TII-P0854

HEME PROTEINS

,846

LOW TEMPERATURE TIME DEPENDENT RESONANCE RAMAN SPECTRA OF CO BOUND TO SPERM WHALE MYOBLOBIN, Mb AT pH 3: I E T Vben, J Friedman 348 (AT&T Bell Labs & NYU (chem)) B Cowen, H Frauenfelder (U of Illinois, CU (phys)) and R Sanches (U Sao Paulo, Brazil (phys)) 49341719

Cryogenic samples of MbCO at pH 3 were studied using ns and ps time resolved resonance Raman spectroscopy. Using a 10ns, 423nm, excitiation-probe laser pulse, we observed a predominantly CO bound spectrum even at 10K, whereas a pH 7 sample is completely photolyzed. The values of the core markers are similar at pH 3 and pH 7, indicating a 6-coordinated, low-spin species; however, the Fe-CO stretch frequency is $507cm^{-1}$ to $\sim 490cm^{-1}$, decreased from revealing a more open heme pocket. Shifting the pulse to 430nm results in an contribution from enhanced photoproduct population. The relative amplitude of the 10ns photoproduct spectrum decreases with increasing temperature. Despite adequate S/N, the Fe-His(F8) stretch is not observed showing that the Fe-His(F8) bond is broken by 10ns. We also measured the time evolution of the photoproduct Raman spectrum from 30ps to 3ns at 80K and 100K. 50% recombines non-exponentially in ~300ps, supporting the flash time by photolysis rebinding data of Cowen et al (1989, Biophys J. 55.M- PM-E11)

Tu-Pos56

THEORY OF LIGHT SCATTERING FROM SMALL SPHERULITIC DOMAINS OF SICKLE HEMOGLOBIN POLYMERS. J. R. Wheeler and Marilyn F. Bishop, Dept. of Physics, Virginia Commonwealth Univ. 1020 West Main St., Richmond, VA 23284-2000.

We have calculated the light scattering from spherulitic domains of sickle hemoglobin (HbS) polymers, where the domains are well separated and small compared with the wavelength of incident light. Inside a spherulite, we have used a model uniform anisotropic effective medium dielectric tensor. This effective medium is composed of polymers, monomers, and solution, and the anisotropy results from polymer alignment within the domain. Outside the spherulite, we assume an isotropic effective medium composed of monomers and solution. results depend on the average length of polymers, which we have obtained from the double nucleation mechanism as a function of the extent of polymerization.

This work is supported by NIH Grant Number 38614.

Tu-Pos55

CONFORMATIONAL DISORDER AND REACTIVITY: PHOTODISSOCIATION QUANTUM YIELD STUDIES IN OxyHb(Mb)

M. Chance, M. Chavez, S. Courtney, J. J. Friedman, J. M. Ondrias, A. A. Bell Labs, Georgetown U, NYU, U

Transient absorption studies by several groups suggest that the low quantum yield of photodissociation of O₂Hb(Mb) at ambient temperatures is due to geminate recombination occurring from picoseconds to nanoseconds. We have extended these studies to cryogenic temperatures where we find, using both cw and 30 ps pulses, that a sizable fraction (60% at 8K) of an O₂Hb(Mb) sample can not be photodissociated even with extensive optical pumping. These findings in conjunction with transient absorption measurements with 50 ps resolution, together indicate that at 10K or lower, the low quantum yield is due to a population of conformational substates that undergoes either an ultra fast (<<10ps) geminate recombination process or a photophysical process that results in the recovery of the oxy species. Line shape comparisons of the photoproduct absorption in the region of the inhomogeneously broadened band III (~760nm) for CO and O2 form of Hb(Mb) indicate that the "unphotolyzable" part of the distribution of substates for oxy photoproducts resembles the fast recombining population of carboxy photoproducts observed in kinetic hole burning experiments. A structural model incorporating the iron displacement and the tilt and rotational degrees of freedom of His(F8) is used to explain the mapping of ligand reactivity onto the inhomogeneous line shape of band III.

Tu-Pos57

RESONANCE RAMAN STUDIES OF STEADY STATE HEME REDUCTION AND PHOTOREDUCTION IN CYTOCHROME b6f and bc1 COMPLEXES.

J. D. Hobbs ¹, R. M. Wynn ², S. Guner ³, D. J. Nunez 1, R. Malkin 2, D. B. Knaff 3, and M. R.

1. Department of Chemistry, University of New Mexico, Albuquerque, NM. 2. Division of Molecular Plant Biology, University at Berkeley, Berkeley, 3.Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX.

The heme sites of the isolated cytochrome b6f complex in various stages of reduction have studied using resonance techniques. The spectra are interpreted in terms of Raman spectra for the related bacterial cytochrome bc1 complex and the isolated turnip cytochrome f. photoreduction behavior of these complexes has been observed using electron transfer inhibitors and oxidation/reduction mediators. Rapid photoreduction of the oxidized heme c1 and f has been observed in a nanosecond time scale using high laser fluxes. High power 410 nm laser excitation yields a spectrum observed for the sodium similar to that ascorbate reduced complexes. (Supported by NIH GM33330.)

Campo	Dado
****	Documento 1 de 1
No. Registro	000806607
Tipo de material	TRABALHO DE EVENTO-RESUMO PERIODICO - INTERNACIONAL
Entrada Principal	lben, I. E. T. (*)
Título	Low temperature time dependent resonance raman spectra of co bound sperm whale myoglobin, 'MB' at ph3.
Imprenta	New York, 1990.
Descrição	p.235a.
Assunto	MATÉRIA CONDENSADA
Autor Secundário	Friedman, J. (*)
Autor Secundário	Cowen, B. (*)
Autor Secundário	Frauenfelder, H. (*)
Autor Secundário	Sanches, Rosemary
Autor Secundário	Annual Meeting of the Biophysical Society (34. 1990 Baltimore)
Fonte	Biophysical Journal, New York, v.57, n.2, p.235a, feb. 1990
Unidade USP	IFQSC-F INST DE FÍSICA DE SÃO CARLOS
Localização	IFSC PROD001595