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ABsTrACT: The semiconductor tracker (SCT) is one of the tracking systems for charged particles in
the ATLAS detector. It consists of 4088 silicon strip sensor modules. During Run 2 (2015-2018)
the Large Hadron Collider delivered an integrated luminosity of 156 fb~! to the ATLAS experiment
at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and
pile-up conditions were far in excess of those assumed in the original design of the SCT detector.
Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2.
It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of
99.85%. Detailed studies have been made of the leakage current in SCT modules and the evolution
of the full depletion voltage, which are used to study the impact of radiation damage to the modules.
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1 Introduction

The ATLAS experiment [1] has been collecting data to study the interactions of elementary particles

since 2009, using proton-proton (pp) collisions provided by the Large Hadron Collider (LHC) [2]

at CERN. The LHC produces the highest-energy proton beams in the world, providing a unique



opportunity to search for physics beyond the Standard Model (SM), as well as to precisely measure
SM processes at very high energy. The first operational period in 2009-2012, called Run 1, yielded
physics data at centre-of-mass energies (1/s) of 7 and 8 TeV. After the first long shutdown (LS1)
in 2013-2014, dedicated to upgrading the accelerator and the detectors, Run-2 operation began in
2015 at 4/s = 13 TeV and continued until 2018. The total integrated luminosity of pp collisions
delivered to the ATLAS experiment by the LHC during Run 2 corresponds to 156 fb~!. In addition
to pp collisions, special physics data-taking runs for heavy-ion physics were performed. The second
long shutdown (LS2) in 2019-2021 is for machine and detector upgrades towards Run-3 operation,
which is scheduled to start in 2022.

The ATLAS detector is a multipurpose detector composed of the inner detector (ID), the
calorimeters and the muon spectrometer. The ID is located in an axial magnetic field of 2 T generated
by a superconducting solenoid, and performs measurements of charged-particle trajectories and de-
termines their momenta. The electromagnetic and hadronic calorimeters are outside the solenoid and
measure the energies of electrons, photons and hadrons. Good hermeticity of the calorimetry is en-
sured by the forward calorimeters, enabling a precise measurement of the missing transverse momen-
tum for each event. The muon spectrometer is the outermost part of the detector. It provides muon
identification and momentum measurement using toroidal magnets, as well as a muon-based trigger.

The ID is divided into three subsystems: the pixel detector (Pixel), the semiconductor tracker
(SCT) and the transition radiation tracker (TRT). The Pixel provides a four-layer measurement
of charged-particle tracks, where the innermost layer is the insertable B-layer (IBL), which was
installed during LS1 [3, 4]. It is located closest to the interaction point (IP) and hence it has a great
impact on the reconstruction of primary and secondary decay vertices. The SCT is a precise silicon
microstrip detector, which extends the tracking volume to radial distances of 299 < r < 560 mm.!
It plays an important role in measuring the transverse momenta of charged particles. The outermost
ID system is the TRT, consisting of 50 layers of drift tubes. It is used for charged-particle tracking
and for electron identification, utilising transition radiation.

As shown in figure 1, the SCT consists of four layers of silicon-strip sensors in the barrel
(numbered 3 to 6), and nine disks (1 to 9) in each of the endcaps. Each barrel layer consists of
12 rings of modules along the z-direction, with a total of 2112 barrel modules [5]. There are 988
modules per endcap [6], with each disk consisting of up to three rings, referred to as inner, middle
and outer, at increasing radii from the beam-pipe. Each barrel module consists of four rectangular
285-pm-thick p*-on-n silicon sensors [7] with strips of pitch 80 pm. The sensors have 770 strips of
length ~6 cm, of which 768 are read out via wire bonds. The unbonded outermost strips are present
for field uniformity at the sensor edges. Two sensors on each side of a module are wire-bonded
together to form 12-cm-long strips. A second pair of identical sensors is glued back-to-back with
the first pair at a stereo angle of 40 mrad. Each module also has two arrays of six ABCD chips [8],
where each chip is wire-bonded to 128 strips, in order to amplify, shape and discriminate pulses
from the charges collected on the strips. The ABCD chips are placed on hybrid boards, which are
bridged over the sensors. A binary threshold of around 1 fC in the detected charge is used to define

TATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the
detector and the z-axis along the beam-pipe. The x-axis points from the interaction point to the centre of the LHC ring
and the y-axis points upwards. Cylindrical coordinates (r,¢) are used in the transverse plane, ¢ being the azimuthal angle
around the beam-pipe. The pseudorapidity n is defined in terms of the polar angle 6 as 5 = —Intan (6/2).
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Figure 1. Schematic view of one quadrant of the SCT. The numbering schemes for the barrel layers and
endcap disks are shown, together with the radial and longitudinal coordinates. The disks comprise up to
three rings of modules, referred to as inner, middle and outer, at increasing radii from the beam-pipe. The
detector is symmetric between Side-A (positive z) and Side-C (negative z).

a ‘hit’ in the SCT. A barrel module has dimensions of 6cm X 12 cm. Most of the endcap modules
have similar dimensions, but have a trapezoidal shape, except for the ‘short” endcap modules on the
inner rings of disks 2—6 and also on the middle ring of disk 8, which consist of just one sensor on
each side and therefore have only half the length.

The sensors were provided by two manufacturers: Hamamatsu Photonics (HPK)? and CiS.3
Most of the sensors have a crystal lattice orientation (Miller indices) of <111>, while 92 modules
in the barrel, provided by HPK, have <100>. The difference in crystal orientation results in slightly
different performance, such as different noise characteristics; this is discussed in detail in section 3.
The silicon wafers produced by CiS to manufacture short endcap modules were oxygenated to
increase the radiation hardness of these innermost sensors [7].

The SCT is cooled to about 0°C by an evaporative cooling system using C3Fg fluid [9]. A
heater pad system is intended to provide a thermal barrier between the SCT and the TRT, because
the TRT operates at room temperature. However, it was only partially operative in the barrel region;
hence barrel layer 6 was operated 6°C warmer than the rest of the SCT to prevent mechanical stress
on the TRT. The cooling system was originally driven by compressors; these were replaced by a
thermosiphon system [10] in 2018. The SCT position was monitored using frequency-scanning
interferometry in Run 1 [11]. In Run 2, the SCT alignment was performed fully offline using
reconstructed tracks [12].

The SCT has been fully operational since the commissioning period using cosmic-ray data in
2008 [13]. It showed excellent performance during LHC Run 1, as reported in ref. [14]. In Run 2,

2Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu, Shizuoka, 435-8558, Japan.
3CiS Forschungsinstitut fiir Mikrosensorik GmbH, Konrad-Zuse-Strasse 14, 99099 Erfurt, Germany.



Figure 2. Event display projected onto the r—¢ plane, taken by an unbiased random trigger in a typical pp
collision run at /s = 13 TeV in May 2018. This event has approximately 60 pp interactions, which is nearly
the maximum experienced in Run 2. The outer four circles correspond to the four barrel layers of the SCT,
while the inner four circles are the Pixel layers. The lines emerging almost radially from the centre (interaction
point) represent reconstructed tracks of charged particles with transverse momentum greater than 0.5 GeV.

the experimental environment became more challenging for the SCT, because an instantaneous
luminosity up to 2.1 x 10** cm™2s~! was achieved, corresponding to about twice the design value.
Consequently u, the average number of p p interactions per bunch crossing (pile-up), increased and
the SCT was exposed to a high density of charged particles, as shown in figure 2. This affected the
SCT data transmission rate and the SCT data quality, as discussed in section 2.

Radiation damage was also a key feature of SCT operation in Run 2. The radiation received by
the SCT modules until the end of Run 2 is estimated to be equivalent to a fluence of up to 5.6 x 10'3
1 MeV neutrons [15, 16]. The operational strategy for the SCT therefore needed to be modified
to account for the changes in sensor properties caused by radiation damage. At the same time,
this provided valuable data for studies of radiation damage to silicon sensors in a hadron collider
experiment; in particular, the SCT uses p*-on-n type silicon sensors, for which the n-bulk of all
sensors was expected to invert into quasi-p-type (type inversion) during the second half of Run 2.

Several improvements to the SCT system are discussed in this paper. The operation of the
SCT in Run 2 is described in section 2, and its performance is assessed in section 3. The effects of
radiation on the detector are discussed in section 4.

2 Operation of the SCT in LHC Run 2

The typical cycle of operation of the SCT in Run 2 followed the same procedure that had been estab-
lished in Run 1. During periods of beam injection, energy ramping and optimisation, the SCT was
put into the standby state, where the low voltage (LV) supplied to the ABCD chips was fully main-
tained, but the high voltage (HV) to the sensors was reduced to 50 V. This is sufficiently low so as to



Table 1. Numbers of disabled SCT elements as of 11th December 2018, after the end of Run 2. The values
in parentheses are those from the end of Run 1 [14]. The numbers of chips (strips) exclude those in disabled
modules (disabled modules and chips).

Component Barrel Endcaps SCT Fraction [%]

Modules 12 an 30 19) 42 (30)| 1.0 (0.73)
Chips 55 (38) 22 17) 77 55 | 0.16 (0.11)
Strips 6398 (4111) 9505 (7252) 15903 (11363) | 0.25 (0.18)

avoid electrical breakdown if there was any significant beam loss, which could cause many particles
to enter the SCT simultaneously. Once stable beam conditions were declared, the HV was automati-
cally raised back to the operational voltage (typically 150 V), provided that the LHC collimators were
at their predefined positions for physics data-taking, the background rates measured by the beam
conditions monitor [17], the beam loss monitor and the forward detectors were low enough, and the
hit occupancy of the SCT was as expected for the instantaneous luminosity. This ‘warm start’ proce-
dure took about 30 seconds before the SCT reached its operational HV state. When the LHC beam
was dumped, the HV was immediately ramped back down to its standby state. An operator in the AT-
LAS control room was responsible for monitoring the SCT data acquisition (DAQ) system, detector
control system (DCS) and data quality (DQ). In case of problems, the operator attempted to recover
normal operation by following predefined procedures or by calling an SCT expert if necessary.

The experimental conditions in Run 2 were challenging due to high pile-up, resulting in up to
~2% hit occupancy in SCT modules during periods of operation at the maximum LHC luminosity.
This resulted in a very high load on the DAQ system. There was significant radiation damage to the
SCT sensors, which required modification to the operational strategy. Nevertheless, the SCT was
available for 99.9% of the integrated luminosity during Run 2. In terms of the DQ efficiency, which
is the fraction of data usable for physics analyses relative to the recorded integrated luminosity,
it achieved 99.85%. This was due to several improvements, in particular to the DAQ system in
2015-16, which are discussed in more detail in the following sections. As shown in table 1, 98.6%
of the SCT elements remained active until the end of Run 2. During LS1, two of the modules that
had been disabled during Run 1 were recovered. An additional 14 modules were disabled in Run 2.
For ten of these modules, this was attributed to HV-related problems such as trips of the HV and
unstable HV currents. The remaining four modules were disabled due to LV-related problems or
other problematic on-detector components.

The operational HV for most sensors was kept at 150 V until 2017. In 2018, a small drop in hit
efficiency of ~0.5% was observed. This was related to an increase in the full depletion voltage (Vrp),
due to radiation damage. Based on HV scan data (discussed in detail in section 3.1), the operational
HYV of modules located in regions of high radiation was increased to 200-250 V. In Run 1, it was
reported that 27% of the modules with CiS-manufactured sensors exhibited anomalous fluctuations
of up to ~200 pA in their leakage current during pp collisions [14], and consequently the operational
HYV of these modules was reduced by 30-40 V to suppress these fluctuations. This condition was
retained at the start of Run 2. In 2018, however, their behaviour was found to be more stable, since
the nominal leakage current of ~1000 pA exceeded these fluctuations. Hence, the operational HV
of these modules was set back to the nominal value in order to recover their hit efficiency.



To keep the temperature of the SCT close to 0°C, the evaporative cooling system was operated
stably at —20°C to —14°C, except for barrel layer 6, which was set to —10°C (see section 1).
The cooling temperatures set depended on the location within the SCT, because of variations in
the hydraulic impedance among the cooling pipes, and the effects of gravity, which resulted in
higher fluid concentrations in the lower part of the detector. These temperatures were maintained
throughout most of Run 2, except for two weeks during each winter shutdown period, when the
evaporative cooling system was turned off for maintenance work and the modules warmed to
room temperature, and also part of 2015. During that time, early in Run 2, the temperature
of the evaporative cooling system was set to —10°C, because increased humidity within the ID
volume resulted in a higher dew point around the SCT. The cause of this was identified as an
over-pressure safety valve to the ID volume, which was unexpectedly open. This problem was fixed
in October 20135, after which the temperature was restored to the nominal value. This small change
in temperature had no impact on detector operation.

2.1 Data acquisition

The DAQ system of the SCT uses a binary readout architecture. Charge created in the sensor is
immediately digitised and stored in a 132-cell-deep pipeline within the ABCD chip. On receipt of
a trigger, the column of binary data associated with the bunch crossing is read out and transmitted
to the off-detector DAQ system.

Figure 3 shows a schematic diagram of the DAQ system [14, 18]. It comprises 128 Readout
Driver (ROD) and Back of Crate (BOC) cards. The BOC provides the optical interface between a
ROD and up to 48 SCT modules; for each module the BOC transmits the clock and trigger via a
single command stream and receives data back via two optical links (FE-links) from the six ABCD
chips on each side of the module. For each level-1 (L1) trigger, the ROD processes the incoming
data from up to 96 FE-links and combines those data into a single event fragment. The event
fragment is then transmitted at the level-1 trigger rate on an optical link (S-link) [19] to the global
DAQ system of ATLAS, where the data are buffered until a higher-level trigger decision is made.
The commands and triggers, as well as a 40 MHz clock, are distributed by the trigger, timing and
control (TTC) interface module.

Both the transmission (TX) and receiver (RX) optical paths incorporate redundancy mecha-
nisms which can be used in the case of failure of individual links [19]. The TX redundancy allows
the module to be configured to use the trigger command stream from the adjacent module; the RX
redundancy allows the module to transmit data from all 12 ABCD chips using one of the two data
links. The use of optical link redundancy at the end of Run 2 is shown in table 2. Although the
total number of links using redundancy mode increased during Run 2, the fractions are still only
1.3% (1.9%) for the TX (RX).

In the following subsections, specific DAQ developments during Run 2 are discussed in more
detail.

2.1.1 Optical data transmission

The dominant failure mechanism for the DAQ system during Run 1 was the failure of individual
channels within the 12-channel array of the vertical-cavity surface-emitting laser (VCSEL) for the
TX [19]. The loss of a channel meant that the module no longer received the clock and trigger
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Figure 3. Schematic diagram of the SCT DAQ [14]. The front-end module is located on the detector, while
the ROD, BOC and TTC Interface Module are located in the underground cavern outside the detector.

Table 2. Numbers of optical links configured using the redundancy mode at the end of Run 2. The numbers
in parentheses are the status at the end of Run 1 [14].

Link type | Barrel Endcaps Total Fraction
TX 36 9 19 (5 55 (14| 13% (0.3%)
RX 53 (41) 99 (1) 152 (132) | 1.9% (1.6%)

signals, resulting in the loss of data from that module. Although the TX redundancy could be
applied to re-enable the module, failures of two adjacent channels resulted in the loss of data from
one module until that TX plug-in was physically replaced. The peak rate of channel deaths in Run 1
was as high as 10-12 per week, and TX redundancy was used for up to 220 modules.

A number of TX replacement campaigns were carried out; failures in the original TX installation
were attributed to inadequate precautions against electrostatic discharge by the manufacturer, and
then in the second installation to the ingress of humidity due to a non-hermetic seal. A third
installation, carried out early in 2012, used a new VCSEL product manufactured with a complete
hermetic seal, leading to a dramatic reduction in the channel death rate. Nonetheless, a small rate
of deaths continued (~5-10 per year) due to a coefficient of thermal expansion mismatch between
the epoxy and the surface of the VCSEL array, leading to cracks in the VCSEL and the subsequent
ingress of humidity.

During LS1, a final batch was produced incorporating the commercially available VCSEL
array (10 Gbps LightABLE surface-mount parallel fibre-optic engine, Reflex Photonics), using a
re-engineered TX plug-in to match the LightABLE to the BOC. Three of the eight ROD crates were
fully populated with LightABLEs, while the BOCs in the remaining five crates continued to be
equipped with the original TX, and they operated throughout Run 2. The Light ABLEs have proved
to be very reliable; only two channel deaths occurred, of which one was infant mortality. In the
remaining ROD crates, failures were only about 2-3 per year, which is easily compensated for by



e e e
E ATLAS 3
I E=13Tev 3 .
107 ¢¢+*

102

0% | (AT y |
S T‘*T“ “ ]

104

ABCD Error Fraction
TT
.
-}
5

—=— 2017 data with chip masking ]
PN IR N PRSI R A

1 0—5 PN R | FOIY 0 1| Y Bt
10 20 30 40 50 60
<u> x L1 Rate [100kHz]

Figure 4. Fraction of ABCD chip errors as a function of average pile-up, u, times the level-1 trigger rate
for a module using RX redundancy. The black dots are from 2016, before introduction of the chip-masking
mechanism, while the red squares are from 2017 with chip masking. Changes to the set of masked chips are
visible as steps in the ABCD error fraction around u X L1 rate ~ 30 and 40. The significant peak at ~ 15 is
due to a chip that was transiently very noisy, while the peak at ~ 4 is due to an instantaneously low level-1
trigger rate with u ~ 55.

the TX redundancy mechanism. It is envisaged that this configuration will be maintained in Run 3,
as the very low death rate does not justify the significant effort and risk involved in changing the
TXs in the remaining five crates.

2.1.2 Developments for operation with high pile-up

The SCT was designed to operate with 0.2%—0.5% occupancy in its 6.3 million sampled strips at
an LHC pile-up rate of up to u ~ 23. The fundamental bottlenecks that restrict data-taking with
increased occupancy, arising from higher pile-up, are the bandwidth limitations of the FE-links
(which transmit bit streams at 40 Mbps) and the S-links (which transmit 32-bit words at 40 MHz, a
throughput of 1.28 Gbps). For the FE-links, exceeding the bandwidth leads to a loss of data from the
corresponding module. As shown in figure 4, the fraction of errors issued by the ABCD chips in-
creased for high pile-up and trigger rates, in particular for modules relying on RX redundancy. If data
throughput on the S-link exceeds ~90% of the bandwidth, the ROD starts to receive back-pressure
from the S-link and asserts a busy flag (BUSY) to suspend the entire data-taking of the global
DAQ system [18] via the TTC interface module. Extrapolations of the occupancy with increasing
pile-up during Run 1 suggested that data flow in the FE-links and S-links would exceed bandwidth
limitations at pile-up rates of u ~ 87 and u ~ 33 respectively, at a level-1 trigger rate of 100 kHz.
These projections assumed optimum on-chip data compression: only hits from the in-time bunch
crossing that exceed a threshold were read out, while hits from the preceding bunch crossing were si-
multaneously vetoed (the so-called ‘01X’ mode). In addition, the standard data-packing scheme for
the ROD was used, which included readout of the hits from each strip over three consecutive bunch
crossings. In any case, FE-links using the RX redundancy would reach the bandwidth limitation at a
much lower pile-up level, because all data would then be read out through only one of the data links.



Table 3. Mitigation steps deployed to address SCT bandwidth limitations.

Action Type Date Comments

Expanded DAQ Hardware 2014 (LS1) New ROD and BOC production

FE-link remapping Hardware 2015 Reshuffle of data links to BOCs

Data compression ~ Firmware 2016 Improved data compression on the ROD
Chip masking Software 2017 Implementation of on-the-fly chip masking
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Figure 5. Number of FE-links exceeding the bandwidth limitation as a function of y, at a level-1 trigger rate
of 100 kHz. In the nominal configuration (black curve at right), signals are read out by two FE-links and
therefore one FE-link transmits signals from up to six ABCD chips. For the FE-links using RX redundancy,
where one FE-link transmits signals from up to 12 ABCD chips on a module, the dashed middle (solid left)
curve corresponds to the case with chip masking enabled (disabled).

It was anticipated late in Run 1 that the LHC would provide higher luminosity, causing more
pile-up. Furthermore, it was discovered early in Run 2 that the SCT hit occupancy had already
increased significantly compared to Run 1; this was attributed to secondary interactions with
material in the newly installed IBL services. In order to achieve a comfortable margin of safety for
operation with pile-up at u ~ 60, the four mitigation steps listed in table 3, and described below,
were developed.

Expanded DAQ: To address the pile-up limit imposed by the S-links, the numbers of RODs and
BOCs, and consequently the number of S-links, were increased from 90 to 128 during LS1,
thereby reducing the number of modules serviced by each ROD from 48 to no more than 36.

FE-link remapping: The mapping of the FE-links to the BOCs was re-optimised in order to ensure
a more uniform data load on each ROD. This resulted in a flatter occupancy distribution across
the S-links, removing spikes from the highest-occupancy S-links and thereby improving the
stability of data-taking.



Data compression: A new highly efficient data-packing scheme (the ‘supercondensed mode’) was
implemented on the RODs routinely from 2016 onwards. In this mode, clusters of up to
16 strips are packed into a single 16-bit word, resulting in a typical data size reduction of
~25% during pp collisions compared to the expanded mode. This data size reduction is
achieved at the expense of some error flags which were superfluous to efficient data-taking.
It significantly reduces the data size used to encode large clusters, which otherwise unduly
bias the distribution.

Chip masking: This mechanism was developed in order to mask the noisiest chips during operation
with the highest level of LHC pile-up. Lists of chips with the highest noise were prepared
so that various chips could be disabled when different pile-up levels were exceeded. The
value of ¢ was continuously monitored by the LHC, and published within the ATLAS DAQ
framework. This allowed reductions in the volume of hit data, so as to remain below the
bandwidth limitations of the data links at the cost of a negligible loss of data. The mechanism
worked ‘on the fly’, gradually reducing the number of masked chips to zero as the LHC
luminosity, and hence the rate of pile-up, decreased during a data-taking run, effectively
suppressing the ABCD chip errors, as shown in figure 4. The principle of chip masking
has been demonstrated successfully, leading to all FE-links being operable within bandwidth
constraints up to i = 60, as shown in figure 5. This concept was first developed to cope with
high-pile-up conditions in 2017. At this time the number of LHC bunches was reduced in
order to avoid unexpected beam dumps, which had been occurring frequently during 2017,
and consequently the average u was increased to maintain the luminosity. However, this
situation was mitigated in 2018, leading to a return to nominal pile-up conditions for the
remainder of Run 2. Chip masking was therefore not deployed routinely; however, this
capability is expected to be a valuable asset in efforts to maintain tracking efficiency if the
level of pile-up increases significantly in Run 3.

The impact of the different mitigation steps related to S-links is further illustrated in figure 6,
using extrapolations of measured data occupancy as a function of pile-up. When using the con-
figuration from 2016, all S-links are seen to operate below a bandwidth occupancy of 90%, which
shows that the bandwidth limitation problem was successfully solved.

2.1.3 Online module recovery

Due to intense radiation from the pp collisions, a charged particle occasionally passed through
front-end electronics on the detector, causing an instantaneous error. Energy deposited in the p-i-n
diodes in the modules, which receive the clock and trigger signals, resulted in desynchronisation of
the module relative to the global ATLAS DAQ system. An automated module recovery mechanism
monitored desynchronisation errors in data buffered downstream of the S-link and reconfigured
desynchronised modules. This entire process, from detection of the desynchronisation error to the
resumption of synchronised data arriving from the module, took 20-30 seconds. In high-pile-up
conditions (1 ~ 60), module recovery was typically activated a few times per minute.

Single-event upsets (SEUs) within the internal threshold register of an ABCD chip caused the
chip to become noisy or inefficient. If this happened on the configuration register, the readout
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Figure 6. Number of S-links operating above the bandwidth occupancy threshold specified on the x-axis.
During operation, once the S-link occupancy exceeds 90% of its bandwidth, the corresponding ROD starts
to fall into the busy state, so that it becomes impossible to transfer data correctly. The bandwidth occupancy
in 2012 (green line, right), 2015 (dashed black, middle) and 2016 (blue, left) is simulated using the extreme
condition of a level-1 trigger rate of 100 kHz with ¢ = 60. The line labelled 2012 shows the 90-ROD system
used in Run 1, where many S-links were not able to handle the high data rate. Several S-links for endcap
modules showed significantly higher occupancy than the other S-links, due to an imbalanced distribution of
data rate per ROD. These features were significantly improved in the 2015 configuration with 128 RODs.
In 2016 the supercondensed mode was introduced and the FE-link remapping was performed, in order to
distribute the S-link occupancy more uniformly.
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Figure 7. Evolution of the number of noisy chips in a run with and without global reconfiguration activated,
for two typical runs in Run 2.

sequence of the ABCD chip was interrupted. The rate of SEUs was studied during Run-1 oper-
ation [14]. As expected, a higher SEU rate was observed as the hit occupancy increased. This
could be understood approximately from earlier studies using test-beam data [20], and indicated
that errors induced by the SEUs would become more important in higher-luminosity operation in
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Run 2. Since it is difficult to identify these problematic chips online, a system was implemented to
apply a global reconfiguration to the entire SCT DAQ system, instead of using a targeted module
recovery mechanism. This process was activated every ~90 minutes and took ~1.2 seconds, so the
loss of data is expected to be negligible. Figure 7 shows the number of noisy chips (defined as at
least 120 channels with continuous high noise) as a function of time since the beginning of the run.
Typically, the number of noisy chips was reduced to less than five at any time.

2.1.4 Handling ROD-busy assertions

Towards the end of Run 1, the SCT started to have an average data-taking inefficiency of ~0.9%,
caused by an increase in the number of permanent busy assertions coming from the RODs. The
impact on the ATLAS data-taking efficiency was limited by the automatic exclusion of the ROD
from data-taking within about 0.2 seconds of the onset of BUSY. However, the re-integration of the
ROD into data-taking mode imposed about 7 seconds of BUSY, as the ROD must be masked from
incoming triggers during its reconfiguration. The overall time that the ROD was excluded from
data-taking, from the initial ROD removal to its full re-integration, was ~20 seconds, including
the ~7.2 seconds of dead time to ATLAS. The permanent ROD-busy signals were induced by
unrecognised illegal incoming bit patterns on the FE-links. The impact on the DQ of taking data
while the ROD was excluded was evaluated offline (discussed in section 2.3.1).

This problem was significantly mitigated early in Run 2 by ROD firmware improvements, as
well as by imposing a limit on the bit-stream length for incoming events on the FE-links. Towards
the end of Run 2, a ROD busy occurred once per day in typical pp run conditions, and the average
SCT dead time was typically less than 0.1%.

2.2 Detector calibration

Routine calibration of the SCT was performed to keep the hit efficiency above 99% and the noise
occupancy below 5 x 107#. The basic procedure is described here, while more details can be found
in refs. [14, 18]. Optical calibrations were typically run first, to establish reliable communication
for sending and receiving data via the data links. Digital tests were then performed to exercise and
verify the functionality of the front-end chips, the mask registers and the pipeline buffers. Analogue
optimisation was the main part of the calibration procedure, consisting of the trim range scan and
the response curve test.

The trim range scan found the best configuration of the digital-to-analogue converters (DACs)#
to give a threshold equivalent to 1 fC for each ABCD chip. This was achieved by injecting a fixed
1 fC test charge into the chips and measuring the variation in hit occupancy while changing the
threshold. The occupancy was expected to be 100% when the threshold was sufficiently low and
0% when the threshold was high. The optimal setting was found in the DAC configuration where
the hit occupancy was 50% (vt50). This measurement also provided an estimate of the noise, from
the Gaussian spread of the hit occupancy as a function of the threshold, which was modelled by
an error function. In the response curve test, a similar threshold scan was performed using ten
different values for the charge injected by the ABCD chips. The gain was estimated from the slope

4There are two types of DACs implemented in each ABCD chip. An 8-bit DAC changes the threshold setting for
all 128 strips belonging to the chip. Variations in individual strips are compensated by a 4-bit DAC. Details are fully
described in refs. [14, 18].
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of the curve relating the injected charge to vt50, and the input equivalent noise charge (ENC) was
calculated from the output noise divided by the gain.

The calibration procedure also provided a list of problematic or unusable strips, which was
uploaded to the conditions database to be used in the offline data reconstruction. Another important
calibration was the noise occupancy test, in which the noise occupancy was measured for ten different
threshold settings between 0.3 fC and 1.0 fC. This test was done occasionally to understand the
noise level in terms of the noise occupancy. Results from the noise occupancy test as well as the
response curve test are discussed in section 3.3.

The calibration procedure was typically performed every few weeks. Since the HV needed to
be set to the nominal values during calibration, to ensure operational detector response, it could
only be done without beam circulating in the LHC, for safety reasons in case of unexpected beam
losses. The times available for calibration were dedicated calibration periods between LHC fills,
and longer intervals in LHC operations to allow technical interventions. Due to improvements, the
time between LHC fills was gradually reduced to about 1.5 hours. This allowed more physics data
to be provided in the later years of Run 2, but the calibration time was then significantly limited. To
speed up the calibration, the number of scan points for the trim range scan was reduced by ~50%, for
example, while still retaining reliability and robustness. The total time for the full SCT calibration
was reduced to 1.5 hours. This allowed a calibration frequency of at least once per month, and the
fraction of noisy strips was kept below 0.3%, as discussed in detail in section 2.3.2.

2.3 Data quality
2.3.1 Data quality monitoring and assessment

To assure high-quality data for physics analyses, it is essential to monitor the DQ during data-
taking. Evaluation of the SCT DQ was based on the ATLAS experiment’s common DQ framework,
which is summarised in ref. [21]. Several important parameters were monitored using histograms
produced during the fast processing of sampled events [22]. These included information about the
SCT performance, such as hit efficiency and occupancy, and also information from reconstructed
tracks, such as the number of clusters associated with a track. These histograms were automatically
produced and evaluated by the online data-quality monitoring framework [23], which would warn
the DQ monitoring operators when a potential problem was identified, based on predefined criteria.

When the data had been fully reconstructed, the DQ was thoroughly assessed offline. When a
problem was found, a ‘defect’ flag was set for the corresponding luminosity block. This is a period
of time (typically 1 minute), during which the instantaneous luminosity, the detector and trigger
configurations, and the other important run conditions are considered to be constant. The defect
flags are stored in a database [24]. Several different defect flags were prepared, and classified as
being either ‘intolerable’ or ‘tolerable’, depending on the severity of the problem and its impact on
the data quality. The SCT-specific DQ flags were mostly the same as those used in Run 1 [14].

Data flagged with an intolerable defect are excluded from physics analyses. For the SCT, three
major types of intolerable defect were defined:

* Significant acceptance loss for the tracking, because multiple RODs were excluded from the
DAQ.
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Table 4. SCT DQ defect summary in Run 2.

Year 2015 2016 2017 2018 | Total
Luminosity recorded by ATLAS [fb~!] 3.6 355 465 602 | 1458
Defect description Fraction of luminosity affected [%o]
Intolerable defects
Major acceptance loss due to ROD exclusion | 0.22 0 0.01 0 0.01
DAQ crate(s) excluded from readout 0 0.01 001 O 0.01
SCT HV not ready 0.01 0.10 0.04 0.01| 0.04
SCT simulation data flag activated 0 0 0 0.21 | 0.09
Tolerable defects
> 40 modules noisy 6.0 13 20 51 31
Minor acceptance loss due to ROD exclusion | 14 5.1 0.68 055 2.0
Low efficiency 4.3 0 1.4 1.6 1.2
> 40 modules with link errors 2.4 1.6 034 0 0.57
SCT not at standard HV 0.58 0.08 0.08 1.2 0.54
Trip of one power supply crate 0 0 0 0.06 | 0.03

* One or more DAQ crates (each holding about 12.5% of the modules) were excluded from the
DAQ.

* The SCT HV was not in the ‘ready’ state: the HV was less than the operational setting, which
was typically 150-250 V depending on module location.

The fraction and evolution of intolerable SCT defects during Run 2 is summarised in table 4. In
2015, the most significant DQ inefficiency was caused by multiple ROD failures. This was because
the trigger rate was significantly higher than that in Run 1. This problem became less severe in later
years, due to the ROD firmware improvements described in section 2.1.4. From 2016 onwards,
high DQ efficiency was maintained. Manual adjustments to the SCT were sometimes necessary, for
example when unexpected changes in beam conditions occurred. These led to inevitable small delays
in turning the SCT back on, resulting in some data being recorded with intolerable defects because
the SCT voltage was not ready. In 2018, a one-time incident resulted in significant DQ loss. An
SCT simulation-mode data flag was unintentionally activated during a physics run. This inhibited
further SCT data reconstruction, and consequently no track was provided to the high-level trigger.
Software changes have been implemented to prevent this from happening again. Through the whole
of Run 2, the DQ inefficiency due to SCT intolerable defects was 0.15%, corresponding to 217 pb~".

The tolerable SCT defect affecting the most integrated luminosity originated from having more
than 40 noisy modules, where a noisy module is defined by the average noise occupancy being
greater than 0.15%. The frequency of this defect increased in the later years of Run 2. Other
tolerable defects were:
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* Minor acceptance loss for tracking, because a single ROD was excluded from the DAQ.

* Hit efficiency less than 98% on average, and less than 99% when measured using only the
first bunch crossing of a bunch train.

¢ More than 40 modules with errors in the FE-link.

* SCT being operated at non-standard HV values. This happened rarely, when the HV was
scanned to study radiation damage to the sensors. The HV was kept sufficiently high that the
impact on tracking is considered marginal.

* At least one power supply crate tripped (where one crate holds ~1.14% of the modules).

This final defect flag was introduced in 2018, because of a few incidents related to a tripped power
supply crate observed during physics runs. This was attributed to aging of the components. The
degraded components will be replaced to mitigate this problem in Run 3.

2.3.2 Noisy strip identification

Noisy strips were searched for using a special data stream triggered on empty LHC bunch crossings,
so that no collision hits should be present. Events were triggered randomly at a rate of 2—-10 Hz,
giving sufficient data to determine the number of noisy strips run-by-run. When a strip had a noise
occupancy greater than 1.5%, the strip was identified as being noisy and masked during offline data
reconstruction.

Figure 8 shows the fraction of noisy strips as a function of date, for both Run 1 and Run 2.
Typically, this number rose from about 10™* to 3 x 1073, until a calibration was performed and the
fraction of noisy strips dropped again. This was due to resetting the thresholds, which drift as charge
is accumulated in the chips. On a shorter timescale, large run-by-run variations are observed. The
main reason for these fluctuations was bit flips in the threshold register, as discussed in section 2.1.3.
Although these strips were usually recovered by a global reconfiguration during the run, they are
identified as noisy when the average noise occupancy in the run exceeds the threshold.

3 SCT performance

The performance of the SCT had to be maintained in the harsh experimental environment of LHC
Run 2, with high levels of pile-up and radiation. To maximise the tracking efficiency for charged
particles, the SCT is regularly calibrated to maintain a hit efficiency above 99%, while the noise
occupancy remains below 5 x 10~#. Hits found on contiguous SCT strips are grouped into a cluster,
which forms the input to the tracking algorithm. It is therefore important that the distribution of
cluster sizes remains stable.

These key parameters are studied and discussed in this section, using the abundant data sample
collected during Run 2. Since the radiation levels depend on the location within the SCT, some
performance results are shown separately for different regions. For convenience, the parameter
Nindex 18 introduced to specify the position along the z-axis of the 12 modules forming a stave of the
SCT barrel: ningex = —6,...,—1,1,...,6, with increasing z-coordinate. For the endcaps, the terms
‘inner ring’, ‘middle ring’ and ‘outer ring’ specify the radial positions of the modules.
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Each point corresponds to one run.

3.1 Hit efficiency
3.1.1 Hit efficiency measurement

For a given SCT sensor, a hit efficiency for each track is defined by the equation

= Neluster ’ (31)
Neluster + Nhole

where N pster and Npoe denote, respectively, the number of clusters and the number of holes
associated with the track. If no cluster is found along the track in an SCT layer where one is
expected, its absence is counted as a hole, unless there is a known reason for this absence (such
as disabled modules, links or chips, or transient errors), in which case it is excluded from the hit
efficiency calculation. However, an exception is made for disabled or noisy strips, which can still
be counted as a hole.

The method used to measure the hit efficiency is the same as that discussed in ref. [14]. The
calculation uses only well-reconstructed tracks in the ID. Events with more than 500 tracks are
rejected, because of the high probability of reconstructing fake tracks from incorrect combinations
of clusters in such events. Furthermore, the tracks used are required to satisfy the following:

e transverse momentum pt > 1 GeV;

track fit quality identified as ‘good’;>
* transverse impact parameter |dy| < 10 mm;

* number of clusters on SCT sensors, excluding the sensor under consideration, Nfﬁ?ter > 6;

* number of holes in Pixel detector, Ng(i)’l‘eel =0;

NPixel

* number of clusters in Pixel IBL or B-layer (second innermost Pixel layer), N_ ¢ = >

* incident angle with respect to SCT module surface, |@inc| < 40°.

SAll tracks must have a fit quality satisfying y2/Ngof < 3 (Ngof = number of degrees of freedom). Details are given
in ref. [25].
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Figure 9. Hit efficiency measured in a typical pp collision run in July 2018. Values measured using all
bunches (only first BC) are shown by the black squares (red dots). (a) The hit efficiency averaged over each
SCT barrel layer and endcap disk. The fraction of bad strips is superimposed. (b) Evolution of the hit
efficiency from barrel modules in the run. The blue line shows the evolution of pile-up in this run.

In Run 2, the track-finding required the total number of clusters (holes) in the Pixel and SCT
combined to be N3 > 7 (NS! < 2). To avoid introducing any bias into the hit efficiency mea-
cluster hole
surement from these requirements, only tracks that would be reconstructed regardless of the state of
the sensor under consideration are used. Therefore, when excluding the sensor under consideration,
NS > 7and N3 < 1 are required. Additionally, any cluster unassociated with the track, but
cluster hole
found within a distance D¢, around the corresponding track position, is included in N¢jyster and

excluded from Ny in eq. (3.1). The value of Dy is set to 200 pm unless stated otherwise.

Figure 9(a) shows the hit efficiency for each barrel layer and each endcap disk measured in a
pp collision run in July 2018, with a pile-up value u between 25 and 50. The average hit efficiency
measured using all bunches in a train ranges between 97% and 98%, which is slightly lower than
the expected hit efficiency for the SCT sensors. This is due to the ‘01X’ readout mode, defined
in section 2.1.2. A real hit is lost when, by chance, the strip also has another hit in the preceding
bunch. If the hit efficiency is measured using only the first bunch crossing in each bunch train
(called “first BC’), it is around 99%. The result using the first BC is therefore considered to be the
intrinsic hit efficiency of the SCT sensor, while that determined using all bunches is also important
because it impacts the tracking performance. Thanks to the redundant design of the SCT, consisting
of multiple barrel layers and endcap disks typically providing eight SCT clusters per track, this 1%
loss of hit efficiency has a negligible impact on the tracking efficiency. The fraction of bad strips
in each layer, including both the problematic strips identified by the calibration (section 2.2) and
the noisy strips (section 2.3.2), is superimposed on figure 9(a). There tends to be anti-correlation
between the hit efficiency and the fraction of bad strips, indicating that the non-uniform distribution
of hit efficiency across the SCT regions can be partially attributed to the bad strips.

Figure 9(b) shows the hit efficiency measured using barrel modules as a function of time
since the start of a run, with the evolution of the level of pile-up superimposed. The intrinsic hit
efficiency found using only the first BC is constant and remains above 99%. The difference between
the intrinsic hit efficiency and the hit efficiency measured using all bunches is about 2% at the
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beginning of the run, when u = 50, decreasing to about 1% at the end of the run, when u = 25.
From this, the inefficiency induced by the 01X readout mode is seen to be proportional to the level
of pile-up, as expected.

Systematic uncertainties in the hit efficiency are estimated as described in ref. [14]. All uncer-
tainties are symmetrised by taking the larger of the upward and downward variations. Uncertainties
arising from inclusion of unassigned clusters within D, are estimated by varying the value of Dy
between 0 and 500 pm. The change in the measured efficiency when a cluster is also required on
the other side of the sensor in the same module is taken to be another systematic uncertainty. The
intrinsic hit efficiencies using the first BC in a low-pile-up run are measured to be (99.00+0.53)%
(endcap A), (99.26+0.21)% (barrel) and (98.83+0.51)% (endcap C). These values are consistent
with 99% and the impact on the tracking efficiency is negligible.

3.1.2 Interstrip hit efficiency

A precise study of the hit efficiency as a function of position, for charged particles passing in between
two strips of an SCT sensor (referred to as the interstrip hit efficiency), was performed using test
beams [26] before the construction of the SCT. A slight drop in the hit efficiency was observed
in the centre of the gap between two strips, after irradiation and in the presence of a magnetic
field. A comparable feature can be investigated using data collected during Run 2 for the real SCT
sensors, which have been irradiated during ten years of LHC operations. Figure 10 shows this
efficiency as a function of relative x, the distance of a track from one strip towards the next. Position
resolution results in an uncertainty of about 20 um [14] in the estimate of relative x for each track.
For this measurement, only modules in barrel layer 3 with |ningex| = 1 are chosen, because they are
located in the innermost layer, where high radiation fluence is expected, and they have tracks almost
perpendicular to the sensors. In order to avoid inefliciencies from other sources, only modules that
are fully active and have HV greater than 150 V are used. An incident angle of @i, = —5° (with the
direction defined in the same sense as for global ¢) was chosen because it is close to the Lorentz
angle [14]. A small dip of 0.8% is observed in the interstrip hit efficiency in the middle of the gap
between two strips, qualitatively reproducing the result obtained from test-beam data.

3.1.3 HY dependence of hit efficiency

During the second half of Run 2, the n-type bulk of the silicon sensors was expected to invert
into quasi-p-type. For type-inverted sensors, the depletion region develops from the backplane
towards the strips. The operational HV therefore needs to be sufficiently higher than Vgp to allow
the depletion region to reach the strips and maximise the charge collection efficiency. In order to
confirm the optimal HV, as well as to study radiation damage effects, the HV dependence of the hit
efficiency was occasionally measured during physics runs.

Figure 11 shows comparisons of hit efficiency as a function of HV for modules with |7index| = 1
in barrel layer 3. The data were collected throughout Run 2, between November 2015 and September
2018. Until May 2017, the efficiency curves remained almost unchanged, rising sharply as the HV is
increased. In November 2017, however, the increase in efficiency with HV was slower, as expected
from type inversion. Between November 2017 and April 2018, this increase became slightly faster
again, due to beneficial annealing which occurred during the year-end technical shutdown. Around
the end of Run 2 (September 2018), the start of the efficiency plateau was at around 140 V, close
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Figure 11. Hit efficiency as a function of HV for modules with |jyqex| = 1 in barrel layer 3, measured from
November 2015 to September 2018.

to the original operational HV of 150 V. The hit efficiency was measured to be slightly lower in
September 2018, and the operational HV was therefore increased to 250 V to recover the efficiency.

3.2 Cluster width and Lorentz angle

The cluster width is defined as the number of contiguous strips with hits that form a cluster. Tracks
used to measure the cluster width must satisfy the following criteria, matching those used in the
previous study [14]: pt > 0.5 GeV, |dp| < 1 mm, NCSIE;{C .= 8and NS?;L . = 2. Other track selection
requirements are the same as those used in the hit efficiency measurement (see section 3.1.1).

Figure 12 shows cluster widths measured in each of the four barrel layers at a HV of 150 V. These
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Figure 13. (a) Mean cluster width as a function of ¢;,. for barrel layer 3 at five values of HV, measured in
November 2015. (b) Evolution of mean cluster width as a function of HV for barrel layer 3 during Run 2.

distributions peak at 1 and have a long tail, with a mean width of about 1.2. A cluster width of 2
is induced by charge sharing between two neighbouring strips. The exponentially decreasing tail
of the cluster width distribution up to ~10 is induced by d-rays [14]; for the long tail component
greater than ~10, contributions from multiple charged particles, where their hits are merged into
one cluster, may be more prominent. Clusters with zero width are due to tracks with a hole in the
corresponding barrel layer.

The HV dependence of the mean cluster width has been investigated using HV scan data
collected during physics data-taking runs. The level of pile-up was constant to within 4%—7%
during these HV scans. Figure 13(a) shows distributions of mean cluster width as a function of
¢inc for barrel layer 3 at five different HV values. The mean cluster width increases as the HV is
increased up to 75 V, but then it decreases by a few percent as the HV is increased further to 150 V.
This behaviour suggests there is a trade-off between better charge collection at higher HV, increasing
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Figure 14. Mean cluster width as a function of ¢;,. for barrel layers 3 to 6 in a typical pp collision run
in August 2018. Modules with crystal orientation (a) <111> and (b) <100> are shown separately. For
geometrical simplicity, only the sides with no stereo angle are included.

the cluster width, and faster charge collection, which decreases the cluster width by suppressing
transverse charge diffusion. To evaluate the HV dependence of the cluster width, only tracks with
dinc = [5.0°,—-4.5°], close to the minimum in cluster width, are used. Figure 13(b) shows the HV
dependence of the mean cluster width measured in barrel layer 3, from data collected between 2015
and 2018 in Run 2. Until May 2017, the cluster width increased rapidly as the HV was increased to
around 50 V. Since November 2017, however, the increase of the cluster width has become slower.
This is consistent with the observed change in the HV dependence of the hit efficiency, discussed in
section 3.1.3, and appears to be induced by type inversion. The peak in the mean cluster width around
70-100 V is more visible in the later curves; further investigation is needed to understand this feature.

The displacement from zero of the position of the minimum cluster width (MCW) in each
of these distributions, |¢nmcw|, gives a good estimate of the Lorentz angle, 8, resulting from the
deviation of the drift-charge direction from the electric field vector, due to the Lorentz force acting
on the charge carrier in the axial magnetic field. The Lorentz angle in a magnetic field Bis given by

tan 0, = yuualBl,

where yy and p4 denote the Hall factor and the charge-carrier mobility, respectively. The charge-
carrier mobility is affected by the HV, the thickness of the depleted region and the temperature.
The Lorentz angle is important in the barrel modules, where the electric field from the HV is
perpendicular to the magnetic field from the solenoid. When the incident angle of a particle equals
the Lorentz angle, all induced charge drifts along the particle direction, giving the minimum cluster
width. Only negatively charged tracks are selected, because the tilt of barrel SCT modules relative
to the radial direction results in positively charged tracks populating only the lower end of the
@inc distribution, below the minimum. The track selection requirement is lowered to Ncslﬁier >,

because the tighter requirement was found to bias the shape of the cluster width distributions.
The data are fitted using a convolution of the function [14]

f(¢inc) = al tan ¢inc —tan ¢MCW| +b (3-2)
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Figure 15. Time dependence of ¢picw between 2015 and 2018 in barrel layer 3. Only the sides with no stereo
angle are shown. The error bars are statistical, while the shaded bands show the systematic uncertainties. The
time when the nominal operational HV was raised from 150 V to 250 V is indicated by the vertical dashed line.

with a Gaussian distribution. The fitted parameters are ¢mcw, a, b and the width of the Gaussian
distribution. Typical fit results are shown in figure 14; modules with crystal orientations of <111>
and <100> are shown separately, because differences in the charge-carrier mobilities between these
two types of sensor are expected to result in different values for the Lorentz angle. The displacements
of ¢mcw from zero correspond to a shift of ~10 pm in the position of the cluster on the sensor
surface. The effect of the Lorentz angle must therefore be taken into account for precise tracking
with the SCT. The layer-dependence of the minimum cluster width was marginal in Run 1 [14].
However, figure 14 clearly shows a large layer-dependence during Run 2, because the hit occupancy
was significantly higher, resulting in a greater probability that hits induced by multiple charged
particles are merged into a single large cluster. Although the four barrel layers are almost equally
spaced, the minimum cluster width in barrel layer 6 is almost equal to that in barrel layer 5. This is
due to the higher temperature of barrel layer 6 (see section 1), which induces faster diffusion of the
charge carriers, and consequently wider dispersion over the sensor surface.

Figure 15 shows the variation of ¢yncw measured in barrel layer 3 between 2015 and 2018,
corresponding to the evolution of the Lorentz angle. No corrections have been made to account for
changes in parameters such as the HV setting or the cooling temperature; however, these were stable
up to September 2018, when the operational HV was intentionally raised from 150 V to 250 V. The
systematic uncertainty in ¢ncw is estimated by fitting an alternative asymmetric function, in which
the parameter a in eq. (3.2) is allowed to have different values above and below the minimum. The
deviation from the nominal fit is taken to be the systematic uncertainty. During Run 2, |¢mcw]|
increased continually, with a change of about 0.5° between 2015 and 2018. This is presumably
induced by radiation damage to the sensors, which modifies the space-charge distribution and
changes the mobility. For a sensor thickness of 285 pm, this change of 0.5° corresponds to a shift
of ~1 pm in the cluster position. This is negligibly small because the intrinsic position resolution of
the SCT is about 20 um [14]. However, in Run 3, where the total fluence of radiation will increase
by a factor of two, monitoring of changes in the Lorentz angle may become more important.
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Figure 16. Distributions of chip-averaged (a) response-curve noise, (b) noise occupancy and (c) amplifier
gain. Data from February or March 2015 (top) and from September or November 2018 (bottom) are compared
for different types of modules. For the barrel, only modules with sensors of crystal orientation <111> are
plotted; barrel layer 6, which has a higher temperature and thus higher noise, is shown separately. Other barrel
modules are combined regardless of the layer because there is no significant difference. For the endcaps,
chips reading out HPK and CiS sensors are shown separately.

The final ¢pcw measurement shown in figure 15 corresponds to the period after the operational
HV of all modules in barrel layer 3 was raised to 250 V, which reduced |@nicw| by about 0.7°. This
behaviour is expected, because increased HV results in lower charge-carrier mobility [27], and thus
a smaller deflection in the magnetic field. The change in the HV setting is taken into account when
the SCT cluster position is used to determine a space point for tracking.

3.3 Noise measurement

One of the crucial conditions for maintaining high tracking efficiency is to keep the readout
thresholds as low as possible. This is possible only when the input noise levels are sufficiently
low. It is therefore important to understand the noise levels of radiation-damaged sensors during
detector operation. Two methods are used to evaluate the sensor noise in dedicated SCT stand-alone
calibration runs: (i) the response curve test, which measures the input equivalent noise charge (ENC,
with the unit ‘number of electrons’), and (ii) the noise occupancy test. The former method reflects
the width of the Gaussian-like noise distribution at around one standard deviation (10°), while the
latter measures the tail of the noise distribution at around 40~ when a threshold is set at 1 fC, and it
is therefore more sensitive to external noise sources.

Distributions of the chip-averaged response-curve noise and noise occupancy at a HV of 150 V
are shown in figure 16(a) and figure 16(b), respectively. Results from February or March of 2015 and
from September or November 2018 are compared, corresponding to the start and end of the Run-2
physics data-taking period. Results from the response-curve test are also summarised numerically
in table 5. During Run 2, most of the chip-averaged noise levels increased marginally by 10%—20%.
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The response curve test also provides measurements of the amplifier gain, as shown in figure 16(c).
The gain decreased gradually by around 10% during Run 2. Since calibration runs were carried out
several times each year (see section 2.2) to adjust the threshold to be 1 fC, the observed decrease in
gain had only a marginal impact on the hit efficiency.

Figure 17(a) shows the evolution of ENC for barrel layer 3 and for endcap A disk 4, where
measurements made through each of the two FE-links on either side of a module (referred to as
‘link-0" and ‘link-1") are shown separately. The endcap modules show significantly higher noise
in link-0 than in link-1; the difference creates a double peak in the noise distributions shown in
figure 16. Figure 17(b) shows the ENC for all modules in endcap A. Almost all of the HPK modules,
except those in disks 1 and 9, have more noise in link-0, while the CiS modules show only a marginal
difference. In the endcaps, all the modules are oriented so that the side with link-1 is attached to
the support frame, while the other side with link-0 is generally exposed to the air.® In the case
of disks 1 and 9, however, the side with link-O also faces the support structure or the plate of the
thermal enclosure. It is therefore evident that the exposed HPK sensors show systematically higher
levels of noise; however, its source is not yet clear. Nevertheless, the ENC level is at most 2000
electrons (0.32 fC), which is sufficiently low compared to the threshold of 1 fC.

In contrast to the endcap modules, barrel modules do not show a noise-level difference between
link-0 and link-1. The noise from sensors with the <100> crystal orientation is consistently lower
than that from sensors with the <111> orientation, reproducing the results from earlier studies
presented in ref. [28].

3.3.1 HY dependence of noise

The HV dependence of the noise levels was measured periodically throughout Run 2 using response
curve tests. Figure 18(a) shows results from tests performed between February 2013 and May
2019. In November 2016 a knee-like structure started to appear in these curves, and the HV value
corresponding to this knee increased with time until November 2018. The same trend is observed for
both crystal orientations <111> and <100>, although the absolute level of the noise is significantly
different. This knee-like structure also appears in a noise occupancy scan performed in May 2019,
which is shown in figure 18(b).

The noise level is largely determined by the interstrip capacitance, which is the dominant
component of the overall sensor capacitance [7], and it is sensitive to the properties of the silicon at
the surface of the sensor. The development of the depletion region near the surface shows a complex
evolution during type inversion, because of the non-uniform interstrip space-charge distribution.
The appearance of the knee-like structure is predicted to be a qualitative indicator of type inversion;
such behaviour was reported, for example, in ref. [28]. Its evolution results from changes in the full
depletion voltage. As shown in section 4.2, type inversion in late 2016 is consistent with a more
quantitative analysis using the /-V relation.

%How the endcap modules are attached to the disks is shown in figure 1. Modules staggered to the left are attached
to the disk and face the collision point, while modules staggered to the right are attached to the disk and face away from
the collision point. The side of each module on which link-1 is located is the side attached to the disk.
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Figure 17. Chip-averaged noise. Only modules with HV between 145 V and 155 V are shown. (a) Evolution
of the response-curve noise for barrel layer 3 (top), the outer ring of endcap A disk 4 (middle) and the middle
ring of endcap A disk 4 (bottom). Measurements from link-0 and link-1, from modules with different crystal
orientations and also from modules manufactured by HPK and CiS, are shown separately. (b) Chip-averaged
response-curve noise for all modules in endcap A. From top to bottom, outer, middle and inner rings are
shown. Measurements from link-O and link-1, and also from HPK modules and CiS modules, are shown
separately. The nine segments separated by vertical dashed lines correspond to disks 1 to 9.
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Figure 18. HV dependence of the noise for modules in barrel layer 3. (a) Response-curve noise measured
between February 2013 and May 2019. (b) Noise occupancy measured in May 2019.
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4 Radiation damage

During LHC operations, the SCT silicon sensors are irradiated by various species of particles with
a wide range of energies, from the TeV-scale to thermal neutrons, resulting from pp collisions
at the interaction point, or from back-scattered secondary particles from the calorimeters or the
accelerator collimators. After receiving radiation, the SCT performance is changed due to the
creation of additional states within the semiconductor band gap. The SCT was designed to endure
up to about 700 fb~! at a pp collision energy of 14 TeV [29]. Up to the end of 2018 the accumulated
integrated luminosity was 156 fb=! at 13 TeV during Run 2 and 29 fb~! at 7-8 TeV during Run 1,
so a safe margin for further operation remains.

Nevertheless, the intense radiation flux in the environment of the ID has modified various SCT
parameters such as the leakage current, the full depletion voltage and the probability of charge
trapping. The expected fluence around the SCT is shown in figure 19, with the numerical values
calculated at the positions of each barrel layer and endcap disk listed in table 6. These are based on
simulation using the FLuka [30] software package and a detailed description of the ATLAS detector
geometry [31]. Inelastic pp collisions were simulated using the PyTHiA 8 event generator [32, 33]
with the MSTW2008Lo parton distribution functions [34] and the A3 set of tuned parameters [35].
The integrated luminosities delivered by the LHC at v/s = 7, 8 and 13 TeV correspond to 5.6, 23.2
and 159.4 fb~!, respectively. These slightly larger luminosity values than in ref. [21] result from the
inclusion of beam collision periods outside the stable beam time when data collection occurred.

Both the total ionising dose (TID) and the non-ionising energy loss (NIEL) affect the perfor-
mance of the SCT sensors. The TID as well as neutron fluences around the SCT were monitored
by a dedicated online radiation monitoring system [36], in which the TID was measured us-
ing radiation-sensitive p-MOSFET transistors, while the neutron fluences were measured using
forward- and reverse-biased p-i-n diodes. There is good agreement between these measurements
and the simulated radiation background in Run 2, as presented in ref. [37].
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Table 6. Simulated 1-MeV-neutron equivalent fluence in units of 10'> cm=2 up to the end of Run 2. Radiation
backgrounds originating from pp collisions are assumed to be symmetric about the origin along the z-axis.
The r and z positions listed correspond to the centres of the modules.

|Zindex|  |z| [mm] Barrel 3 Barrel 4 Barrel 5 Barrel 6
(r =299 mm) (r =371 mm) (r=443mm) (r =514 mm)

1 61.9 4.30 341 2.85 2.45

2 184.0 4.37 3.46 2.87 247

3 308.7 4.47 3.51 2.92 2.52

4 431.2 4.53 3.58 3.00 2.57

5 555.3 4.65 3.71 3.09 2.66

6 679.1 4.80 3.84 3.20 2.76
Disk  |z| [mm] Inner Middle Outer

(r=304.6 mm) (r=396.5mm) (r=499.4 mm)

1 853.8 - 3.86 3.07

2 934.0 5.12 3.89 3.08

3 1091.5 5.20 3.98 3.19

4 1299.9 5.27 4.14 3.31

5 1399.7 5.37 4.21 3.40

6 1771.4 5.69 4.47 3.67

7 2115.2 - 4.94 4.01

8 2505.0 - 542 4.66

9 2720.2 - - 5.33

The instantaneous leakage current increases are approximately proportional to the NIEL. Too
large a leakage current might damage the SCT sensors due to thermal runaway. Radiation damage
also modifies the doping concentration, which is proportional to Vgp. As damage accumulates,
the number of donors in the n-bulk material decreases, while the number of acceptors effectively
increases. This leads to type inversion of the n-bulk into p-bulk material, with a further increase of
Vep. After type inversion, the HV applied needs to be kept above Vip to achieve full hit efficiency.
If Vip becomes too high, this might therefore lead to degradation of the tracking performance.
Although these changes in the bulk properties were taken into account in the design of the SCT,
improved understanding of these characteristics is important for safe operation of the SCT.

In this section, the evolution of the leakage current and the full depletion voltage are discussed;
leakage currents from both the pixel detector and the SCT are reported in ref. [38]. Other effects of
radiation damage, such as SEUs and changes in hit efficiency, cluster width and noise, are discussed
in sections 2 and 3, respectively. Variation of the charge-trapping probability is also important, but
its impact on the SCT at the end of Run 2 is expected to be marginal [39, 40] and it is therefore not
discussed in this paper.
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4.1 Leakage current

The main source of leakage current is thermally generated electron-hole pairs. The leakage current
is therefore highly dependent on the sensor temperature, Tgensor, as Well as on the accumulated
radiation damage. In order to evaluate the evolution of the leakage current under the same conditions
throughout all periods, the measured current on the HV supply line (HV current), I e,s, is normalised
to a reference temperature, Tyorm = 0°C, using the relationship

2
I T; E 1 1
( leak ) B ( o ) exp |:_ gen ( - )] ’ (4‘1)
Imeas Tsensor 2kp \Thorm Tsensor

where I is the normalised leakage current, Ege, is the effective electron-hole pair generation

energy of 1.21 = 0.01 eV [41], and kg is Boltzmann’s constant.

The value of Tyeysor for each module is determined from a hybrid-board temperature, Thybrids
measured using negative temperature coeflicient thermistors mounted on the hybrid boards. How-
ever, there is an offset between these temperatures, 67 = Thybrid — Tsensor» due to the thermal
impedance between the sensor and the thermistor, which depends strongly on the mechanical and
thermal structure of each board. It differs from module to module, due to small variations in the
thermal impedances among the hybrid circuits, sensors and cooling pipes. In Run 1 [14], 6T was
estimated using thermal simulations based on the finite element method (FEM). Compared with the
barrel modules, the endcap modules had larger uncertainties on these estimates. Moreover, a sys-
tematic difference in the raw leakage current between the two endcaps existed, which could not be
explained by the FEM estimation. It was therefore difficult in Run 1 to estimate the correct endcap
sensor temperatures using the thermistors. In order to improve the estimate of /je,x for the endcap
modules, a method to determine 67 using cooling temperature scans was developed during Run 2.

4.1.1 Development of temperature correction method

A value of o7 for each module was estimated using dedicated measurements, in which the cooling
temperature was varied. With the LV supplies to the hybrid circuits turned off, Tyepsor Was considered
to be equal to Thyprig, due to the absence of any hybrid heating sources. After turning on only the
HYV, the cooling temperature was then increased from approximately —20°C to 0°C. In this scan,
the relation between Thybrid = Tsensor and Imeas at various temperatures was measured for each
module. Two representative examples are shown in figure 20(a), together with the results of fits
using eq. (4.1). Once the cooling temperature had returned to its nominal value, the LV was then
turned on. Since heat was generated by the hybrid circuit, Thyiq increased to become significantly
higher than Tepsor, While Tgensor remained sensitive to Iieas and so could be deduced for each module
using the fitted curve. Hence values of 67" were obtained.

A systematic uncertainty of 1°C in 67 is assigned for all modules. This was estimated by
performing an alternative fit using only the lowest pair of Thyhrig data points and comparing the
result with that from the full fitted curve. Smaller contributions arising from the stability of the
leakage current measurements, the digitisation of the temperature measurements and the uncertainty
in Ege, are also included within this 1°C uncertainty.

Distributions of 6T for modules in barrel layers 3, 4 and 5, and in each of the endcap disks are
shown in figure 20(b). Barrel layer 6 cannot be cooled to a temperature lower than 6°C, as explained
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Figure 20. (a) Measured currents as a function of Tyyprig for typical barrel and endcap modules with the LV
off. The blue curves are obtained from fits to the measured points using eq. (4.1). The red point displaced
from each curve shows the hybrid temperature measured with the LV on; the temperature differences 67 are
indicated by the arrows. (b) Distributions of ¢7 for different categories of SCT modules.

in section 1, so modules in layer 6 were excluded from the 67 measurement. The average 67 for
barrel modules is about4°C. Asexpected, 07 is larger for the endcap modules, with broader distribu-
tions and averages in the range ~15°C—17°C. There is a difference of about 2°C between the average
values of 7 measured in endcap C and in endcap A. There has been a difference in the cooling tem-
peratures set for endcap A and endcap C since the initial commissioning of the SCT, in order to com-
pensate for a measured difference in Thypia between the two endcaps. The cause of this difference in
Thybria s unknown, but it may also result in the systematic difference in 67 between the two endcaps.

4.1.2 Leakage currents at the end of Run 2

Figure 21 shows normalised leakage currents per unit volume for all barrel and endcap modules in
November 2018, at the end of Run 2, with the HV set to 150 V. Four modules with abnormally high
currents and 42 permanently disabled modules have been excluded. These plots display a lateral view
of the SCT, with the horizontal axis corresponding to the z-coordinate, and modules with the same r-
and z-coordinates, but different azimuthal locations, grouped together within the same vertical bin.

Almost all modules in the same group have consistent leakage currents to within about 3%.
Despite the difference of about 2°C between the average values of 67 found in the two endcaps, as
shown in figure 20, their leakage currents agree once they are normalised to 0°C, giving confidence
in the validity of this method for correcting the sensor temperatures. No appreciable differences in
leakage currents are observed among sensors from different manufacturers, with different crystal
orientations (<111> vs <100>), or between the standard or oxygenated silicon wafers.

There is a trend toward larger leakage currents in regions at higher |z| for all radii. In the barrel
layers, the normalised leakage currents of modules at |ingex| = 1 (closest to z = 0 mm) are about
3% smaller than those of modules at |fipgex| = 6 (near |z| = 680 mm). This is in contrast to the
end of Run 1, when a small excess in leakage current was measured in the central region of barrel
layer 3 and uniform distributions were observed in the other barrel layers [14]. The trend seen in
figure 21 is consistent with the radiation fluences listed in table 6. These results are compared with
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Figure 21. Measured leakage currents per unit volume, normalised to 0°C, with HV at 150 V, for (a) barrel
and (b) endcap modules in November 2018. Modules with the same r- and z-coordinates, but different
azimuthal locations, are grouped together within the same vertical bin, arranged from ¢ = 0° on the left to
¢ = 360° on the right. Modules in endcaps A and C, as well as from different sensor manufacturers, are plotted
in different colours. Horizontal solid and dashed bars indicate model predictions from the Hamburg model,
using conversion factors estimated from FLuka and GEANT4 transport simulations. The main difference
arises from the simplified detector geometry used by FLUukA, in comparison with the GEANT4 simulation.
The uncertainties in the predictions are about 15%, and are not shown in the plot to maintain visibility.

predictions from the Hamburg model” [42, 43] with conversion factors estimated from FLuka and
GEANT4 [44] transport simulations, where about 15% uncertainty in each simulation is expected.
Within this uncertainty, the predictions agree with the results.

4.1.3 Evolution of leakage currents

Hybrid temperatures, and the voltages and currents of all HV power supplies were monitored
continuously since the start of data collection and their values were stored in a database. The
normalised leakage currents can therefore be calculated precisely throughout Run 2, with the 6T
correction applied, and compared with variations in operating conditions. In LS1 and other technical
shutdowns, as well as during unexpected power outages, when Thyyrig data were not available, the
temperature of the closest cooling pipe is used instead. This is a reasonable approximation, because
there was no heat generation in the SCT volume during these periods.

Typically, 150 Ijyeas data points are recorded for each module every hour. During most physics
runs, Iieas drops by 0.2%—2% as the instantaneous luminosity decreases, consistent with expecta-

7The current-related Hamburg model has been commonly used to describe the annealing effects of the radiation-
induced leakage current. It has an exponential and logarithmic term with parameters obtained experimentally in a series
of accelerated annealing tests. Details of the parameterisation are discussed in ref. [39].
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tions from self-heating of the sensor and heat from the front-end chips. A simple time-weighted
average is used to determine a single value of the normalised leakage current for each module in each
physics run. During LS1, technical stops and periods with no physics runs, Iye,s values recorded
during calibration runs are used instead. These two sources of data show consistency to within 1%.

The HV current measured for a module depends on the HV applied to the sensor. Above the
full depletion voltage, the HV current increases by several percent for each additional 100 V. Also,
due to the filter resistance of about 12 kQ on the HV supply line, the true voltage on a sensor is
lower than the voltage applied by the power supply; the difference is about 20 V for modules in
barrel layer 3, for which the operational HV was increased to 250 V in late 2018. This introduces
an additional uncertainty of up to about 1% in these Ine,s values.

Figure 22 shows the evolution of normalised leakage currents during Run 2 for four represen-
tative groups of modules: modules at nij,qex = 1 in barrel layer 3, modules at nj,gex = 6 in barrel
layer 6, outer ring of endcap C disk 9 and inner ring of endcap A disk 5. Values of Tyepsor Were
around —1°C, +5°C and —7°C for modules in barrel layer 3, barrel layer 6 and the two endcaps,
respectively, during data-taking periods, while they were >15°C during LS1 and winter technical
shutdowns. As described in section 2, in 2015 all modules except those in barrel layer 6 were set
about 5°C warmer to avoid condensation in the SCT volume. Leakage currents increased by more
than one order of magnitude over the course of Run 2. The leakage current decreased by 20%—30%
during each winter shutdown due to annealing.

Leakage current measurements are compared with two model predictions in figure 22: the Ham-
burg model [42, 43] and the Sheffield model [45, 46].8 The Sheffield model predicts about 15% more
leakage current than the Hamburg model. Systematic uncertainties in these model predictions are
estimated by varying each parameter of the respective model by +1 standard deviation and summing
the components in quadrature. Additional uncertainties are also included in the temperature mea-
surements (1°C) and the delivered luminosities (1.7%). Uncertainties from the FLuk A simulation are
not included; however, these comparisons provide an estimate of the quality of the simulation as well
as the uncertainty in the current-related damage factors. The model predictions are consistent with
the data at a level of around 30%. The partial annealing which occurred during the winter shutdown
periods is also modelled with similar precision. Discontinuities in the data-to-model ratios between
years may be due to errors in the estimation of Tyepsor, for which the 07 correction was performed
only once a year during shutdowns, as well as from other imperfections in the model predictions.

4.2 Full depletion voltage

Since all SCT sensors are expected to have been type-inverted, it is essential to understand Vgp and
to predict its future evolution. If space charge is uniformly distributed within the bulk silicon, then
the leakage current should be proportional to the depleted volume, which develops as a function of
the square-root of the HV. Once full depletion has been reached, the leakage current remains nearly
constant. Therefore, a point of abrupt change in the variation of Ipe,s as a function of the HV (I-V
curve) provides an estimate of the value of Vpp.

8This is an alternative model to the current-related Hamburg model. Its current-related damage constant was obtained
using actual SCT sensors irradiated at —10°C. It parameterises the annealing behaviour using a sum of five exponential
functions with time constants given by the proton and neutron irradiation tests. Exact formulae for both the Hamburg
and Sheffield models are briefly summarised in appendix A of ref. [14].
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Figure 22. Evolution of normalised leakage currents for four groups of modules: from left to right, barrel

layer 3 (modules at nipgex = 1), barrel layer 6 (modules at njpgex = 6), endcap C (outer ring of disk 9) and

endcap A (inner ring of disk 5). The main plots show leakage current data (red points) compared with
predictions from the Hamburg model (blue line with uncertainty bands). Data points were measured during
physics runs or in SCT stand-alone calibration runs. The lower two sets of plots show ratios of data to model
predictions from the Hamburg and Sheffield models. Both models use the same conversion factors estimated

from FLuka and GeEaNnT4 transport simulations.

model prediction, but uncertainties from the FLuka simulation are not included.
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Figure 23. Measurement of Vgp. (a) Evolution of the relation between the HV current and the HV (I-V
curve) for one module in barrel layer 3, from June 2009 to November 2019. (b) Example of linear fits made
to an /-V curve. The scale of the horizontal axis is linear for the square-root of the HV. The red and blue
dots are the data points used for the two linear fits.
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Figure 23(a) shows the evolution of the /-V curve from one of the modules in barrel layer 3,
with 15 different measurements made between 2009 and 2019 superimposed. As expected, the -V
curve consists of a lower region, in which I ey rises sharply, and a higher region where the rate of
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increase is less. As shown in figure 23(b), separate linear fits are made to the data in each region,
and the crossing point of these two lines is considered to be Vrp. Values of Vgp obtained from all
modules in the barrel region on three different dates are shown in figure 24. In November 2011, all
barrel layers had similar values of Vrp around 50 V. In 2016 and early 2017, almost all modules had
small values of Vgp, indicating a significant decrease in the donor concentration in the silicon bulk.
By late 2018, values of Vpp had increased again, clearly indicating type inversion. Barrel layer 3
(innermost layer) has the largest values of Vgp, around 70 V, while barrel layer 6 (outermost layer)
has the lowest, around 30 V.

A similar analysis was performed for various periods during Run 2. The results are shown
in figure 25, separately for three representative groups of modules: barrel layer 3, the outer ring
of endcap disk 9 and the inner ring of endcap disk 6 (oxygenated sensors). The evolution of Vrp
is compared with predictions from the Hamburg model, where radiation-induced changes of the
space-charge concentration are expressed by four main components: removal of initial donors,
creation of stable acceptors, creation of short-term acceptors and a reverse annealing term, where a
constant space-charge distribution over the bulk volume is assumed. Overall, the model reproduces
qualitatively the Vpp changes observed in the data, including the type inversion in 2016—17. Short-
term annealing effects are more prominent in the data, however. The thermal history of the detector
is included in the model. For example, the SCT was kept at room temperature for two weeks in
March 2019, because of maintenance work on the evaporative cooling system. Annealing occurred
at a faster rate than predicted during this period, as can be seen in figure 25. Although this behaviour
is not fully understood, the larger than expected decrease of Vgp helps to maintain safe detector
operating conditions. The expected increase of Vpp is at most 150 V, so this result allows continued
SCT operation during LHC Run 3.

5 Conclusion

Operating conditions for the SCT detector during LHC Run 2 were more challenging than they had
been in Run 1, because of the increased instantaneous luminosity and rates of pile-up, resulting in
higher data transmission rates and more radiation damage. Nevertheless, the SCT was available for
99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%. This was due to
various improvements made to the SCT DAQ system: introduction of additional RODs and BOC:s,
more aggressive data compression, and automatic recovery mechanisms for SCT modules and
RODs. The fraction of noisy strips often increased up to 0.3%, but these increases were temporary
as recovery could be achieved by regular detector calibrations. The SCT calibration time was signif-
icantly reduced to fit into the shorter intervals available between LHC fills in the later years of Run 2.

Key parameters that determine SCT performance are high hit efficiency and low noise occu-
pancy. During Run 2 the hit efficiency of the SCT remained around 99% or higher. Noise occupancy
was kept below 5 x 1074, although noise levels increased by 10%—20% during Run 2. Noise levels
and their evolution were observed to differ between the different types of sensors.

Itis important to understand the effects of radiation damage to the SCT sensors. This was studied
in terms of the leakage current and the full depletion voltage, which were monitored throughout
Run 2. A method was developed to correct for the offset between the sensor temperatures and
the temperatures measured using thermistors on the hybrid boards. This enabled leakage currents
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in the endcap modules to be determined more accurately. Leakage currents in the SCT modules
increased by more than a factor of ten during the four years of Run-2 operation. Measured values
agree with predictions made by the Hamburg model to within ~30%. The full depletion voltage was
measured from the HV dependence of the leakage current. Overall trends, such as type inversion,
are consistent with predictions from the Hamburg model, while short-term annealing effects were
more prominent in the data.

In summary, a number of new operational developments and improvements were made, which
allowed stable operation of the SCT with high efficiency during Run 2. Performance parameters
such as hit efficiency, cluster width and noise levels, as well as radiation damage, have been measured
and understood. In LHC Run 3 an integrated luminosity of about 200 fb~! is expected with a level of
pile-up similar to that in Run 2. The experience and improved understanding of the detector acquired
during Run 2 will be important to allow the safe and stable operation of the SCT until the end of Run 3.
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