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Abstract
Kullback-Leibler divergence measure between two random variables is quite useful in many
contexts and has received considerable attention in numerous fields including statistics,
physics, probability, and reliability theory. A cumulative Kullback-Leibler divergence mea-
sure has been proposed recently as a suitable extension of thismeasure upon replacing density
functions by cumulative distribution functions. In this paper, we study a dynamic version of it
by using a point process martingale approach conditioned on an observed past. Interestingly,
this concept is identical to cumulative residual inaccuracy measure introduced by (Bueno
and Balakrishnan (Probab Eng Sci 36:294-319, 2022). We also extend the concept of relative
cumulative residual information generating measure to a conditional one and get Kullback-
Leibler divergence measure through it. We further extend the new versions to non-explosive
univariate point processes. In particular, we apply the conditioned Kullback-Leibler diver-
gence to compare measures between two non-explosive point processes. Several applications
of the established results are presented, including to a general repair process, minimal repair
point process, coherent systems, Markov-modulated Poisson processes and Markov chains.
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1 Introduction

Consider two positive random variables T and S defined in a probability space (�,�, P),
with distribution functions F(t) and G(t) and continuous density functions f (t) and g(t),
respectively. Then Shannon entropy, Shannon (1948), a measure of uncertainty, is given by

H( f ) = −
∫ ∞

0
f (t) ln f (t)dt

where ln is the natural logarithm, the base e logarithm function.
An important inaccuracy measure between the uncertainty of two positive and absolutely

continuous random variables, S and T , is Kerridge inaccuracy measure, Kerridge (1961),
given by

H(S, T ) = E[− ln g(T )] = −
∫ ∞

0
(ln g(x)) f (x)dx .

In the case when S and T are identically distributed, the Kerridge inaccuracy measure
reduces to the well-known Shannon entropy measure.

Rao et al. (2004); Rao (2005) provided an extension of the Shannon entropy, called the
cumulative residual entropy of T ,CRE(T ), by using survival functions instead of probability
density functions, as

CRE(T ) = −
∫ ∞

−∞
F(t) ln F(t)dt,

where F = 1 − F is the survival function.
Kerridge measure of inaccuracy has also been extended in a similar way by Kumar and

Taneja (2012, 2015).
The Kumar and Taneja’s cumulative residual inaccuracy measure between S and T is

defined as

ε(S, T ) = −
∫ ∞

0
F(t) lnG(t)dt = E[

∫ T

0
�S(s)ds],

where F = 1 − F and G = 1 − G are the reliability functions of T and S, respectively,
and �S(t) = − logG(t) is the cumulative hazard function of S. We take, as convention,
0 log 0 = 0.

Indeed, ε(S, T ) represents the information content when usingG(t), the survival function
asserted by the experimenter, due tomissing/incorrect information, instead of the true survival
function F(t).

A main measure of information, named Kullback-Leibler (KL) information, is defined as
in Kullback and Leibler (1951)

I (S, T ) =
∫ ∞

−∞
g(t) ln

(
g(t)

f (t)

)
dt,

is a measure of information discrepancy between T and another random variable S. Here
g(t) can be viewed as a reference distribution.

The likelihood ratio in the above expression, may be considered as the information result-
ing from the observation S = t for discrimination in favor of S against T . Therefore, the
expression is then a mean discrimination.

As t − 1 ≥ ln t, ∀t > 0, it is easy to prove that the information I (S, T ) have the
nonnegative property and the equality I (S, T ) = 0 holds if, and only if, f (t) = g(t), ∀t .

However, K L information is not symmetric and cannot be a measure.
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Inspired by ε(S, T ) of Kumar and Taneja (2015); Park et al. (2012) proposed a simple
extension for positive random variables

∫ ∞

0
G(t) ln(

G(t)

F(t)
)dt .

However ∫ ∞

0
G(t) ln(

G(t)

F(t)
)dt = −

∫ ∞

0
G(t) ln(

F(t)

G(t)
)dt

≥
∫ ∞

0
G(t)(1 − F(t)

G(t)
)dt =

∫ ∞

0
G(t)dt −

∫ ∞

0
F(t))dt = E[S] − E[T ]

which does not satisfy the nonnegativity and characterization properties.
To bypass this problem, Barrapour and Rad (2012) has suggested an extension of K L

information using survival distribution function which can be called the residual K L infor-
mation (CRK L) given by

CRK L(S, T ) =
∫ ∞

0
G(t) ln(

G(t)

F(t)
)dt − (E[S] − E[T ]).

Another extension of this measure, using distribution functions was considered by Park
et al. (2012) , which can be called cumulative K L information, (CK L), is

CK L(S, T ) =
∫ ∞

0
G(t) ln

G(t)

F(t)
dt + (E[S] − E[T ])

which also satisfies the nonnegativity and characterization properties, but is not symmetric. Di
Crescenzo and Longobardi (2015) analyse some properties and applications of this particular
measure.

To obtain the symmetric property, Kullback and Leibler (1951) define a (KL) divergence
measure by

J (S, T ) = I (S, T ) + I (T , S) =
∫ ∞

−∞
g(t) ln

(
g(t)

f (t)

)
dt +

∫ ∞

−∞
f (t) ln

(
f (t)

g(t)

)
dt .

The above expression, introduced by Jeffreys (1946, 1948), defines the divergence
between T and S as a measure of the difficulty of discriminating between them.

We observe the following properties of J (S, T )

I) Since that t − 1 ≥ ln t, ∀t > 0 we have

I (S, T ) =
∫ ∞

−∞
g(t) ln

(
g(t)

f (t)

)
dt = −

∫ ∞

−∞
g(t) ln

(
f (t)

g(t)

)
dt

≥
∫ ∞

0
g(t)(1 − f (t)

g(t)
)dt =

∫ ∞

0
g(t)dt −

∫ ∞

0
f (t))dt = 0.

Therefore J (S, T ) = I (S, T ) + I (T , S) is positive.
II) J (S, T ) = I (S, T ) + I (T , S) = 0 if and only if f (t) = g(t) ∀t > 0. Otherwise

|( f (t) − g(t)) ln
(

f (t)
g(t)

)
| > 0 and J (S, T ) �= 0.

III) J (S, T ) = I (S, T ) + I (T , S) is symmetric.
IV) For any random variables S, T and U defined in (�,�, P), the triangle inequality is

defined as
J (S, T ) ≤ J (S,U ) + J (U , T ).
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When the random variables are not equal almost everywhere and the properties of non-
negativity (I), identity of indiscernibles (II), symmetry (III) and triangle inequality (IV)worth
we say the J (S, T ) is a metric in the L1-space of random variables.

However, if S, T and U are independent random variables with exponential distributions
with parameters α, β and γ , respectively we have

J (S, T ) = (β − α)2

α.β

and the triangle inequality becames

(β − α)2

α.β
≤ (α − γ )2

α.γ

(γ − β)2

γ.β

If we replace α = 1, β = 3 and γ = 2 we have 4
3 ≤ 1

6 + 1
2 = 4

6 is not true.
Therefore, as Kullback (1968) described, J (S, T ) is symmetric and has all the properties

of a metric, except the triangular inequality property. The information measures I (S, T ) and
I (T , S) may, in this respect, be considered as directed distances.

In information theory generating functions have been defined for probability density func-
tions ( PDFs) to determine information quantities such as Shannon information, informational
energy, extropy and Kullback-Leibler information. Golomb (1966) proposed information
generating function of a PDF f , whose derivatives, evaluated at 1, yeld some statistical
information measures for the probability distributions. To this end, let T be an absolutely
continuous random variable defined in a complete probability space (�,�, P), with cumu-
lative distribution function F and probability density function f . Then, the information
generating (IG) function of T , for any α > 0, is defined as

Gα(T ) =
∫ ∞

−∞
f α(t)dt,

provided the integral exists. Golomb (1966) then showed the following properties of Gα(T ):

G1(T ) = 1 and
d

dα
Gα(T )|α=1 = −H(T ),

where d
dαGα(T ) is the first derivative of Gα(T ), with respect to α and H(T ) is the Shanoon

differential entropy. In particular, when α = 2, the IGmeasure becomes
∫∞
∞ f 2(t)dt , known

as informational energy (IE) function.
Relative entropy (based inGolomb’s information function) has been defined byGuiasu and

Reischer (1985); its first derivative at 1 yeldsKullback-Leibler divergence. Let T and S be two
absolutely continuous random variables defined on a complete probability space (�,�, P),
with probability density functions f and g, respectively. Then, the relative generating (RIG)
function, for any α > 0, is defined as

Rα(T , S) =
∫ ∞

−∞
f α(t)g1−α(t)dt,

provided the integral exists. The Kullback and Leibler information is then obtained as

K L(T , S) = d

dα
Rα(T , S)|α=1 =

∫ ∞

−∞
f (t) ln

(
f (t)

g(t)

)
dt .

Recently there is a deep interest in proposing new versions of information generating
functions. Clark (2020) propose a measure applicable to point processes. Kharazmi and
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Balakrishnan (2021) propose Jensen-information generating function, whose derivatives
generate the well-known Jensen-Shannon, Jensen-Taneja and Jensen-Extropy information
measures. Furthermore develope some results for Gα(T ) for the residual lifetime distri-
bution. Kharazmi and Balakrishnan (2023) proposed a cumulative residual information
generating (CRIG) and relative cumulative residual information generating (RCRIG) func-
tions based on survival functions.

For a non-negative random variable T with an absolutely continuous survival function
F , the cumulative residual information generating (CRIG) measure of T , for any α > 0, is
defined as

C IGα(T ) =
∫ ∞

0
F

α
(t)dt .

Let T and S be two absolutely continuous random variables defined on a complete prob-
ability space (�,�, P), with survival functions F and G, respectively. Then, the relative
cumulative residual information generating (RCRIG) measure between T and S, for any
α > 0, is defined as

RCRIGα(T , S) =
∫ ∞

0
F

α
(t)G

1−α
(t)dt

=
∫ ∞

0
F(t)e(α−1) ln F(t)e(1−α) lnG(t)dt

= E

[∫ T

0
(
eln F(t)

elnG(t)
)(α−1)dt

]
.

Capaldo et al. (2024) introduce and study the cumulative generating function, which
provides a unifying mathemathical tool suitable to deal with classical entropies based on
the cumulative distributions and on survival functions. In particular, extends (Kharazmi and
Balakrishnan 2023) measure and the Gini mean semi-difference.

To explore information generating functions linked to maximum and minuimum ranked
sets, as well as record values and their properties, refer to the works of Zamani et al. (2022).

We think that there is a gap in analysing relative cumulative residual informationgenerating
and its generated measures, such as KL measure, in the case of variables, or point processes,
stochastically dependents. Martingale theory provides an interesting and elegant approach to
work stochastically dependence and time dependence.

The rest of this paper consists of three sections. In Section 2, we provide motivation
and purpose of this paper. In Section 3.1, of Section 3, we propose a relative conditional
cumulative residual information generatingmeasure (CRCRIG) and provide an interpretation
for it. This information generating measure will be used to measure the closeness between
two survival functions as well as to generate a conditional cumulative Kullback-Leibler
(CKL) divergence measure. In Section 3.2, an extension of information generating measure
to univariate non-explosive point processe is provided. In Section 4,we give some preliminary
notation and a theorem about stochastic inequalities between non-explosive point processes
through their compensator processes, mainly fromKwiecinski and Szekli (1991), to compare
CKL divergence measures between two non-explosive point processes. We also describe
several applications of the obtained results to general repair processes, minimal repair point
processes, coherent systems, Markov-modulated Poisson processes and Markov chains. We
present concluding remarks in Section 6.
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2 Motivation and Purpose of this Work

Here, we extend the Kullback-Leibler (KL) divergence to a conditioned measure through
compensator transformation.

As in Bueno and Balakrishnan (2022), we assume observing two component lifetimes
T and S, which are finite positive absolutely continuous random variables defined on a
complete probability space (�,�, P), with P(S �= T ) = 1, through the family of sub
σ -algebras (�t )t≥0 of �, where

�t = σ {1{S>s}, 1{T>s}, 0 ≤ s < t}

satisfies Dellacherie’s conditions of right continuity and completeness.
In this paper, in our general setup, for simplifying the notation, we assume that relations

such as ⊂,=, ≤,<, �= between random variables and measurable sets always hold with
probability 1, which means that the term P-a.s. can be suppressed.

We now assume that S and T are totally inaccessible �t -stopping times. An extended
and positive random variable τ is a �t -stopping time if, and only if, {τ ≤ t} ∈ �t , for all
t ≥ 0; a �t -stopping time τ is said to be predictable if an increasing sequence (τn)n≥0 of
�t -stopping times, τn < τ , exists such that limn→∞ τn = τ ; a �t -stopping time τ is totally
inaccessible if P(τ = σ < ∞) = 0 for all predictable �t -stopping times σ . In this way,
absolutely continuous lifetimes are thought of as totally inaccessible �t -stopping times. For
a mathematical basis of stochastic processes applied to reliability theory, one may refer to
the books by Aven and Jensen (1999) and Bremaud (1981).

With respect to (�t )t≥0 and usingDoob-Meyer decomposition,we consider the predictable
compensator processes (At )t≥0 and (Bt )t≥0 such that 1{T≤t}−At and 1{S≤t}−Bt are 0means
uniformly integrable �t -martingales. From the total inaccessibility of S and T , At and Bt

are continuous.
It is well known, see (Jacod 1975), that there exists a bijective relationship between the

space of all distributions functions and the �t -compensator processes space characterized by
the so called Doléans exponential equation

F(t |�t ) = e−Ac
t πs≤t (1 + �As)

where Ac
t is the continuous part of At and �At = At − Ac

t is its discrete part.
Also, under the assumptions that T is a totally inaccessible �t -stopping time, the �t -

compensators are continuous and from Arjas and Yashin (1988) we conclude that

At = − ln F(t ∧ T ),

where ∧ is the minimum operator, that is, t ∧ T = min{t, T }.
We observe that, if At is a determinist increasing function of t (except that it is stopped

when T occurs) we could say that T is dynamically independent of everything else in the
history �t . This is a generalization of the case of independent components: if the component
lifetime T has a continuous compensator which is deterministic, then the lifetimes of the
other variables have no causal effect in T . However, other components may well dependent
casualy on T , so that the components need not be statistically independent. Furthermore, as
in Norros (1986), the compensator at its final points are random variables independent and
identically distributed standard exponential.
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Therefore, by equivalence results between distribution functions and compensator pro-
cesses, identifying

∧
S(t) and Bt , in the set {T ∧ S > t}, we obtain

E

[∫ S

0
Atdt

]
=E

[∫ S

0

(∫ t

0
d As

)
dt

]
=E

[∫ S

0

(∫ S

s
dt

)
d As

]
= E

[∫ S

0
(S − s)d As

]
.

As ψ(s) = S − s is a left-continuous function, it is a �s-predictable process and, as
in Theorem T6 from Bremaud (1981), the integration of ψ(s) with respect to the bounded
variations martingales, 1{T≤t} − At

Ms =
∫ S

0
(S − s)d(1{T≤s} − As)

is a mean 0 �s-martingale. We then have

E

[∫ S

0

∧
T
(t)dt

]
= E

[∫ S

0
(S − s)d As

]
= E

[∫ S

0
(S − s)d1{T≤t}

]

= E
[
1{T≤S}(S − T )

] = E
[
1{T≤S}|S − T |] .

Also, with the same arguments, we have

E

[∫ T

0

∧
T
(t)dt

]
= E

[∫ T

0
(T − s)d As

]
= E

[∫ T

0
(T − s)d1{T≤t}

]

= E
[
1{T≤T }(T − T )

] = 0,

E

[∫ T

0

∧
S
(t)dt

]
= E

[
1{S≤T }|T − S|]

and

E

[∫ S

0

∧
S
(t)dt

]
= E

[∫ S

0
(S − s)dBs

]
= 0.

Furthermore, we consider the following extension of Kullback-Leibler (KL) divergence

Definition 2.1 Let S and T be continuous positive random variables defined on a complete
probability space (�,�, P). Then, the conditioned Kullback-Leibler (CKL) divergence is
defined as

JC (S, T ) = E

[∫ T

0
Bsds

]
+ E

[∫ S

0
Asds

]

= E[1{S≤T }|T − S|] + E[1{T≤S}|S − T |] = E[|T − S|],
where 1{T≤t} − At and 1{S≤t} − Bt are 0 means uniformly integrable �t -martingales.

Thus, JC (S, T ) can be seen as a dispersion measure when using a lifetime S asserted
by the experimenter’s information of the true lifetime T . When the random variables are
not equal almost everywhere, JC (T , S) is a metric in the L1-space of random variables.
Interestingly, this concept is identical to the cumulative residual inaccuracy measure from
Bueno and Balakrishnan [5] which produces several results and applications.

If T and S satisfy the proportional risk hazard process, then the dynamic conditioned
divergence measure, JCt (T , S) < ∞, uniquely determines the distribution function of T .

Bueno and Balakrishnan [6] extended JCt (T , S), denoted in that paper by CRI (T , S), for
non-explosive point processes, as follows
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Suppose T = (Tn)n≥1 and S = (Sn)n≥1 are two univariate non-explosive point processes
observed at

�t = σ {1{Si>s}, 1{T j>s}, 0 ≤ s < t, i, j ∈ N}
satisfyingDellacherie’s conditions of right continuity and completeness andwhere Ti , i ∈ N,

and S j , j ∈ N, are totally unaccessible�t -stopping times, with P(Ti �= S j ) = 1, ∀i, j ∈ N,

and we consider the superposition of T and S.

Definition 2.2 The superposition of two univariate point processes T = (Tn)n≥0 and S =
(Sn)n≥0, defined on a complete probability space (�,�, P) with compensator processes
(At )t≥0 and (Bt )t≥0, respectively, is the marked point process (Vn,Un)n≥1, where V =
(Vn)n≥0 is a univariate point process, and U = (Un)n≥0, the indicator process, is a sequence
of random variables taking values in a measurable space ({0, 1}, σ ({0, 1}), resulting from
pooling together the time points of events occurring in each of the separate point processes.
Here, 0 stands for an occurrence of the process T, Un = Tk , for some k, in which case
Vn = max1≤ j≤n{(1 − Uj ).Vj }, and 1 stands for an occurrence of the process S, Un = S j

for some j , in which case Vn = max1≤ j≤n{Uj .Vj }.
Definition 2.3 Let T = (Tn)n≥0 and S = (Sn)n≥0 be point processes with �V

t -compensator
processes (At )t≥0 and (Bt )t≥0, respectively, defined on a complete probability space
(�,�, P). Let (Vn,Un)n≥1 be their superposition process. Then, the cumulative residual
inaccuracy measure, at time t , between T and S is given by

JCt (T,S) = E

[∫ t

0
Asds +

∫ t

0
Bsds

]

= E

[∫ t

0

∞∑
n=1

∫ s

0
1{Un=0}d An

uds +
∫ t

0

∞∑
n=1

∫ t

0
1{Un=1}dBn

u ds

]
.

Remark 2.4 Bueno and Balakrishnan (2024) remarked that when the random variables are
not equal almost everywhere, the quantity J (T,S) = E[
∞

k=1|Vk − Vk−1|] can be seen as
a dispersion measure in the L1-space of random variable sequences when using the point
process S, asserted by the experimenter’s information of the true point process T.

3 InformationMeasure Between Two Lifetimes

3.1 Conditional Relative Cumulative Residual Information Generating Functions

Suppose we observe two component lifetimes, T and S, which are finite positive random
variables defined on a complete probability space (�,�, P), with P(S �= T ) = 1, through
the family of sub σ -algebras (�t )t≥0 of �, where

�t = σ {1{S>s}, 1{T>s}, 0 ≤ s < t}
satisfies Dellacherie’s conditions of right continuity and completeness.

With respect to (�t )t≥0 and usingDoob-Meyer decomposition,we consider the predictable
compensator processes (At )t≥0 and (Bt )t≥0 such that 1{T≤t}−At and 1{S≤t}−Bt are 0means
�t -martingales. From the total inaccessibility of S and T , At and Bt are continuous.

The compensator process is expressed in terms of conditional probabilities, given the
available information, and it generalizes the classical notion of hazard. Intuitively, it corre-
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sponds to producing whether the failure is going to occur now, on the basis of all observations
available up to, but not including the present.

It then follows, by well-known equivalence results between distribution functions and
compensator processes, that At = − ln F(t ∧ T ) and Bt = − lnG(t ∧ S); see (Arjas and
Yashin 1988). Identifying − lnG(t) and Bt , and − ln F(t) and At in the set {S ∧ T > t}, we
present the following definition.

Definition 3.1.1 If S and T are continuous positive random variables defined on a com-
plete probability space (�,�, P), the conditional relative cumulative residual information
generating functions is

CRCRIGα(T , S) = CRIGα(T , S) + CRIGα(S, T ) = E

[∫ T

0
e(α−1)(Bt−At )dt

]
+ E

[∫ S

0
e(α−1)(At−Bt )dt

]
.

provided the integral exists.

Remark 3.1.2 To clarify the conditions under which the integral
∫ T
0 e(1−α)(Bt−At )dt we

review the definitions of the �t -compensators At and Bt

At = − ln F(t), if t < T and At = AT = − ln F(T ) if t ≥ T .

Bt = − lnG(t), if t < S and Bt = BS = − lnG(S) if t ≥ S.

Furthermore AT and BS are independent and identically distributed standard exponential
random variables, see (Norros 1986).

As At and Bt are increasing processes we have

E[
∫ T

0
(
e(1−α)Bt

e(1−α)At
)dt] ≤ E[

∫ ∞

0
1{T>t}(

e(1−α)BT

e(1−α)AT
)dt] ≤ E[

∫ ∞

0
1{T>t}(

e(1−α)BS

e(1−α)AT
)dt].

However, if 1 < α < 2 we have

E[
∫ ∞

0
1{T>t}(

e(1−α)BS

e(1−α)AT
)dt] = E{E[

∫ ∞

0
1{T>t}(

e(1−α)BS

e(1−α)AT
)dt |AT ]} = E{

∫ ∞

0

1{AT >At }
e(1−α)AT

E[e(1−α)BS |AT ]dt}

= (
1

α
)E{
∫ ∞

0

1{AT >At }
e(1−α)AT

dt} = (
1

α
)E{
∫ ∞

0
1{AT >At }e(α−1)AT dt}

= (
1

α
)(

1

α − 2
)

∫ ∞

0
F(t)dt = (

1

α
)(

1

α − 2
)E[T ].

The last equality follows from the equivalence {T > t} and {AT > At } Therefore the con-
ditions under which E[T ] < ∞ and E[S] < ∞ are sufficient for integrability on Definition
3.1.1

At this point, we can calculate the fist derivative of CRC IGα(T , S) with respect to α and
evaluate at α = 1:

δ

δα
CRCRIGα(T , S) = E

[∫ T

0
(Bt − At )e

(α−1)(Bt−At )dt

]
+ E

[∫ S

0
(At − Bt )e

(α−1)(At−Bt )dt

]

and

δ

δα
CRCRIGα(T , S)|α=1 = E

[∫ T

0
(Bt − At )dt

]
+ E

[∫ S

0
(At − Bt )dt

]
= E

[∫ T

0
Btdt

]
+ E

[∫ S

0
Atdt

]
.
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Then, we can recall Definition 2.1 and verify that

d

dα
CRCRIGα(T , S)|α=1 = E[|T − S|] = JC (S, T ),

that is, the first derivative of the conditional relative cumulative residual information gener-
ating measure, at α = 1, is equal to KL divergence measure.

Interestingly, this concept is identical to the cumulative residual inaccuracy measure
CRI (S, T ), of Bueno and Balakrishnan (2024). As such, the several results and proper-
ties of it have been proved by these authors.

Thus, JC (S, T ) can be seen as a dispersion measure when using a lifetime S asserted by
the experimenter’s information of the true lifetime T . When the random variables are not
equal almost everywhere, JC (T : S) is a metric in the L1-space of random variables.

In the following we present an interpretation for CRCRIGα(T , S).

Theorem 3.1.3 If S and T are continuous positive random variables defined on a complete
probability space (�,�, P), the conditional relative cumulative residual information gen-
erating function is

CRCRIGα(T , S) = E[T ] + E[S] + E[|T − S|e(α−1)(|BT∧S−AT∧S)|].

Proof We have

CRIGα(T , S) = E

[∫ T

0

(
e−At

e−Bt

)(α−1)

dt

]
= E

[∫ T

0
e(α−1)(Bt−At )dt

]
.

However,

e(α−1)(Bt−At ) = 1 + (α − 1)
∫ t

0
e(α−1)(Bs−As )d(Bs − As)

and so

CRIGα(T , S) = E

[∫ T

0
(1 + (α − 1)

∫ t

0
e(α−1)(Bs−As )d(Bs − As))dt

]

= E[T ] + E

[∫ T

0
(α − 1)

∫ t

0
e(α−1)(Bs−As )d(Bs − As)dt

]

= E[T ] + (α − 1)E

[∫ T

0

(∫ T

s
dt

)
e(α−1)(Bs−As )d(Bs − As)

]

= E[T ] + (α − 1)E

[∫ T

0
(T − s)e(α−1)(Bs−As )d(Bs) −

∫ T

0
(T − s)e(α−1)(Bs−As )d(As)

]

= E[T ] + (α − 1)E

[∫ T

0
(T − s)e(α−1)(Bs−As )d(NS

s ) −
∫ T

0
(T − s)e(α−1)(Bs−As )d(NT

s )

]

= E[T ] + (α − 1)E[(T − S)e(α−1)(BS−AS)1{S≤T }]
= E[T ] + (α − 1)E[|T − S|e(α−1)|(BT∧S−AT∧S)|1{S≤T }].
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Using the same arguments, we also have

CRIGα(S, T ) = E

[∫ T

0
e(α−1)(At−Bt )dt

]

= E[S] + (α − 1)E[|T − S|e(α−1)|(AT∧S−BT∧S)|1{T≤S}].
Therefore,

CRCRIGα(T , S) = E[T ] + (α − 1)E[|T − S|e(α−1)(BT∧S−AT∧S)1{S≤T }]
+E[S] + (α − 1)E[|T − S|e(α−1)(AT∧S−BT∧S)1{T≤S}]

= E[T ] + E[S] + E[(α − 1)|T − S|e(α−1)|(BT∧S−AT∧S)|],
as required �


3.2 Conditional Relative Cumulative Residual Information Generating Function
between Univariate Nonexplosive Point Processes

A point process over �+ can be described by an increasing sequence of random variables or
by means of its corresponding counting process.

Definition 3.2.1 An univariate point process is an increasing sequence T = (Tn)n≥0, T0 = 0
of positive extended random variables, 0 ≤ T1 ≤ T2 ≤ ..., defined on a complete probability
space (�,�, P). The inequalities are strict unless Tn = ∞. If T∞ = limn→∞ Tn = ∞, the
point process is called nonexplosive.

Another equivalent way to describe a point process is by a counting process N = (Nt )t≥0

with
NT
t (w) =

∑
k≥1

1{Tk (w)≤t},

which is, for each realizationw, a right continuous step function with N0(w) = 0. As (Nt )t≥0

and (Tn)n≥0 carry the same information, the associated counting process is also called point
process.

The mathematical description of our observations, at the complete information level, is
given by the internal family of sub σ -algebras of �, denoted by (�T

t )t≥0, where

�T
t = σ {1{Ti>s}, i ≥ 1, 0 < s < t}

satisfies the Dellacherie conditions of right continuity and completeness.
The point process (NT

t )t≥0 is adapted to (�T
t )t≥0 and E[NT

t |�T
s ] ≥ NT

s for s < t , that is,
NT
t is an uniformly integrable �T

t -submartingale. Then, from Doob-Meyer decomposition,
there exists a unique right-continuous nondecreasing �T

t -predictable and integrable process
(AT

t )t≥0, with AT
0 = 0 such that (MT

t )t≥0, with NT
t = AT

t + MT
t , is an uniformly integrable

�T
t -martingale.
The compensator process is expressed in terms of conditional probabilities, given the avail-

able information, and it generalizes the classical notion of hazard. Intuitively, it corresponds
to producing whether the failure is going to occur now or not, on the basis of all observations
available up to, but not including the present time. Furthermore, the �T

t -compensator can be
written in the regenerative form as

AT
t =

∑
n

1{Tn≤t<Tn+1}A
(n)
(t |T1,..,Tn),
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where each A(n)
(t |t1,..,tn) is a deterministic function of its arguments. Thus, the compensators

are piecewise deterministic functions; each occurrence of a point causes a new function to
be selected.

Our aim now is to define a conditional cumulative residual inaccuracy measure between
two independent non-explosive point processes, T and S, and to proceed, as in Bueno and
Balakrishnan (2024), to use a superposition process V = (Vn)n≥1 with compensator (A +
B)Vt = AT

t + BS
t , as in Definition 2.2.

At this point, the original compensator process AT
t is replaced by (1 − α)AT

t with

(1 − α)AT
t =

∑
n

1{Tn≤t<Tn+1}(1 − α)A(n)
(t |T1,..,Tn);

BS
t is replaced by (1 − α)BS

t with

1 − α)BS
t =

∑
n

1{Sn≤t<Sn+1}(1 − α)B(n)
(t |S1,..,Sn);

the superposition process V = (Vn)n≥1, with compensator At + Bt , is replaced by (α −
1)(At + Bt ) with

(1 − α)(A + B)Vt =
∑
n

1{Vn≤t<Vn+1}(1 − α)(A + B)
(n)
(t |V1,..,SV ),

Following (Bremaud 1981), the original measure P is then replaced by a new measure
QV , such that QV is absolutely continuous with respect to P and

dQV

dP
|�t = LV

t = α
n≥11{Vn≤t}e
∫ t
0 αd(A+B)s

which, in case where 0 < α < 1, is an uniformly integrable and locally square integrable
martingale under P .

We define a conditional cumulative inaccuracy measure between two univariate non-
explosive point processes at any �t -stopping time τ , in particular, at time t as follows

Definition 3.2.3 Let T = (Tn)n≥0 and S = (Sn)n≥0 be point processes with �t -compensator
processes (At )t≥0 and (Bt )t≥0, respectively, defined on a complete probability space
(�,�, P). Let (Vn)n≥0 be their superposition process. Then, the relative conditional cumu-
lative residual information generating function by time t is

CRCRIGα(NT
t , NS

t ) = EQV

[∫ t

0
e(α−1)(Bt−At )dt

]
+ EQV

[∫ t

0
e(α−1)(At−Bt )dt

]

provided the integral exists.
Therefore, we can extend it as

CRCRIGα(NT , NS) = EQV

[∫ ∞

0
e(α−1)(Bt−At )dt

]
+ EQV

[∫ ∞

0
e(α−1)(At−Bt )dt

]
.

provided the integral exists.
The interpretation of Definition 3.2.3 is given in the following theorem which is proved

in Appendix.
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Theorem 3.2.4 Let T = (Tn)n≥0 and S = (Sn)n≥0 be nonexplosive point processes and
V = (Vn)n≥0 be their superposition process. Then,

CRCRIGα(NT
t , NS

t ) = EQV

{ NT
t∑

j=1

NS
t∑

k=1

[
(Sk − Tj−1) + (Tj − Sk−1)

+ |Tj−1 − Sk |(α − 1)[e−(α−1)|A j
T j∧Sk

−Bk
Tj∧Sk

| − e
(α−1)|Bk

Tj∧Sk
−A j

T j∧Sk
|]1{Sk≤Tj−1}

+ |Sk−1 − Tj |(α − 1)[e−(α−1)|Bk
Tj∧Sk

−A j
T j∧Sk

| − e
(α−1)|A j

T j∧Sk
−Bk

Tj∧Sk
|]1{Tj≤Sk−1}

]}

and

CRCRIGα(NT , NS)=EQV

{ ∞∑
n=1

[
(Vn−Vn−1) + (α − 1)|Vn−Vn−1|(e−(α−1)|An

Vn
−Bn

Vn
| − (e(α−1)|An

Vn
−Bn

Vn
|
)
]}

.

4 Preliminaires, Applications and Results

4.1 Preliminaires

Now, we consider another point process S = (Sn)n≥0 with �t -compensator process (Bt )t≥0,
related to the counting process NS

t observed at

�S
t = σ {1{Si>s}, i ≥ 1, 0 < s < t},

with
BS
t =

∑
n

1{Sn<t≤Sn+1}B
(n)
(t |S1,..,Sn).

Then the following result is adapted from Kwiecinski and Szekli (1991).

Theorem 4.1.1 If for point processes NT
t and NS

t , possibly defined on different probability
spaces,

A(n)
(tn |t1,..,tn−1)

≤ B(n)
(tn |s1,..,sn−1)

, n ≥ 1,

for s ≤ t, coordenatewise and for PT almost sure, then there exists a probability space
(�̃, �̃, P̃) and point processes N T̃

t and N S̃
t on it such that N T̃

t =st NT
t , N S̃

t =st NT
t and

P̃(N T̃
t ≤ N S̃

t , t ≥ 0) = 1.
At this point, we consider an additional extension of Kullback-Leibler (KL) divergence,

at time t, between T and S defined possibly on different probability spaces.

Definition 4.1.2 Let T = (Tn)n≥0 be a point process defined on a complete probability space
(�,�, Q1), with�t -compensator process (At )t≥0, and S = (Sn)n≥0 be another point process
defined on a complete probability space (�,�, Q2), with �t -compensator process (Bt )t≥0.
Then, the KL divergence, at time t , between T and S is

JCt (T,S) = EQ1

[∫ t

0
Asds

]
+ EQ2

[∫ t

0
Bsds

]
.
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4.2 Applications and Results

In what follows we provide several applications of the developed theory, including gen-
eral repair processe, minimal repair point processes, coherent systems, Markov-modulated
Poisson processes and Markov chains. In all cases we present the inequality

JCt (T,S) ≤ JCt (T,R).

As JCt (T,S) can be view as a metric between the process T and the process S, the
inequality indicates that the distance between T and S is lower than the distance between T
andR providing a better approximation for T. These include to choose a better repair police,
a small parameter distribution, a small set of infinitesimal characteristics of a Markov chain,
...

4.2.1 Application to a General Repair Process

Let T = (Tn)n≥1, with T0 = 0, be a point process defined in a complete probability space
(�,�, P), observed with the history

�T
t = σ {1{Tn>s}, 0 ≤ s < t, n = 1, 2, ...}

satisfying Dellacherie’s conditions of right continuity and completeness, describing failures
times of a system, with lifetime T , at which instantaneous repairs are carried out. We assume
that Tn, n ≥ 1, are totally inaccessible �T

t -stopping times.
Let (NT

t )t≥0 be the corresponding point process defined as

NT
t = 
∞

n=11{Tn≤t}
and (AT

t )t≥0 be the �T
t -compensator process of (Nt )t≥0 in the regenerative form as

AT
t =

∑
n

1{Tn<t≤Tn+1}A
(n)
(t |T1,..,Tn).

To model varying degrees of repairs, we assume that the nth repair has the effect that the
distribution of failures is that of an unfailed itemof age Dn > 0,where (Dn)n≥0,with D0 = 0,
is a sequence of nonnegative random variables such that Dn is �T

Tn
-measurable. Therefore,

under repairs, the general term of the new �T
t -compensator of (Nt )t≥0 is D

(n)
t = A(n)

t−Tn+Dn
.

In the case when Dn = Tn for all n ∈ N, (Nt )t≥0 is a nonhomogeneous Poisson process with
general term compensator function D(n)

t = A(n)
t . When Dn = 0 for all n ∈ N, (Nt )t≥0 is a

renewal process with general term compensator function D(n)
t = A(n)

t−Tn
.

We now proceed with a change of probability measure, say, from P to Q, following
Girsanov theorem, see (Bremaud 1981), in which the occurrence times are retained. We can
write

D(n)
t = A(n)

t−Tn+Dn
=
∫ t

(Tn−Dn)∨0
d As,

and then establish the theorem.

Theorem 4.2.1.1 The process (Lt )t≥0 defined by

Lt = (1{T>(Tn−Dn)∨0})1{T≤t}e
∫ t
0 d As−

∫ t
(Tn−Dn )∨0 d As = (1{T>(Tn−Dn)∨0})1{T≤t}eA

(n)
(Tn−Dn )∨0

is an integrable �T
t -martingale, with E[Lt ] = 1.
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Proof We have to prove that Lt is �T
t adapted, the martingale property E[Lt |�T

s ] = Ls and
Lt is integrable.

Clearly, as T is �t - measurable and At is �t - predictable we have that Lt is �T
t adapted.

We have to prove that, for all Tn ≤ s < t < Tn+1, E[Lt |�T
s ] = Ls , which is equivalent

to proving that

E[Lt−Ls |�T
s ]=E

{[
(1{T>(Tn−Dn)∨0})1{T≤t} − (1{T>(Tn−Dn)∨0})1{T≤s}] eA(n)

(Tn−Dn )∨0 |�T
s

}
=0.

Observe that if T ≤ s, then T ≤ t and E[Lt − Ls |�T
s ] = 0. Also, if T > t , then T > s

and E[Lt − Ls |�T
s ] = 0.

If Tn < s < T ≤ t ≤ Tn+1, we observe that

{Nt∧s = k} ∩ {Tn ≤ s < Tn+1} = {Nt∧Tn = k} ∩ {Tn ≤ s < Tn+1}.
Therefore, for any generator U of �s , there exists a generator V of �Tn such that

U ∩ {Tn ≤ s < Tn+1} = V ∩ {Tn ≤ s < Tn+1}
and, as in Theorem 32, Appendix 2, of Bremaud (1981), the information before s is the same
as the information before Tn . Also, observe that if, T > Tn , (1{T>(Tn−Dn)∨0}) = 1. Hence,

E
[
Lt |�T

s

]
= E

[
(1{T>(Tn−Dn)∨0})e

A(n)
(Tn−Dn )∨0 |�T

s

]
= E

[
eA

(n)
(Tn−Dn )∨0 |�T

s

]

= E

[
eA

(n)
(Tn−Dn )∨0 |�T

Tn

]
= eA

(n)
(Tn−Dn )∨0 = Ls .

The third equality follows because eA
(n)
(Tn−Dn )∨0 is �T

Tn
-measurable. Also, as �T

0 = {�,∅},
we have E[Lt ] = E[L0] = E[eA0 ] = 1 and Lt is integrable. Hence, the theorem. �

Theorem 4.2.1.2 Under the probability measure Q defined by the Radon-Nikodym derivative

dQ

dP
|�∞ = L∞ = (1{T>Tn−Dn∨0})e

A(n)
(Tn−Dn )∨0 ,

(N (n)
t − A(n)

t−Tn+Dn
)t≥0 is an �T

t -martingale, where N (n)
t is Nt restricted to [Tn, Tn+1).

Proof Clearly, we have

EQ [A(t − Tn + Dn)] = EQ

[∫ t

(Tn−Dn )∨0
d As

]
= E

[
(1{T>(Tn−Dn )∨0})e

A(n)
(Tn−Dn )∨0

∫ t

Tn−Dn

d As

]

= E

[∫ t

(Tn−Dn)∨0
(1{T>(Tn−Dn)∨0})e

A(n)
(Tn−Dn )∨0d As

]

= E

[∫ t

(Tn−Dn)∨0
(1{T>(Tn−Dn)∨0})e

A(n)
(Tn−Dn )∨0dNs

]

= E[(1{T>(Tn−Dn)∨0})e
A(n)

(Tn−Dn )∨01{(Tn−Dn)∨0<T≤t}] = EQ[1{T≤t}],
and conclude that, under Q, (N (n)

t − A(n)
t−Tn+Dn

)t≥0 is an �T
t -martingale, where N (n)

t is Nt

restrict to [Tn, Tn+1).
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Thus, the proof gets completed and, under Q, A(n)
t−Tn+Dn

is the unique general term of the

�T
t -compensator of (Nt )t≥0.
To proceed with a repair policy, we must look for the most convenient type of repair we

should use to best approximate the ideal system performance.
Let us now consider the point process S = (Sn)n≥1, with S0 = 0, corresponding to

the counting process (Nt )t≥0, resulting from repairing the process T, characterized by a
sequence of �T

Tn
-measurable nonnegative random variables (Un)n≥1, with U0 = 0, and �T

t -
compensator process

Bt =
∑
n

1{Tn<t≤Tn+1}B
(n)
(t |T1,..,Tn),

with B(n)
(t |T1,..,Tn) = A(n)

t−Tn+Un
, under a probability measure Q1.

Further, let us consider another process R = (Rn)n≥1, R0 = 0, corresponding to the
counting process (Nt )t≥0, resulting from repairing the processT, characterized by a sequence
of�T

Tn
-measurable nonnegative randomvariables (Vn)n≥1,withV0 = 0, and�T

t -compensator
process

Ct =
∑
n

1{Tn<t≤Tn+1}C
(n)
(t |T1,..,Tn),

with C (n)
(t |T1,..,Tn) = A(n)

t−Tn+Vn
, under a probability measure Q2.

Clearly, if
P({w : Un(w) ≤ Vn(w), n = 1, 2, 3, ...}) = 1,

as A(n)
t is nondecreasing, we will have

P({w : A(n)
t−Tn+Un

≤ A(n)
t−Tn+Vn

, n = 1, 2, 3, ...}) = 1.

From Theorem 4.1.1 we have P̃(N T̃
t ≤ N S̃

t , t ≥ 0) = 1, and we then finally obtain

JCt (T,S) ≤ JCt (T,R).

To motivate this result, let Un = 0 for all n (a renewal process) and Vn = Tn for all n
(a minimal repair process). As P({w : Un(w) ≤ Vn(w), n = 1, 2, 3, ...}) = 1, we can
conclude that the renewal process produces a better approximation for T than a minimal
repair process. �


4.2.2 Application to a Minimal Repair Process

A repair is minimal if the intensity λT
t is not affected by the occurrence of failures; in other

words, we cannot determine the failure time points from the observation of λT
t . Formally, we

have the following definition.

Definition 4.2.2.1 Let T = (Tn)n≥0 be a point process with an integrable point process NT

and corresponding �t -intensity (λT
t )t≥0. Let �λT

t = σ {λT
s , 0 ≤ s ≤ t} be the filtration

generated by λT . Then, the point process T is said to be a minimal repair process (MRP) if
none of the variables Tn , n ≥ 0, for which P(Tn < ∞) > 0, is an �λT

t -stopping time.
If T is a non-homogeneous Poisson process, then λt = λ(t) is a time dependent deter-

ministic function, and it means that the age is not changed as a result of a failure. Here,
�λT

t = {�,∅} for all t ∈ �+, and the failure times Tn are not �λT

t -stopping times.
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Let (Tn)n≥0 be aWeibull process with parameters β and θ1, that is, we consider the ordered
lifetimes T1, ..., Tn with a conditional reliability function given by

Gi (ti |t1, ..., ti−1) = exp

{
−
(
ti
θ1

)β

+
(
ti−1

θ1

)β
}

for 0 ≤ ti−1 < ti , where ti are the ordered observations.
The �T -compensator process is then

A(n)
(t |t1,..,tn) =

n∑
j=1

[(
t j
θ1

)β

−
(
t j−1

θ1

)β
]

+
[(

t

θ1

)β

−
(
tn
θ1

)β
]

=
(

t

θ1

)β

.

Now, suppose we observe theWeibull process (Sn)n≥1, with parameters β and θ2, through
the family GS = (GS

t )t≥0, where

GS
t = σ {1{Sn>s}, 0 ≤ s < t}

satisfies Dellacherie’s conditions of right continuity and completeness asserted by the exper-
imenter for (Tn)n≥0. We can then calculate JCt (S, T ), where (NS

t − Bt )t≥0 is an uniformly
integrable martingale, as

JCt (S,T) = E

[∫ t

0
Asds +

∫ t

0
Bsds

]
= E

[∫ t

0

(
s

θ1

)β

ds +
∫ t

0

(
s

θ2

)β

ds

]

= tβ+1

β + 1

(
θ

β
1 + θ

β
2

θ
β
1 θ

β
2

)
.

Also, let (Rn)n≥1 be a Weibull process, with parameters β and θ3, observed through the
family GR = (GR

t )t≥0, where

GR
t = σ {1{Rn>s}, 0 ≤ s < t}

satisfies Dellacherie’s conditions of right continuity and completeness asserted by the exper-
imenter for (Tn)n≥0. We then have

JCt (R,T) = tβ+1

β + 1

(
θ

β
1 + θ

β
3

θ
β
1 θ

β
3

)
.

The GR-compensator process of (Rn)n≥0 is C
(n)
(t |t1,..,tn) = ( t

θ3
)β .

If we assume θ3 ≤ θ2, we then have ( t
θ2

)β ≤ ( t
θ3

)β and so, in this case, Theorem 4.1.1
holds, that is,

JCt (S,T) ≤ JCt (R,T).

4.2.3 Application to a Parallel SystemMinimally Repaired at Component Level

Let (Un)n≥1 be a sequence of random variables independent and identically distributed as
exponential, with scale parameter α, through the family F = (�t )t≥0, where

�t = σ {1{Un>s}, n ≥ 1, 0 ≤ s < t}
satisfies Dellacherie conditions of right continuity and completeness.
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Let (Tn)n≥1 be the point process and the corresponding counting process

Nt = 
∞
n=11{Tn≤t}

defined by T = T1 = U1 ∨U2 = max{U1,U2} and Tn+1 = Tn +Un+2, n ≥ 1.
The intensity of Nt is λt = α1{U1∧U2≤t} and so �λ

t = σ {1{U1∧U2>t}, 0 ≤ s < t}. Clearly,
T1 is not �λ

t - measurable and Tn = T1 + U3 + ... + Un+1, n ≥ 2, are not �λ
t - measurable.

Therefore, Nt is a minimal repair point process.
The conditional survival function of T1 is

P(T1 > t |�t ) = e−α(t−U1∧U2)
+
,

where U1
∧

U2 = min{U1,U2}. However, its physical lifetime is identically distributed as

U2 ∨U1 −U2 ∧U1 = |U2 −U1|,
where U1

∨
U2 = max{U1,U2}, which has an exponential distribution with parameter α.

Furthermore, the interarrival times Tn+1−Tn = Un+2, n ≥ 1, are independent and identically
distributed as exponential with parameter α.

Therefore, the general term of the compensator function is

A(n)
(t |t1,..,tn) = α × t .

Next, suppose we observe a sequence of random variables (Vn)n≥1 of independent and
identical exponential random variables with parameter β through the familyGX = (GX

t )t≥0,
where

GV
t = σ {1{Vn>s}, n ≥ 1, 0 ≤ s < t}

satisfies Dellacherie conditions of right continuity and completeness to generate minimally
repaired two-component parallel systems, as above, with lifetimes S. We can then calculate
JCt (S,T), where (NS

t − Bt )t≥0 is an uniformly integrable martingale and the general term
of the compensator function is

B(n)
(s|s1,..,sn−1)

= β × s.

Alternatively, we can observe a sequence of random variables (Wn)n≥1 of independent
and identically exponential random variables with parameter γ through the family GW =
(GW

t )t≥0, where
GW

t = σ {1{Wn>s}, n ≥ 1, 0 ≤ s < t}
satisfies Dellacherie conditions of right continuity and completeness to generate minimally
repaired two-component parallel systems, as above, with lifetimes R. We can then calculate
JCt (R,T), where (NR

t − Ct )t≥0 is an uniformly integrable martingale and the general term
of the compensator function is

C (n)
(s|s1,..,sn−1)

= γ × s.

Here, if β < γ , we have

B(n)
(s|s1,..,sn−1)

= β × s ≤ γ × s = C (n)
(s|s1,..,sn−1)

and we can then use Theorem 4.1.1 to conclude that

JCt (S,T) ≤ JCt (R,T).
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4.2.4 Application to a Markov-Modulated Poisson Process

A Poisson process can be generalized by replacing the constant intensity with a randomly
varying intensity,which takes one ofn valuesλi , 0 < λi < ∞, i ∈ S = {1, 2, ..., n}, n ∈ N.
The changes are driven by a homogeneous Markov chain X = (Xt )t≥0 with values in S,
with infinitesimal parameters qi , as the rate to leave state i , and qi j as the rate to reach state
j from state i .

The point processT = (Tn)n≥1 corresponding to the counting process N = (Nt )t≥o, with

Nt =
∞∑
n=1

1{Tn≤t},

has a stochastic intensity λXt with respect to the filtration (�t )t≥0, generated by N and X :

σ {Ns, Xs, 0 ≤ s ≤ t}.
Then, N is said to be a Markov-modulated Poisson process with smooth semi-martingale

representation

Nt =
∫ t

0
λXs ds + Mt ,

where (Mt )t≥0 is a �t -martingale and λXs =∑n
j=1 λ j1{Xs= j}.

Furthermore, the indicator of state j at time t , 1{Xt= j}, also has its smooth semi-martingale
representation as

1{Xt= j} = 1{X0= j} +
∫ t

0

n∑
i=1

1{Xt=i}qi j ds + Mt ( j),

where (Mt ( j))t≥0 is a zero mean �t -martingale.
Hence,

Nt =
∫ t

0

n∑
j=1

n∑
i=1

λ j1{Xt=i}qi j ds + Mt .

The general term of the compensator function is

A(n)
(t |t1,..,tn−1)

=
∫ t

0

n∑
j=1

n∑
i=1

λ j1{Xt=i}qi j ds.

The cumulative residual inaccuracy measure, at time t , JCt (T,T∗), between the counting
process (N∗

t )t≥0 related aMarkov chain (X∗
t )t≥0 with infinitesimal matrix Q∗ = [q∗

i j ], i, j ∈
N+, asserted by the experimenter’s information of the true Markov chain (Xt )t≥0 having
infinitesimal parameter Q = [qi j ], i, j ∈ N+ is given by

JCt (T,T∗) = E

⎡
⎣
∫ t

0

n∑
j=1

n∑
i=1

λ j1{Xt=i}qi j ds

⎤
⎦+ E

⎡
⎣
∫ t

0

n∑
j=1

n∑
i=1

λ j1{Xt=i}q∗
i j ds

⎤
⎦ .

The general term of the compensator function, where (N∗
t −Bt ) is a 0mean�t -martingale,

is

B(n)
(t |t1,..,tn−1)

=
∫ t

0

n∑
j=1

n∑
i=1

λ j1{Xt=i}q∗
i j ds.
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Let us now consider another process (N∗∗
t )t≥0 related to a Markov chain (X∗∗

t )t≥0 with
infinitesimal matrix Q∗∗ = [q∗∗

i j ], i, j ∈ N+, asserted by the experimenter’s information of
the true Markov chain (Xt )t≥0. Now, the general term of the compensator function, where
(N∗∗

t − Ct ) is a 0 mean �t -martingale, is

C (n)
(t |t1,..,tn−1)

=
∫ t

0

n∑
j=1

n∑
i=1

λ j1{Xt=i}q∗∗
i j ds.

If we assume that maxi, j∈N+{q∗
i j } ≤ mini, j∈N+{q∗∗

i j }, then

B(n)
(tn |t1,..,tn−1)

≤ C (n)
(tn |s1,..,sn−1)

, n ≥ 1,

and we can then use Theorem 4.1.1 to conclude that

JCt (T,T∗) ≤ JCt (T,T∗∗).

4.2.5 Application to a Markov Chain

Let (Xt )t≥0 be aMarkov chain defined on a probability space (�,�, P) and adapted to some
history (�t )t≥0. The observations are through its internal history

�X
t = σ {Xs, s ≤ t}

for all t ≥ 0, and �X
t ⊆ �t for all t ≥ 0. Then, �X∞ records all the events linked to the process

(Xt )t≥0.
The �t -Markov chain is associated with a sequence of its sojourn times (Tn+1 − Tn)n≥0,

with T0 = 0, and its infinitesimal characteristics Q = [qi, j ], (i, j) ∈ N+XN+. If, for each
natural number i , we have

qi =
∑
j �=i

qi, j < ∞,

the chain is said to be stable and conservative. We set qi,i = −qi .
We are now interested in the cumulative inaccuracy process between point processes

N X
t (l): the number of transitions into state l during the interval (0, t], related to Markov

chain’s occurrence times.
The �t -compensator of Nt (l) is∫ t

0

∑
i �=l

qi,l1{Xu=i}du,

provided ∑
i �=l

∫ t

0
qi,l1{Xu=i}du < ∞.

The general term of the compensator function is

A(n)
(t |t1,..,tn−1)

=
∫ t

0

n∑
i �=l

qi,l1{Xu=i}du.

To evaluate the cumulative inaccuracy measure, at time t , between the counting process
N∗
t (l), related to Markov chain (X∗

t )t≥0 with infinitesimal matrix Q∗ = [q∗
i, j ], i, j ∈ N+,

123



Methodology and Computing in Applied Probability            (2025) 27:27 Page 21 of 25    27 

asserted by the experimenter’s information of the trueMarkov chain (Xt )t≥0 that has infinites-
imal matrix Q = [qi, j ], i, j ∈ N+, with counting process Nt (l), using Definition 3.1.5, we
have

JCt (X,X∗) = E

⎡
⎣
∫ t

0

⎛
⎝
∫ s

0

∑
i �=l

qi,l1{Xu=i}du

⎞
⎠ ds

⎤
⎦+E

⎡
⎣
∫ t

0

⎛
⎝
∫ s

0

∑
i �=l

q∗
i,l1{Xu=i}du

⎞
⎠ ds

⎤
⎦ .

Now, the general term of the compensator function ϕB(t), where (N∗
t − Bt ) is a 0 mean

�t -martingale, is

B(n)
(t |t1,..,tn−1)

=
∫ t

0

n∑
i �=l

q∗
i,l1{Xu=i}du.

Let us now consider another process (N∗∗
t )t≥0 related to a Markov chain (X∗∗

t )t≥0 with
infinitesimal matrix Q∗∗ = [q∗∗

i j ], i, j ∈ N+, asserted by the experimenter’s information of
the true Markov chain (Xt )t≥0. Now, the general term of the compensator function, where
(N∗∗

t − Ct ) is a 0 mean �t -martingale, is

C (n)
(t |t1,..,tn−1)

=
∫ t

0

n∑
i �=l

q∗∗
i,l 1{Xu=i}du.

If we assume that maxi∈N+{q∗
il} ≤ mini∈N+{q∗∗

il } , then

B(n)
(tn |t1,..,tn−1)

≤ C (n)
(tn |s1,..,sn−1)

, n ≥ 1,

and we can then use Theorem 4.1.1 to conclude that

JCt (X,X∗) ≤ JCt (X,X∗∗).

5 Concluding Remarks

In this work, using a martingale approach, we have extended a relative cumulative residual
information generatingmeasure, (RCRIGα(T , S)), to a conditional oneCRCRIGα(T , S)).
Using the same technique, we get a conditioned Kullback-Leibler (JC (S, T )) divergence
measure. Interestingly, this concept is identical to the cumulative residual inaccuracymeasure
of Bueno and Balakrishnan (2022). The conditional relative cumulative residual information
generating measure generates the Kulback measure through its first derivative at α = 1.

We have also extended the conditional relative cumulative residual information generating
measure of univariate non-explosive point process (CRCRIGα(NT , NS)) to a dynamic
conditional one. Then, we have made of conditioned Kulback-Leibler divergence to compare
measures between two non-explosive point processes through stochastic inequalities between
compensator processes related to the respective counting processes. Several applications and
examples have been given, especially in reliability theory. In our future work, we plan to
make use of conditioned classes of distributions, such as multivariate increasing (decreasing)
failure rate distributions given the observed past, �t , to provide sufficient conditions for
such inequalities to hold. We are currently working in this directions and hope to report the
corresponding findinges in a future paper.
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Appendix

Theorem 3.2.4 Let T = (Tn)n≥0 and S = (Sn)n≥0 be nonexplosive point processes and
V = (Vn)n≥0 be their superposition process. Then,

CRCRIGα(NT
t , NS

t ) = EQV

{ NT
t∑

j=1

NS
t∑

k=1

[
(Sk − Tj−1) + (Tj − Sk−1)

+ |Tj−1 − Sk |(α − 1)[e−(α−1)|A j
T j∧Sk

−Bk
Tj∧Sk

| − e
(α−1)|Bk

Tj∧Sk
−A j

T j∧Sk
|]1{Sk≤Tj−1}

+ |Sk−1 − Tj |(α − 1)[e−(α−1)|Bk
Tj∧Sk

−A j
T j∧Sk

| − e
(α−1)|A j

T j∧Sk
−Bk

Tj∧Sk
|]1{Tj≤Sk−1}

]}

and

CRCRIGα(NT , NS)=EQV

{ ∞∑
n=1

[
(Vn−Vn−1) + (α−1)|Vn − Vn−1|(e−(α−1)|An

Vn
−Bn

Vn
| − (e(α−1)|An

Vn
−Bn

Vn
|
)
]}

.

Proof First, we observe the partitions of R: � = ∪∞
k=1(Sk−1, Sk], � = ∪∞

j=1(Tj−1, Tj ].
Thence � = ∪∞

k=1 ∪∞
j=1 (Sk−1 ∨ Tj−1, Sk ∧ Tj ) is a partition of R.

We let (τTn )n≥0 be an increasing sequence of �t -stopping times as the localizing sequence

of the stopped martingale (NT)

t∧τTn
− At∧τTn

)t≥0 and let (τSn )n≥0 be an increasing sequence of

�t -stopping times as the localizing sequence of the stopped martingale (NS
t∧τSn

− Bt∧τSn
)t≥0

and then apply the Optimal Sampling Theorem.
Note that τn = τTn ∨ τSn is also an �t -stopping time and that the point process (Sk)k≥0

define a partition of �+, that is, �+ = ∪∞
k=0(Sk−1, Sk]. Therefore, we can write

EQV

[∫ t

0
e(α−1)(Bt−At )dt

]
= EQV

⎡
⎢⎣

NT
τn∑

j=1

NS
τn∑

k=1

∫ Sk∧Tj∧τn

Sk−1∨Tj−1

e(α−1)(Bk
t −A j

t )dt

⎤
⎥⎦

= EQV

⎧⎪⎨
⎪⎩

NT
τn∑

j=1

NS
τn∑

k=1

∫ Sk∧Tj∧τn

Sk−1∨Tj−1

[1 +
∫ s

0
(α − 1)e(α−1)(Bk

s −A j
s )d(Bk

s − A j
s )]dt

⎫⎪⎬
⎪⎭

= EQV

⎧⎪⎨
⎪⎩

NT
τn∑

j=1

NS
τn∑

k=1

[
(Sk ∧ Tj ∧ τn − Sk−1 ∨ Tj−1) +

∫ Sk∧Tj∧τn

Sk−1∨Tj−1

(α − 1)
∫ s

0
e(α−1)(Bk

s −A j
s )d(Bk

s − A j
s )dt

]⎫⎪⎬
⎪⎭

=EQV

{NT
τn∑

j=1

NS
τn∑

k=1

[
(Sk ∧ Tj ∧ τn−Sk−1 ∨ Tj−1)+

∫ Sk−1∨Tj−1

0

(∫ Sk∧Tj∧τn

Sk−1∨Tj−1

dt

)
(α − 1)e(α−1)(Bk

s −A j
s )d(Bk

s − A j
s )

+
∫ Sk∧Tj∧τn

Sk−1∨Tj−1

(∫ Sk∧Tj∧τn

s
dt

)
(α − 1)e(α−1)(Bk

s −A j
s )d(Bk

s − A j
s )

]}
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= EQV

{NT
τn∑

j=1

NS
τn∑

k=1

[
(Sk ∧ Tj ∧ τn − Sk−1 ∨ Tj−1)

+
∫ Sk−1∨Tj−1

0
(Sk ∧ Tj ∧ τn − Sk−1 ∨ Tj−1)(α − 1)e(α−1)(Bk

s −A j
s )d(Bk

s − A j
s )

+
∫ Sk∧Tj

Sk−1∨Tj−1

(Sk ∧ Tj ∧ τn − s)(α − 1)e(α−1)(Bk
s −A j

s )d(Bk
s − A j

s )

]}

= EQV

{NT
τn∑

j=1

NS
τn∑

k=1

[
(Sk ∧ Tj ∧ τn − Sk−1 ∨ Tj−1)

+
∫ Sk−1∨Tj−1

0
(Sk ∧ Tj ∧ τn − Sk−1 ∨ Tj−1)(α − 1)e(α−1)(Bk

s −A j
s )dBk

s

−
∫ Sk−1∨Tj−1

0
(Sk ∧ Tj ∧ τn − Sk−1 ∨ Tj−1)(α − 1)e(α−1)(Bk

s −A j
s )d A j

s

+
∫ Sk∧Tj∧τn

Sk−1∨Tj−1

(Sk ∧ Tj ∧ τn − s)(α − 1)e(α−1)(Bk
s −A j

s )dBk
s

−
∫ Sk∧Tj∧τn

Sk−1∨Tj−1

(Sk ∧ Tj ∧ τn − s)(α − 1)e(α−1)(Bk
s −A j

s )d A j
s

] }

= EQV

{NT
τn∑

j=1

NS
τn∑

k=1

[
(Sk ∧ Tj ∧ τn − Sk−1 ∨ Tj−1)

+ (Sk ∧ Tj ∧ τn − Sk−1 ∨ Tj−1)(α − 1)e
(α−1)(Bk

Sk
−A j

Sk
)
1{Sk≤Sk−1∨Tj−1}

− (Sk ∧ Tj ∧ τn − Sk−1 ∨ Tj−1)(α − 1)e
(α−1)(Bk

Tj
−A j

T j
)
1{Tj≤Sk−1∨Tj−1}

+ (Sk ∧ Tj ∧ τn − Sk)(α − 1)e
(α−1)(Bk

Sk
−A j

Sk
)
1{Sk−1∨Tj−1≤Sk≤Sk∧Tj∧τn}

− (Sk ∧ Tj ∧ τn − Tj )(α − 1)e
(α−1)(Bk

Tj
−A j

T j
)
1{Sk−1∨Tj−1≤Tj≤Sk∧Tj∧τn}

]}

= EQV

{NT
τn∑

j=1

NS
τn∑

k=1

[
(Sk ∧ Tj ∧ τn − Sk−1 ∨ Tj−1)

+ (Sk ∧ τn − Tj−1)(α − 1)e
(α−1)(Bk

Sk
−A j

Sk
)
1{Sk≤Tj−1}

− (Tj ∧ τn − Sk−1)(α − 1)e
(α−1)(Bk

Tj
−A j

T j
)
1{Tj≤Sk−1}

+ (Sk − Sk)(α − 1)e
(α−1)(Bk

Sk
−A j

Sk
)
1{Tj−1≤Sk≤Tj∧τn}

− (Tj − Tj )(α − 1)e
(α−1)(Bk

Tj
−A j

T j
)
1{Tj−1≤Sk≤Tj∧τn}

]}
.
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If we now let τn → ∞, we have

= EQV

{ NT∑
j=1

NS∑
k=1

[
(Sk ∧ Tj − Sk−1 ∨ Tj−1)

− |Sk − Tj−1|(α − 1)e
(α−1)|Bk

Sk
−A j

Sk
|
1{Sk≤Tj−1}

+ |Tj − Sk−1|(α − 1)e
−(α−1)|Bk

Tj
−A j

T j
|
1{Tj≤Sk−1} + 0 − 0

]}
.

Also, by the same reason, we have

EQV

[∫ τ

0
e(α−1)(Bt−At )dt

]
= E

{ NT∑
j=1

NS∑
k=1

[
(Sk ∧ Tj − Sk−1 ∨ Tj−1)

− |Tj − Sk−1|(α − 1)e
(α−1)|A j

T j
−Bk

Tj
|
1{Tj≤Sk−1}

+ |Sk − Tj−1|(α − 1)e
−(α−1)|A j

Sk
−Bk

Sk
|
1{Sk≤Tj−1} + 0 − 0

]}
.

Hence

CRCRIGα(NT , NS) = EQV

{ NT∑
j=1

NS∑
k=1

[
2 × (Sk − Tj−1) + (Tj − Sk−1)

+ |Tj−1 − Sk |(α − 1)[e−(α−1)|A j
T j∧Sk

−Bk
Tj∧Sk

| − e
(α−1)|Bk

Tj∧Sk
−A j

T j∧Sk
|]1{Sk≤Tj−1}

+ |Sk−1 − Tj |(α − 1)[e−(α−1)|Bk
Tj∧Sk

−A j
T j∧Sk

| − e
(α−1)|A j

T j∧Sk
−Bk

Tj∧Sk
|]1{Tj≤Sk−1}

]}
.

and as τn goes to ∞ we have

CRCRIGα(NT , NS)=EQV

{ ∞∑
n=1

[
|Vn−Vn−1|+(α−1)|Vn−Vn−1|(e−(α−1)|An

Vn
−Bn

Vn
|−(e(α−1)|An

Vn
−Bn

Vn
|
)
]}

,

as required. �
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