

while milliseconds <= finalTime:

ret, frame = cap.read()

frame = cv2.resize(frame, (new width,

new height))

frame = increase brightness(frame, contrast)

milliseconds =

cap.get(cv2.CAP PROP POS MSEC)

vb = False

if escapeLatency == 1:

cv2.circle(frame, (circle[2], circle[3]),

circle[4], (0, 0, 255), 2)

if not ret:

break

We have implemented the ability to quickly and easily rese-

lect a Region of Interest (ROI). The user can press the ”r” key at

any time to readjust the ROI selection. This saves time, effort,

and increases user satisfaction by allowing quick refinements to

achieve more accurate and satisfactory results.

8

new height))

contrast)

if cv2.waitKey(1) == ord(’r’):

ret, frame = cap.read()

frame = cv2.resize(frame, (new width,

frame = increase brightness(frame,

milliseconds =

tan)/1000)

0), 2)

else:

if escapeLatency == 1:

isCircle(c0,c1,(milliseconds-

loc = quadOF(c0,c1)

cv2.rectangle(frame, rc[0], rc[1], (0, 0,

cap.get(cv2.CAP PROP POS MSEC)

box = selectROIfromFrame(frame)

else:

milliseconds =

tracker = cv2.TrackerCSRT create()

ok = tracker.init(frame, box)

cv2.destroyAllWindows()

cap.get(cv2.CAP PROP POS MSEC) + 300

cap.set(cv2.CAP PROP POS MSEC,

milliseconds)

The code continuously updates the position of the tracked

object. Additionally, it stores the x and y coordinates of the

position in lists and writes the values to the files created within

the ”result” folder.

ok, box = tracker.update(frame)

if ok:

pt1 = (int(box[0]), int(box[1]))

pt2 = (int((box[0] + box[2])), int((box[1]

new height))

contrast)

ret, frame = cap.read()

frame = cv2.resize(frame, (new width,

frame = increase brightness(frame,

box = selectROIfromFrame(frame)

tracker = cv2.TrackerCSRT create()

ok = tracker.init(frame, box)

cv2.destroyAllWindows()

+ box[3])))

2, 1)

c0 = int((box[0] + box[2]/2.0))

c1 = int((box[1] + box[3]/2.0))

posicao = str(c0) + ’,’ + str(c1) + ’\n’

posx.insert(pi, c0)

posy.insert(pi, c1)

pi += 1

arq.writelines(posicao)

cv2.rectangle(frame, pt1, pt2, (255, 0, 0),

Structural conditions (“if”, “elif” and “else”) are created to

check the positions of the coordinates related to the animal.

Based on these positions, the text display’s positions and vari-

ables are defined. In the case of the MWM test, the function

checks if the animal’s coordinate is in one of the four quadrants

of the image and sets the text based on that quadrant. For ex-

ample, if the animal’s coordinate is inside the target quadrant,

the text will be displayed in the center of the image.

font = cv2.FONT HERSHEY SIMPLEX

After that, if the selected test is MWM, it calls the

”quadMWM” function and stores the values of ”sw” and ”sh”.

If the selected test is the OF, it calls the ”quadOF” function and

stores the value of ”loc”.

if teste == 1:

sw,sh = quadMMW(c0,c1)

if teste == 1:

if sw==’R’ and sh == ’T’:

lx = 438

ly = 134

k = ’RT ’ + str(cp[0])

p = 0

elif sw==’R’ and sh == ’B’:

9

else:

lx = 398

ly = 351

k = ’RB ’ + str(cp[1])

p=1

elif sw==’L’ and sh == ’B’:

lx = 176

ly = 329

k = ’LB ’ + str(cp[2])

p=2

else:

lx = 216

ly = 134

k = ’LT ’ + str(cp[3])

p=3

if loc==’C’:

lx = 300

ly = 200

k = ’Centro ’ + str(cp[0])

p = 0

else:

lx = 300

ly = 300

k = ’Bordas ’ + str(cp[1])

p=1

r0 = mt

pVerification = p

vb = True

cv2.putText(frame, k,(lx,ly), font, 1,(150, 9, 2), 2)

cv2.imshow(’Tracking mice’, frame)

cap.set(cv2.CAP PROP POS MSEC,

milliseconds+100)

if cv2.waitKey(10) == ord(’q’):

break

if vb == False:

tp[p] += (((milliseconds - tan)-r0)/1000)

If the test value is equal to 1 (MWM), the statistics for each

of the four quadrants are written, including the number of times

the animal crossed that quadrant (cp) and the total time in each

of the quadrants (tp). If the test value is equal to 2 (OF), the

statistics for the center and the edges are written.

if teste == 1:

txt1 = ’#RT = ’ + str(cp[0]) + ’ #RB = ’ +

str(cp[1]) + ’ #LB = ’ + str(cp[2]) + ’ #LT = ’ + str(cp[3]) +

’\n’

txt2 = ’tRT = ’ + str(tp[0]) + ’ tRB = ’ +

str(tp[1]) + ’ tLB = ’ + str(tp[2]) + ’ tLT = ’ + str(tp[3]) + ’

Escape latency = ’ + str(tel[0])

p1 = [kx[0], kx[1]]

The variable ”p” represents the current quadrant where the

animal is located, and ”pVerification” is a variable that stores

the previously-verified quadrant. If ”p” is different from ”pVer-

ification”, it means that the animal has entered a new quadrant,

and the count of crossings between quadrants is incremented.

else:

p2 = [ky[0], ky[1]]

p3 = [kx[2], kx[3]]

p4 = [ky[2], ky[3]]

txt1 = ’#Center = ’ + str(cp[0]) + ’ #Borders = ’

In addition, the algorithm can determine how much time the

animal spent in each quadrant. The time is then updated, and

the loop continues to run until the user selects the ’q’ key.

if (p != pVerification):

cp[p] += 1

mt = (milliseconds - tan)

tp[pVerification] += (mt-r0)/1000

+ str(cp[1]) + ’\n’

txt2 = ’tCentro = ’ + str(tp[0]) + ’ tBordas = ’ +

str(tp[1])

print(txt1)

print(txt2)

arq.close()

data.writelines(txt1 + txt2)

data.close()

10

The last section of the algorithm is responsible for creating 3

plots using the Matplotlib library.

fig, (ax1, ax2, ax3) = plt.subplots(1, 3)

ax1.plot(posx,posy)

if teste == 1:

ax1.plot(p1,p2)

ax1.plot(p3,p4)

ax2.bar([’RT’, ’RB’, ’LB’, ’LT’],cp)

ax3.bar([’RT’, ’RB’, ’LB’, ’LT’],tp)

else:

rect = patches.Rectangle(rc[0],

rc[1][0]-rc[0][0], rc[1][1]-rc[0][1], linewidth=1,

edgecolor=’r’, facecolor=’none’)

ax1.add patch(rect)

ax2.bar([’Centro’, ’Borda’],[cp[0],cp[1]])

ax3.bar([’Centro’, ’Borda’],[tp[0],tp[1]])

fig = plt.gcf()

plt.show()

fig.savefig(f’result/graph-identification.png’,

format=’png’)

cv2.destroyAllWindows()

2.5. Statistical Analysis

Descriptive statistics were used to summarize the mean, stan-

dard deviation, median, and interquartile range. The Shapiro-

Wilk test was utilized to verify the normality of the data. The

confidence interval was set at 95%, and a significance level of

5% was adopted. Provided that the assumptions of normality

were satisfied, the paired t-test was employed to assess the dif-

ference between the means of the two samples.

3. Results

3.1. Morris Water Maze analysis

Upon initiating the algorithm, the user is prompted with a di-

alog box, wherein they are required to select the specific test

to be analyzed, with the MWM test being designated as op-

tion ”1”. Subsequently, it is imperative for the user to ascer-

tain the animal’s identity, specify the initial time of analysis

in the video, and determine the overall duration of the analy-

sis. Subsequently, the user is prompted to designate the cardi-

nal directions of north (N), south (S), east (E), and west (W)

by utilizing left mouse button clicks, as depicted in Figure 1.

The N, S, E, and W coordinates were derived by clicking on

the regions between the four visual cues affixed to the pool’s

wall. This procedure divides the pool into four equal quadrants,

each associated with a reference point indicated by a visual cue.

The N, S, E, and W coordinates are determined based on these

reference points. Upon selecting the ”W” coordinate, all four

coordinates’ positions are promptly stored, and a subsequent

window is initiated to proceed with the analysis.

Figure 1: A screenshot depicting the initial window generated by the algorithm

during the evaluation of the Morris Water Maze (MWM) test. In this example,

the user has designated the four coordinates N, S, E, and W.

The algorithm determines the four quadrants, that is, left-top

(LT), right-top (RT), right-bottom (RB), and left-bottom (LB),

based on the coordinates specified by the user. Subsequently,

the user is required to initiate the animal’s selection screen

by pressing the ”Enter” key. It is easy to establish a region

of interest (ROI) by using a mouse on a computer to draw a

rectangle, as illustrated in Figure 2.

Upon selection of the ROI, the user is required to press the

”Enter” key to initiate the algorithmic analysis. The algorithm

displays the frequency of the mouse’s crossing of the target

quadrant (i.e., LT). Figure 3 illustrates that the mouse success-

11

Figure 2: The MWM test test procedure generates a secondary window through

the algorithm. The user is subsequently directed to define a region of interest

(ROI) for this particular animal, as indicated by the rectangular frame depicted

in the figure.

fully navigated to the target quadrant, as denoted by the ”LT”

label in the figure. The numerical value ”2” depicted in the

figure denotes that the mouse has successfully oriented itself

towards the target quadrant on two distinct occasions.

If a user needs to measure the escape latency of the animal,

they must select the ROI for the platform. The escape latency

will be calculated when the central coordinates of the animal’s

ROI fall within the ROI for the platform. Although the ROI

for the platform will remain visible throughout the entire test

execution (as shown in Figure 4), the escape latency will only

be calculated once.

Figure 3: The image depicts a mouse being monitored by a blue rectangular

region of interest (ROI). The numerical value of ”2” indicates the number of

times the mouse crossed into the target quadrant (LT).

The software will map the center point of the animal’s

Region of Interest (ROI) to determine its quadrant location.

If the center point of the ROI falls precisely between two

quadrants, the quadrant where the animal was previously lo-

cated will be considered by the software for parameter analysis.

Figure 4: The image depicts a mouse being monitored by a blue rectangular

ROI and a red circular escape ROI. The numerical value of ”5” indicates the

number of times the mouse crossed into the target quadrant (RB). When the

central coordinates of the animal’s ROI (blue square) reaches the ROI for the

platform (red circle), the escape latency will be calculated.

Upon completion of the video analysis, the algorithm pro-

duces a novel interface displaying the results of the analysis

(Figure 5; Supplementary video 1). The results indicate the

mouse’s chosen trajectory over the course of a 120-second ex-

periment (Figure 5, left). A chart (Figure 5, center) indicates

how often the mouse visited each quadrant. Another chart (Fig-

ure 5, right) shows the duration (in seconds) that the mouse

stayed in each quadrant.

Statistical analysis was conducted to compare the data ob-

tained from manual and automated analysis methods (Figure

6). The results indicated no significant difference between the

two methods in terms of the duration of time that the mice spent

in the target quadrant (t (7) = 1.837, p = 0.109).

12

200

150

100

50

8

60

7

50
6

5 40

4
30

3

20

2

10
1

the OF test. Subsequently, it is imperative for the user to deter-

mine the animal’s identity, specify the initial time of analysis

in the video, and determine the overall duration of the analysis.

Subsequently, a novel window launches wherein the user is re-

quired to designate the ROI that corresponds to the arena area.

During the selection process, the user will have the ability to ob-

serve the four quadrants, as depicted in Figure 7. When an ROI
0

100 200

0

RT RB LB LT

0

RT RB LB LT is selected using the Python OpenCV library, it displays four

squares with equal areas. However, the software selects the en-
Figure 5: Capture a screenshot of the window displaying the analyzed data. The

left graph depicts the mouse’s pixel-based trajectory throughout the entirety of

the testing period. The coordinates of the X and Y axes in video tracking have

the reference point (0, 0) located in the upper left corner. Positive values of X

indicate displacement to the right, while positive values of Y indicate displace-

ment downwards, in relation to (0, 0). The first bar chart shows how frequently

the mouse moved into the RT, RB, LB, and LT quadrants. The second bar chart

illustrates the duration, measured in seconds, during which the mouse resided

within each of the quadrants delineated in the experiment.

70

60

50

40

30

tire ROI area and divides it into 16 equal-sized quadrants. The

four central squares that result from this division are referred to

as the ’central region’, while the remaining squares represent

the ’edge area’. Upon completion of the selection process, the

user must press either the ”enter” or ”space” keys.

20

10
Manual Automated algorithm

Type of analysis

Figure 6: Boxplots were constructed to compare the results of manual analysis

(left) and automated algorithm analysis (right) in relation to the duration of

time that mice spent in the target quadrant. There was no difference between

the manual and the automated analysis (p = 0.109, paired t-test). Data presented

as median (line), 25–75% (box), min–max (error bars). Data are derived from

n=8 B6126SF/J mice.

3.2. Open Field test analysis

Upon initiating the algorithm, the user is prompted with a re-

sponse box, wherein they are required to select the specific test

to be analyzed. The user must select option ”2” to proceed with

Figure 7: Screenshot of the first window that the algorithm opened during the

OF test analysis. The user is instructed to choose the ROI that covers the entire

area of the square arena. The user must click ”Enter” to advance the algorithm’s

analysis after making the proper ROI selection.

The user should next choose the ROI that corresponds to the

animal that will be monitored (Figure 8). The user should press

”space” or ”enter” once again.

Subsequently, the algorithm shall monitor the movement of

the mouse throughout the entire duration of the examination.

The measurements will provide information regarding the fre-

quency of the animal’s entry into both the central and edge areas

of the arena. The illustration depicted in Figure 8 exemplifies

a scenario in which a mouse traversed the edge of the arena

T
im

e
(s

)

13

Figure 8: Screenshot of the second window that the algorithm opened. At this

step, the user is told to choose an ROI that, ideally, should frame an image of the

complete animal’s body. The ”Enter” key has to be pushed after the selection

to start the algorithm’s analysis.

the ROI is between two quadrants, the quadrant in which the

animal was located will be considered for time and crossing

counting.

Upon completion of the video analysis, the algorithm pro-

duces a novel interface that displays the outcomes of the analy-

sis (Supplementary video 2). The results depict the path of the

mouse throughout the experimental session (Figure 10, left).

Additionally, the analysis shows how frequently the mouse en-

ters both the center and the edge of the arena (Figure 10, cen-

ter), as well as how long the mouse stays in each area (Figure

10, right).

600

500 16

on two separate occasions (i.e., ”Edge2”). In the event that the

animal exits the camera’s field of view, the algorithm provides

the user with the option to reselect the ROI. It is imperative to

stress that in the event of any additional challenges encountered

in animal tracking, the user may utilize the ”R” key to reselect

the ROI.

400

300

200

100

200 400 600

14

12

10

8

6

4

2

0
Center

Edge

500

400

300

200

100

0

Center

Edge

Figure 9: A visual representation of the algorithm’s performance during the

analysis of an OF test is depicted. A blue rectangle is utilized to track the

movement of the mouse, while a numerical representation of the frequency of

the mouse’s traversal to the edges is concurrently exhibited. In this particular

case, the mouse traversed the edge of the arena twice.

The software will map the center point of the animal’s ROI

to identify in which quadrant it is located. If the center point of

Figure 10: The output of data analysis. The animal’s path (shown in pixels)

during the course of the full test is shown in the left chart. The reference point

(0, 0) for the X and Y axes in video tracking is situated in the top left corner.

With respect to (0, 0), positive values of X and Y imply displacement to the

right and downward, respectively. The chart in the middle displays the animal’s

frequency of entry into the arena’s center and edges. The chart on the right

indicates the duration of each entry in the center and edge regions of the arena.

Statistical analysis was conducted to compare the data

obtained from both manual and automated analysis methods

in terms of the time spent in the center (Figure 11) and on

the edge (Figure 12) of the arena. For the manual analysis of

the test, researchers divided the arena into 16 equally-sized

quadrants, similarly to the automated analysis. The four central

squares resulting from this division were referred to as the

’central region’, while the remaining squares represented the

’edge area’. The results revealed no significant difference

between the two methods in terms of the time that the mice

14

spent in the center (t(9) = -0.670, p = 0.520, Figure 11) or on

the edge (t(9) = 0.699, p = 0.503, Figure 12) of the arena.

70

60

50

40

30

20

10

0

4. Discussion

Automated video analysis plays a vital role in various

research fields like biology, engineering, and psychology. It

provides precise and unbiased data on several parameters,

including animal behavior. However, commercial software

for video analysis can be expensive, application-specific, and

proprietary, leading many researchers to develop their own

algorithms using programming languages like Python or MAT-

LAB. Although this approach can be more time-consuming,

it offers researchers more flexibility and cost-effectiveness.

Recognizing the importance of collaboration and open-source

code, the scientific community has created libraries such as

OpenCV, offering free and accessible tools for video analysis.
Automated algorithm

Type of analysis
Manual

This manuscript introduces an open-source algorithm, devel-
oped using OpenCV, that automatically interprets data from

Figure 11: Two distinct methods of analysis are used to compare how long the

animals stayed active at the center of the open field (OF). The results revealed

that there was no statistically significant difference between the automated al-

gorithm and the manual analysis (p = 0.520, paired t-test). Data presented as

median (line), 25–75% (box), min–max (error bars). Data are derived from

n=10 C57BL/6 mice.

600

580

560

540

520

videos of animal behavior in the MWM test and the OF test.

Our comparison between algorithmic and manual analyses

revealed comparable results.

The MWM test is commonly used to assess rodents’ cogni-

tive capacity, particularly in spatial learning. Our program was

able to track the animal in each quadrant of the video, calculate

the time spent in each quadrant, and measure the escape la-

tency. We found no significant difference between the results of

our open-source algorithm and manual analysis, demonstrating

the reliability and consistency of automated analysis. The OF

test is another prevalent method for evaluating rodent behavior,

including locomotor activity, anxiety levels, and exploratory

behaviors. Our automated analysis using the open-source

algorithm provided effective results when compared to manual

analysis, with no significant difference in time spent in the

500

Automated algorithm Manual

Type of analysis

center and edge areas of the OF.

Figure 12: Two distinct methods of analysis are used to compare how long the

animals stayed active at the edge of the open field (OF). The results revealed

that there was no statistically significant difference between the automated al-

gorithm and the manual analysis (p = 0.503, paired t-test). Data presented as

median (line), 25–75% (box), min–max (error bars). Data are derived from

n=10 C57BL/6 mice.

Automated analysis offers significant advantages, such

as the ability to process large amounts of data quickly and

accurately, reducing the likelihood of human error. It facilitates

the simultaneous exploration of multiple hypotheses, poten-

tially leading to more comprehensive discoveries. Automated

T
im

e
(s

)
T

im
e

(s
)

15

algorithms can potentially detect behavioral patterns and

trends not immediately apparent to the human eye, uncovering

crucial insights that manual methods might fail to notice. This

efficiency can help lower costs and allow researchers to focus

on strategic tasks [39, 40, 41].

The open-source software developed in this work has several

advantages beyond being free. There are no restrictions on

the recording device characteristics, and even smartphones

are sufficient. Furthermore, unlike many proprietary software

applications, which require precise, pre-determined device

positioning, the video recording position is versatile and

accepts videos taken from various angles. Also, video analysis

using our software doesn’t require high-performance machines

or powerful hardware. Lastly, since the software is open-source

and written in Python, it can be accessed and modified by

anyone. This flexibility allows for the development of new

methods that can be integrated separately into the main code,

thereby adding functionalities not currently available in this

version.

Nevertheless, it’s important to note that this software has

some limitations. For instance, the current version cannot

differentiate between different regions of an animal’s body,

such as its head and tail. As a result, its capacity to an-

alyze more intricate behaviors is somewhat restricted. De-

spite these limitations, the open-source software described in

this study can be improved and extended with additional func-

tionalities. Future enhancements might include quantifying

the velocity and trajectory of an animal’s movement, identi-

fying distinct motion patterns, evaluating freezing behavior,

and tracking specific actions like sniffing in a social interaction

paradigm—functionalities commonly found in certain commer-

cial software [32, 42, 43, 44, 45]. Our plan is to incorporate

these capabilities into upcoming versions of the software. It

is encouraged that researchers conduct follow-up studies to this

manuscript that directly compare the results obtained using pro-

prietary paid software to those obtained using the open-source

software described herein.

5. Conclusion

To conclude, the algorithm described in this investigation

represents a significant substitute for the manual analysis of an-

imal behavior. Researchers from all over the world have easy

access to the source codes and are able to modify and use them.

Hence, the implementation of this automated analysis protocol

will make a significant contribution to the progress of scientific

research and facilitate the execution of more rigorous and accu-

rate investigations in the domain of behavioral neuroscience.

References

[1] Siqueira, L. O., Ferrari, E. A. D. M., & Maia, J. M. (2006). Sistema au-

tomático de análise comportamental em pombos. Rev. bras. eng. biomed,

93-105.

[2] Houben, C., & Lapkin, A. A. (2015). Automatic discovery and optimiza-

tion of chemical processes. Current opinion in chemical engineering, 9,

1-7.

[3] Crozara, M. G. N. (2017). Um sistema de código aberto para reg-

istro e análise de dados comportamentais categóricos, morfológicos e

cinemáticos em animais de laboratório.

[4] Van Rossum, G. (2007, June). Python Programming Language. In

USENIX annual technical conference (Vol. 41, No. 1, pp. 1-36).

[5] Lutz, M. (2001). Programming python. ” O’Reilly Media, Inc.”.

[6] Lutz, M. (2010). Programming python: powerful object-oriented pro-

gramming. ” O’Reilly Media, Inc.”.

[7] Srinath, K. R. (2017). Python–the fastest growing programming language.

International Research Journal of Engineering and Technology, 4(12),

354-357.

[8] Kadiyala, A., & Kumar, A. (2017). Applications of Python to evaluate

environmental data science problems. Environmental Progress & Sustain-

able Energy, 36(6), 1580-1586.

[9] Hao, J., & Ho, T. K. (2019). Machine learning made easy: a review of

scikit-learn package in python programming language. Journal of Educa-

tional and Behavioral Statistics, 44(3), 348-361.

[10] Welcome to Python.org. (2023, May 11). Retrieved May 17, 2023, from

Python.org website: https://www.python.org/

[11] Community. (2023). Retrieved May 17, 2023, from Python.org website:

https://www.python.org/community-landing/

[12] Python Software Foundation. Retrieved May 19,2023. Python 3.9.7

documentation: The Python Standard Library. Retrieved from

https://docs.python.org/3/library/index.html

http://www.python.org/
http://www.python.org/community-landing/

16

[13] Druzhkov, P. N., Erukhimov, V. L., Zolotykh, N. Y., Kozinov, E. A.,

Kustikova, V. D., Meerov, I. B., & Polovinkin, A. N. (2011). New ob-

ject detection features in the OpenCV library. Pattern Recognition and

Image Analysis, 21, 384-386.

[14] Farkhodov, K., Lee, S. H., & Kwon, K. R. (2020, February). Object

Tracking using CSRT Tracker and RCNN. In BIOIMAGING (pp. 209-

212).

[15] Guennouni, S., Ahaitouf, A., & Mansouri, A. (2014, October). Multiple

object detection using OpenCV on an embedded platform. In 2014 Third

IEEE International Colloquium in Information Science and Technology

(CIST) (pp. 374-377). IEEE.

[16] Sobral, A. (2013, June). BGSLibrary: An opencv c++ background sub-

traction library. In IX Workshop de Visao Computacional (Vol. 27, p. 24).

[17] Xie, G., & Lu, W. (2013). Image edge detection based on opencv. Inter-

national Journal of Electronics and Electrical Engineering, 1(2), 104-106.

[18] Kukreja, V. (2022, March). Segmentation and Contour Detection for

handwritten mathematical expressions using OpenCV. In 2022 interna-

tional conference on decision aid sciences and applications (DASA) (pp.

305-310). IEEE.

[19] Uke, N., & Thool, R. (2013). Moving vehicle detection for measuring

traffic count using opencv. Journal of Automation and Control Engineer-

ing, 1(4).

[20] Kraeuter, AK., Guest, P.C., Sarnyai, Z. (2019). The Open Field Test for

Measuring Locomotor Activity and Anxiety-Like Behavior. In: Guest,

P. (eds) Pre-Clinical Models. Methods in Molecular Biology, vol 1916.

Humana Press, New York, NY.

[21] Walsh, R. N., & Cummins, R. A. (1976). The open-field test: a critical

review. Psychological bulletin, 83(3), 482.

[22] Lacerda, K. J. C. C. D. (2021). Caminhadas aleatórias com memória en-

viesada e suas aplicações em medicina e biologia (Doctoral dissertation,

Universidade de São Paulo).

[23] Gould, T.D., Dao, D.T., Kovacsics, C.E. (2009). The Open Field Test.

In: Gould, T. (eds) Mood and Anxiety Related Phenotypes in Mice. Neu-

romethods, vol 42. Humana Press, Totowa, NJ.

[24] Sejnowski, T. J., Koch, C., & Churchland, P. S. (1988). Computational

neuroscience. Science, 241(4871), 1299-1306.

[25] Sejnowski, T. J., Churchland, P. S., & Movshon, J. A. (2014). Putting

big data to good use in neuroscience. Nature neuroscience, 17(11), 1440-

1441.

[26] Heindl, S., Gesierich, B., Benakis, C., Llovera, G., Duering, M., & Liesz,

A. (2018). Automated morphological analysis of microglia after stroke.

Frontiers in cellular neuroscience, 106.

[27] Morris, R. G., Garrud, P., Rawlins, J. A., & O’Keefe, J. (1982). Place

navigation impaired in rats with hippocampal lesions. Nature, 297(5868),

681-683.

[28] Daniel, J. M., & Koebele, S. V. (2015). The maze book: theories, practice,

and protocols for testing rodent cognition (pp. 411-419). H. A. Bimonte-

Nelson (Ed.). Totowa, NJ, USA:: Humana Press.

[29] Bromley-Brits, K., Deng, Y., & Song, W. (2011). Morris water maze

test for learning and memory deficits in Alzheimer’s disease model mice.

JoVE (Journal of Visualized Experiments), (53), e2920.

[30] Hort, J., Andel, R., Mokrisova, I., Gazova, I., Amlerova, J., Valis, M.,

... & Laczó, J. (2014). Effect of donepezil in Alzheimer disease can be

measured by a computerized human analog of the Morris water maze.

Neurodegenerative Diseases, 13(2-3), 192-196.

[31] Webster, S. J., Bachstetter, A. D., Nelson, P. T., Schmitt, F. A., & Van El-

dik, L. J. (2014). Using mice to model Alzheimer’s dementia: an overview

of the clinical disease and the preclinical behavioral changes in 10 mouse

models. Frontiers in genetics, 5, 88. doi: 10.3389/fgene.2014.00088

[32] Zhang, L., Liu, C., Wu, J., Tao, J. J., Sui, X. L., Yao, Z. G., ... & Qin, C.

(2014). Tubastatin A/ACY-1215 improves cognition in Alzheimer’s dis-

ease transgenic mice. Journal of Alzheimer’s disease, 41(4), 1193-1205.

[33] D’Hooge, R., & De Deyn, P. P. (2001). Applications of the Morris water

maze in the study of learning and memory. Brain research reviews, 36(1),

60-90.

[34] Katz, R. J., Roth, K. A., & Carroll, B. J. (1981). Acute and chronic stress

effects on open field activity in the rat: implications for a model of de-

pression. Neuroscience & Biobehavioral Reviews, 5(2), 247-251.

[35] Vuralli, D., Wattiez, A. S., Russo, A. F., & Bolay, H. (2019). Behav-

ioral and cognitive animal models in headache research. The journal of

headache and pain, 20(1), 1-15.

[36] Hall, C. S. (1934). Emotional behavior in the rat. I. Defe-

cation and urination as measures of individual differences in

emotionality. Journal of Comparative Psychology, 18(3), 385–403.

https://doi.org/10.1037/h0071444

[37] Walsh, R. N., & Cummins, R. A. (1976). The open-field test: A crit-

ical review. Psychological Bulletin, 83(3), 482–504. doi:10.1037/0033-

2909.83.3.482

[38] Gould, T. D.; Dao, D. T.; Kovacsics, C. E. (2009). The open field test.

Mood and anxiety related phenotypes in mice: Characterization using

behavioral tests, p. 1-20

[39] Hong, W., Kennedy, A., Burgos-Artizzu, X. P., Zelikowsky, M., Navonne,

S. G., Perona, P., & Anderson, D. J. (2015). Automated measurement

of mouse social behaviors using depth sensing, video tracking, and ma-

chine learning. Proceedings of the National Academy of Sciences, 112,

E5351–E5360

[40] Chao, R., Macı́a-Vázquez, G., Zalama, E., Gómez-Garcı́a-Bermejo, J., &

Perán, J.-R. (2015). Automated tracking of drosophila specimens. Sen-

sors, 15, 19369–19392.

[41] Creton, R. (2009). Automated analysis of behavior in zebrafish larvae.

Behavioural brain research, 203, 127–136

[42] Medlej, Y., Salah, H., Wadi, L., Saad, S., Bashir, B., Allam, J., ... &

Obeid, M. (2019). Lestaurtinib (CEP-701) modulates the effects of early

life hypoxic seizures on cognitive and emotional behaviors in immature

rats. Epilepsy & Behavior, 92, 332-340.

[43] Salah, H., Abdel Rassoul, R., Medlej, Y., Asdikian, R., Hajjar, H.,

17

Dagher, S., ... & Obeid, M. (2021). A modified two-way active avoid-

ance test for combined contextual and auditory instrumental conditioning.

Frontiers in Behavioral Neuroscience, 15, 682927.

[44] Medlej, Y., Salah, H., Wadi, L., Saad, S., Asdikian, R., Karnib, N., ...

& Obeid, M. (2019). Overview on emotional behavioral testing in rodent

models of pediatric epilepsy. Psychiatric Disorders: Methods and Proto-

cols, 345-367.

[45] Salah, H., Medlej, Y., Karnib, N., Darwish, N., Asdikian, R., Wehbe,

S., ... & Obeid, M. (2019). Methods in emotional behavioral testing in

immature epilepsy rodent models. Psychiatric Disorders: Methods and

Protocols, 413-427.

	Highlights
	Automating Behavioral Analysis in Neuroscience: Development of an Open-Source Python Software for More Consistent and Reliable Results

	Automating Behavioral Analysis in Neuroscience: Development of an Open-Source Python Software for More Consistent and Reliable Results
	Abstract
	1. Introduction
	2. Materials and Methods
	3. Results
	4. Discussion
	5. Conclusion
	References

