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Abstract

Kullback-Leibler divergence measure between two random variables is quite useful in many
contexts and has received considerable attention in numerous fields including statistics,
physics, probability, and reliability theory. A cumulative Kullback-Leibler divergence mea-
sure has been proposed recently as a suitable extension of this measure upon replacing density
functions by cumulative distribution functions. In this paper, we study a dynamic version of it
by using a point process martingale approach conditioned on an observed past. Interestingly,
this concept is identical to cumulative residual inaccuracy measure introduced by (Bueno
and Balakrishnan (Probab Eng Sci 36:294-319, 2022). We also extend the concept of relative
cumulative residual information generating measure to a conditional one and get Kullback-
Leibler divergence measure through it. We further extend the new versions to non-explosive
univariate point processes. In particular, we apply the conditioned Kullback-Leibler diver-
gence to compare measures between two non-explosive point processes. Several applications
of the established results are presented, including to a general repair process, minimal repair
point process, coherent systems, Markov-modulated Poisson processes and Markov chains.
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1 Introduction

Consider two positive random variables 7" and S defined in a probability space (2, 3, P),
with distribution functions F(¢) and G(¢) and continuous density functions f(¢) and g(#),
respectively. Then Shannon entropy, Shannon (1948), a measure of uncertainty, is given by

H(f) = — /0 FOIn f(0)dt

where In is the natural logarithm, the base e logarithm function.

An important inaccuracy measure between the uncertainty of two positive and absolutely
continuous random variables, S and 7, is Kerridge inaccuracy measure, Kerridge (1961),
given by

H(S.T) = E[~Ing(T)] = — /0 (In g(x)) f (x)dx.

In the case when S and T are identically distributed, the Kerridge inaccuracy measure
reduces to the well-known Shannon entropy measure.

Rao et al. (2004); Rao (2005) provided an extension of the Shannon entropy, called the
cumulative residual entropy of 7', C R E(T'), by using survival functions instead of probability

density functions, as
o0

CRE(T) =— / F()InF(t)dt,
—00
where F = 1 — F is the survival function.
Kerridge measure of inaccuracy has also been extended in a similar way by Kumar and
Taneja (2012, 2015).
The Kumar and Taneja’s cumulative residual inaccuracy measure between S and T is
defined as

00 T
e(S,T) = —/ F)InG@)dt = E[/ As(s)ds],
0 0

where F = 1 — F and G = 1 — G are the reliability functions of 7' and S, respectively,
and Ag(t) = —log G(¢) is the cumulative hazard function of S. We take, as convention,
Olog0 = 0.

Indeed, e(S, T) represents the information content when using G (1), the survival function
asserted by the experimenter, due to missing/incorrect information, instead of the true survival
function F (7).

A main measure of information, named Kullback-Leibler (KL) information, is defined as
in Kullback and Leibler (1951)

_ [~ HG)
1(S, T)_/;oog(t)ln<f(t))dt,

is a measure of information discrepancy between 7' and another random variable S. Here
g(t) can be viewed as a reference distribution.

The likelihood ratio in the above expression, may be considered as the information result-
ing from the observation S = ¢ for discrimination in favor of S against 7. Therefore, the
expression is then a mean discrimination.

Ast —1 > Int, Vt > 0, it is easy to prove that the information /(S, T') have the
nonnegative property and the equality I (S, T) = 0 holds if, and only if, f(r) = g(¢), Vt.

However, K L information is not symmetric and cannot be a measure.
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Inspired by (S, T) of Kumar and Taneja (2015); Park et al. (2012) proposed a simple
extension for positive random variables

/Oo G()In (ﬁ)dt
0 F()

e G(1) u/"°° F(1)
G(t) In(=>)dt = G(t)In ::44— dt
jg (1) In(= T )) A (#) In( Cu ))

> /Oo G()(1 — ﬁ)d: /mé(r)dz - /oof(r))dz = E[S] — E[T]
0 G(1) 0 0

However

which does not satisfy the nonnegativity and characterization properties.

To bypass this problem, Barrapour and Rad (2012) has suggested an extension of KL
information using survival distribution function which can be called the residual K L infor-
mation (CRK L) given by

CRKL(S, T):/oo G(t)In (%)dt (E[S]— E[T)).
0

Another extension of this measure, using distribution functions was considered by Park
et al. (2012) , which can be called cumulative K L information, (CK L), is

G@)
F(1r)
which also satisfies the nonnegativity and characterization properties, but is not symmetric. Di
Crescenzo and Longobardi (2015) analyse some properties and applications of this particular
measure.

To obtain the symmetric property, Kullback and Leibler (1951) define a (KL) divergence
measure by

J(S,T):I(S,T)H(T,S):/"" g(t)ln(g())dt+/ F)in (f())dt
—o0 S g(0)

The above expression, introduced by Jeffreys (1946, 1948), defines the divergence
between T and S as a measure of the difficulty of discriminating between them.
We observe the following properties of J (S, T')

CKL(S, T):/ G(t)In dt + (E[S] — E[T])
0

I) Sincethatr — 1 >1Int, V¢t > 0 we have

.= [ _som (G5 )= - [ s (G5 )

> f Y0 1= 200 - f ~ et - / F)di =0,
0 g() 0 0

Therefore J(S,T) = I(S,T) + I(T, S) is positive.
M) J(S,T) = I(S,T)+ I(T,S) = 0if and only if f(t) = g(t) Vt > 0. Otherwise
I(f(t) — g()) In ( fg;) | > 0and J(S,T) #0.
I J(S,T)=1(S,T)+ I(T, S) is symmetric.
1V) For any random variables S, 7 and U defined in (€2, J, P), the triangle inequality is
defined as
JS,T)<JS, U)+JWU,T).
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When the random variables are not equal almost everywhere and the properties of non-
negativity (I), identity of indiscernibles (II), symmetry (III) and triangle inequality (IV)worth
we say the J (S, T') is a metric in the L'-space of random variables.

However, if S, T and U are independent random variables with exponential distributions
with parameters «, 8 and y, respectively we have

2
J(S,T):%

and the triangle inequality becames

B-a? _(@=y? @ —B>
a.f T ay y.B

If we replace o = l,ﬂ:3andy:2wehave%§é—i—%:%isnottrue.

Therefore, as Kullback (1968) described, J (S, T') is symmetric and has all the properties
of a metric, except the triangular inequality property. The information measures 7 (S, 7') and
I(T, S) may, in this respect, be considered as directed distances.

In information theory generating functions have been defined for probability density func-
tions ( PDFs) to determine information quantities such as Shannon information, informational
energy, extropy and Kullback-Leibler information. Golomb (1966) proposed information
generating function of a PDF f, whose derivatives, evaluated at 1, yeld some statistical
information measures for the probability distributions. To this end, let 7 be an absolutely
continuous random variable defined in a complete probability space (2, J, P), with cumu-
lative distribution function F' and probability density function f. Then, the information
generating (IG) function of T, for any o > 0, is defined as

o0
Go(T) :/ fA(ndt,
—00
provided the integral exists. Golomb (1966) then showed the following properties of G (T'):
d
Gi(T)=1 and aGa(T”a:l =—H(T),

where %Ga (T) is the first derivative of G, (T'), with respect to « and H(T) is the Shanoon
differential entropy. In particular, when « = 2, the IG measure becomes f ;O f 2 (t)dt ,known
as informational energy (IE) function.

Relative entropy (based in Golomb’s information function) has been defined by Guiasu and
Reischer (1985); its first derivative at 1 yelds Kullback-Leibler divergence. Let T and S be two
absolutely continuous random variables defined on a complete probability space (2, 3, P),
with probability density functions f and g, respectively. Then, the relative generating (RIG)
function, for any « > 0, is defined as

R(T, S) = / ” g wat,

provided the integral exists. The Kullback and Leibler information is then obtained as

d o0
KL(T,S) = %RQ(T’ Sa=1 = / f(@)In (%) dt.

Recently there is a deep interest in proposing new versions of information generating
functions. Clark (2020) propose a measure applicable to point processes. Kharazmi and
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Balakrishnan (2021) propose Jensen-information generating function, whose derivatives
generate the well-known Jensen-Shannon, Jensen-Taneja and Jensen-Extropy information
measures. Furthermore develope some results for G, (7T) for the residual lifetime distri-
bution. Kharazmi and Balakrishnan (2023) proposed a cumulative residual information
generating (CRIG) and relative cumulative residual information generating (RCRIG) func-
tions based on survival functions.

For a non-negative random variable 7 with an absolutely continuous survival function
F, the cumulative residual information generating (CRIG) measure of 7', for any o > 0, is
defined as

CIG,(T) = /OOF“(t)dt.
0

Let T and S be two absolutely continuous random variables defined on a complete prob-
ability space (€2, 3, P), with survival functions F and G, respectively. Then, the relative
cumulative residual information generating (RCRIG) measure between 7 and S, for any
o > 0, is defined as

RCRIG(T, S) =f TG *(t)dr
0

o0 — —
:/ F(1)e@ VIF® (-G g,
0

o F©)
( )@ Dar |
eln G(t)

Capaldo et al. (2024) introduce and study the cumulative generating function, which
provides a unifying mathemathical tool suitable to deal with classical entropies based on
the cumulative distributions and on survival functions. In particular, extends (Kharazmi and
Balakrishnan 2023) measure and the Gini mean semi-difference.

To explore information generating functions linked to maximum and minuimum ranked
sets, as well as record values and their properties, refer to the works of Zamani et al. (2022).

We think that there is a gap in analysing relative cumulative residual information generating
and its generated measures, such as KL measure, in the case of variables, or point processes,
stochastically dependents. Martingale theory provides an interesting and elegant approach to
work stochastically dependence and time dependence.

The rest of this paper consists of three sections. In Section 2, we provide motivation
and purpose of this paper. In Section 3.1, of Section 3, we propose a relative conditional
cumulative residual information generating measure (CRCRIG) and provide an interpretation
for it. This information generating measure will be used to measure the closeness between
two survival functions as well as to generate a conditional cumulative Kullback-Leibler
(CKL) divergence measure. In Section 3.2, an extension of information generating measure
to univariate non-explosive point processe is provided. In Section 4, we give some preliminary
notation and a theorem about stochastic inequalities between non-explosive point processes
through their compensator processes, mainly from Kwiecinski and Szekli (1991), to compare
CKL divergence measures between two non-explosive point processes. We also describe
several applications of the obtained results to general repair processes, minimal repair point
processes, coherent systems, Markov-modulated Poisson processes and Markov chains. We
present concluding remarks in Section 6.
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2 Motivation and Purpose of this Work

Here, we extend the Kullback-Leibler (KL) divergence to a conditioned measure through
compensator transformation.

As in Bueno and Balakrishnan (2022), we assume observing two component lifetimes
T and S, which are finite positive absolutely continuous random variables defined on a
complete probability space (€2, 3, P), with P(S # T) = 1, through the family of sub
o -algebras (J;);>0 of I, where

“(\Vt = 0{1{S>s}» 1{T>s}, 0<s< t}

satisfies Dellacherie’s conditions of right continuity and completeness.

In this paper, in our general setup, for simplifying the notation, we assume that relations
such as C, =, <, <, # between random variables and measurable sets always hold with
probability 1, which means that the term P-a.s. can be suppressed.

We now assume that S and 7 are totally inaccessible J;-stopping times. An extended
and positive random variable 7 is a J;-stopping time if, and only if, {t < t} € J;, for all
t > 0; a J;-stopping time 7 is said to be predictable if an increasing sequence (t,),>0 of
J;-stopping times, 1, < T, exists such that lim,_, » 7, = 7; a J;-stopping time 7 is totally
inaccessible if P(t = o0 < oo) = 0 for all predictable J;-stopping times o. In this way,
absolutely continuous lifetimes are thought of as totally inaccessible J;-stopping times. For
a mathematical basis of stochastic processes applied to reliability theory, one may refer to
the books by Aven and Jensen (1999) and Bremaud (1981).

Withrespect to (3;);>0 and using Doob-Meyer decomposition, we consider the predictable
compensator processes (A;);>0 and (B;);>o such that 1{7<;; — A; and 1{5<;} — B, are 0 means
uniformly integrable J;-martingales. From the total inaccessibility of S and T', A; and B;
are continuous.

It is well known, see (Jacod 1975), that there exists a bijective relationship between the
space of all distributions functions and the J;-compensator processes space characterized by
the so called Doléans exponential equation

F(I3) = e Aim< (1 4 AAy)

where A¢ is the continuous part of A; and AA; = A; — A{ is its discrete part.
Also, under the assumptions that T is a totally inaccessible J;-stopping time, the ;-
compensators are continuous and from Arjas and Yashin (1988) we conclude that

A =—InF(tAT),

where A is the minimum operator, that is, t A 7 = min{¢, T'}.

We observe that, if A; is a determinist increasing function of ¢ (except that it is stopped
when T occurs) we could say that 7 is dynamically independent of everything else in the
history 3J;. This is a generalization of the case of independent components: if the component
lifetime 7" has a continuous compensator which is deterministic, then the lifetimes of the
other variables have no causal effect in 7. However, other components may well dependent
casualy on T, so that the components need not be statistically independent. Furthermore, as
in Norros (1986), the compensator at its final points are random variables independent and
identically distributed standard exponential.
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Therefore, by equivalence results between distribution functions and compensator pro-
cesses, identifying A\ ¢(¢) and B;, in the set {T A S > ¢}, we obtain

[ wale [ (o) [ (][]

As ¥ (s) = S — s is a left-continuous function, it is a J-predictable process and, as
in Theorem T6 from Bremaud (1981), the integration of ¥ (s) with respect to the bounded
variations martingales, ly7<;; — A,

N
M; =/ (S —9)d(Ir <5y — Ay)
0

is a mean 0 J;-martingale. We then have

S S N
E[/O /\T(z)dt]=E[/0 (S—s)dAS]=E[/O (S—s)dl{TE,}]

=E[lir=5y(S = T)] = E[ly7=5)S = T1].

Also, with the same arguments, we have

T T T
E[/O /\T(t)dt]=E[/0 (T—s)dAS]zE[/O (T—s)dl{TS,]]

=E[lir=r)(T = T)] =0,

T
E [/0 /\S(r)dr] = E[Lis=n)|T — SI]

E UOS /\S(t)dt] =E UOS(S - s)st] =0.

Furthermore, we consider the following extension of Kullback-Leibler (KL) divergence

and

Definition 2.1 Let S and T be continuous positive random variables defined on a complete
probability space (€2, 3, P). Then, the conditioned Kullback-Leibler (CKL) divergence is
defined as

T S
JC(S, T)=E [/ Bsds} +E [/ Asds]
0 0

= Ellis<n)|IT =S|I+ E[lir<5|S = Tl = E[IT — S|],

where l{7<;; — A; and l{s<;) — B; are 0 means uniformly integrable J,-martingales.

Thus, J C(S , T) can be seen as a dispersion measure when using a lifetime S asserted
by the experimenter’s information of the true lifetime 7. When the random variables are
not equal almost everywhere, J (T, S) is a metric in the Ll-space of random variables.
Interestingly, this concept is identical to the cumulative residual inaccuracy measure from
Bueno and Balakrishnan [5] which produces several results and applications.

If T and S satisfy the proportional risk hazard process, then the dynamic conditioned
divergence measure, J,C(T, S) < 0o, uniquely determines the distribution function of 7.

Bueno and Balakrishnan [6] extended JC (T, S), denoted in that paper by CRI(T, S), for
non-explosive point processes, as follows

@ Springer
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Suppose T = (T;,)n>1 and S = (S,,),>1 are two univariate non-explosive point processes
observed at
St =o{lis;>s), Lirjss), 0 <5 < t,i,j €N}

satisfying Dellacherie’s conditions of right continuity and completeness and where 7;, i € N,
and S, j € N, are totally unaccessible J;-stopping times, with P(T; # S;) =1, Vi, j € N,
and we consider the superposition of T and S.

Definition 2.2 The superposition of two univariate point processes T = (7;,),>0 and S =
(Su)n=0, defined on a complete probability space (€2, I, P) with compensator processes
(Ap)=0 and (B;);>0, respectively, is the marked point process (Vy, Uy)y>1, where V. =
(Vi)n>0 18 a univariate point process, and U = (U,),>0, the indicator process, is a sequence
of random variables taking values in a measurable space ({0, 1}, o ({0, 1}), resulting from
pooling together the time points of events occurring in each of the separate point processes.
Here, 0 stands for an occurrence of the process T, U, = T, for some k, in which case
Vi = max<;j<,{(1 — U;).V;}, and 1 stands for an occurrence of the process S, U, = §;
for some j, in which case V;, = max;<;<,{U;.V;}.

Definition 2.3 Let T = (7;,),>0 and S = (S,),>0 be point processes with ?slv—compensator
processes (A;);>0 and (B;);>0, respectively, defined on a complete probability space
(2,3, P). Let (Vy,, Up)y>1 be their superposition process. Then, the cumulative residual
inaccuracy measure, at time ¢, between T and S is given by

13 t
JE(T,8) = E[/ Asds—{—/ Bsds]
0 0

t X K t t
=F / Z/ 1{Un=0}dAst+/ Z/ Li,=ndB, ds | .
0 =1 0 0 =1 0

Remark 2.4 Bueno and Balakrishnan (2024) remarked that when the random variables are
not equal almost everywhere, the quantity J(T,S) = E [E,?i] |Vk — Vi—1]] can be seen as
a dispersion measure in the L'-space of random variable sequences when using the point
process S, asserted by the experimenter’s information of the true point process T.

3 Information Measure Between Two Lifetimes
3.1 Conditional Relative Cumulative Residual Information Generating Functions

Suppose we observe two component lifetimes, 7 and S, which are finite positive random
variables defined on a complete probability space (2, J, P), with P(S # T) = 1, through
the family of sub o -algebras (J;);>0 of I, where

S = 0{1[S>s}7 1{T>s}, 0<s< t}

satisfies Dellacherie’s conditions of right continuity and completeness.

Withrespect to (3;);>0 and using Doob-Meyer decomposition, we consider the predictable
compensator processes (A;);>o and (B;);>o such that I{7<;; — A, and 1{g<;) — B, are 0 means
J;-martingales. From the total inaccessibility of S and 7', A; and B, are continuous.

The compensator process is expressed in terms of conditional probabilities, given the
available information, and it generalizes the classical notion of hazard. Intuitively, it corre-
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sponds to producing whether the failure is going to occur now, on the basis of all observations
available up to, but not including the present.

It then follows, by well-known equivalence results between distribution functions and
compensator processes, that A; = —In F(AT)and B, = —InG(t A S); see (Arjas and
Yashin 1988). Identifying — In G(¢) and B,, and —In F () and A; in the set {SA T > t}, we
present the following definition.

Definition 3.1.1 If S and T are continuous positive random variables defined on a com-
plete probability space (€2, 3, P), the conditional relative cumulative residual information
generating functions is

T S
CRCRIG(T,S) = CRIG4(T,S)+ CRIG4(S,T) = E U e(”_l)(B’_Af)dt] +E [/ e(“_l)(A’_B')dt] .
0 0
provided the integral exists.

Remark 3.1.2 To clarify the conditions under which the integral fOT eI1=OB=A0 gt we
review the definitions of the J,-compensators A; and B;

A;=—InF(@t), ift <TandA, = Ar =—InF(T)ift >T.
B, =—InG(t), ift <SandB, = B = —InG(S) if t > §.
Furthermore A7 and By are independent and identically distributed standard exponential

random variables, see (Norros 1986).
As A; and B, are increasing processes we have

e(1=2)B; e(1=a)Br e(1=@)Bs
E[ / oy i < EL / Lo Coga, )] < EI / ) Gy .

However, if 1 < o < 2 we have

o) e(l «)Bs 00 e(l—(X)Bg 1(AT>At) (1 B
E[/O 1(T>1)(W)df]:E{E[/O 1(T>t)(m)df|AT]}:E{/(; WE[ S|Arldt}

1 Liar>a, a—
= B[ an = B tiagage

1 1 *_ 1 1
= (*)(7)/ F()dt = (=) (——)EIT].
o a—2"J o a—2

The last equality follows from the equivalence {7 > ¢} and {A7 > A,} Therefore the con-
ditions under which E[T] < oo and E[S] < oo are sufficient for integrability on Definition
3.1.1

At this point, we can calculate the fist derivative of CRC1G, (T, S) with respect to « and
evaluate at @ = 1:

§ T S
S—CRCRIGD((T, S)=E [/ (B, — A,)e(”_l)(B’_Af)dt} +E U (A — B,)e<“_”(/‘f_3')dt]
o 0 0

and

T N T S
iCRCR]Ga(T,S)L,:l :E|:/ (B; —A,)dti| +E[/ (A —B,)dt] :E|:/ B,dt:|+E|:/ A,dt:|.
Sa 0 0 0 0
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Then, we can recall Definition 2.1 and verify that
d c
ECRCRIGa(T, la=1 = E[IT =S =J"(S,T),
that is, the first derivative of the conditional relative cumulative residual information gener-
ating measure, at @ = 1, is equal to KL divergence measure.

Interestingly, this concept is identical to the cumulative residual inaccuracy measure
CRI(S,T), of Bueno and Balakrishnan (2024). As such, the several results and proper-
ties of it have been proved by these authors.

Thus, J€ (S, T) can be seen as a dispersion measure when using a lifetime § asserted by
the experimenter’s information of the true lifetime 7. When the random variables are not
equal almost everywhere, JC (T : §) is a metric in the L!-space of random variables.

In the following we present an interpretation for CRCRIG (T, S).

Theorem 3.1.3 If S and T are continuous positive random variables defined on a complete

probability space (2, 3, P), the conditional relative cumulative residual information gen-
erating function is

CRCRIG4(T,S) = E[T]1+ E[S]1+ E[|IT — S|e(a71)(‘BTA57AT/\S)|].

Proof We have

T =A@ D T
CRIG4(T,S)=E / (713) dt|=E |:/ e(a—l)(B,—Af)dti| .
0 \e 0

However,

t
@ DBi—A) — 1 4 (o — 1)/ e(a_l)(B:_A‘)d(By — Ay)
0
and so

T t
CRIGL(T,S)=E U I+ (o — 1)/ @ DB=4) (B, — As))dt]

0 0

T t
— E[T]+E [/ (o — 1)/ @~ DEB=A) g (g — As)dt]
0 0
T T
=E[T]+ (@ — DE [/ (/ dt) @ DB=A) g(p, — AS)]
0 s
T T
= E[T]+ (@ — DE [/ (T — 5)e @ DB=4) g (p) —/ (T — s)e(“*”(Bf*Aﬂd(As)}
0 0

T T
=E[T]+ (@ — DE U (T — 5)e@ VB4 g(N5) — / (T — s)e("‘_1)(3‘*'_A~*')d(NST)i|
0 0

= E[T]+ (@ — DE[T — S§)e @ DBs=A49) 1 ¢ 1]

= E[T]+ (@« — DE[|T — S|e(0t*1)|(BTAS*ATAS)\ l(s<7}]-
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Using the same arguments, we also have

T
CRIG,(S.T) = E [/ e(afl)(Ath,)dt]
0

= E[S]+ (@ — DE[|T — S|e@ DIAms =Bl p ).
Therefore,
CRCRIG4(T, S) = E[T]+ (¢ — DE[|T — S| DB1as=AT7) | g 111
+E[S]+ (a — DE[|T — S|~ D ATs=Bras) 7 g
= E[T]+ E[S]+ El(@ = DIT — S|e@VIEras=Arasl],

as required O

3.2 Conditional Relative Cumulative Residual Information Generating Function
between Univariate Nonexplosive Point Processes

A point process over i+ can be described by an increasing sequence of random variables or
by means of its corresponding counting process.

Definition 3.2.1 An univariate point process is an increasing sequence 7 = (7},),>0, 7o = 0
of positive extended random variables, 0 < 77 < T, < ..., defined on a complete probability
space (€2, 3, P). The inequalities are strict unless 7;, = 0o. If Too = limy,— 00 T, = 00, the
point process is called nonexplosive.

Another equivalent way to describe a point process is by a counting process N = (N;);>0
with

NS ) =Y Lnan=ns
k>1

which is, for each realization w, a right continuous step function with No(w) = 0. As (Ny):>0
and (7;),>0 carry the same information, the associated counting process is also called point
process.

The mathematical description of our observations, at the complete information level, is
given by the internal family of sub o -algebras of J, denoted by (:TstT),Zo, where

ST =o{lir=s,i > 1,0 <5 <1}
satisfies the Dellacherie conditions of right continuity and completeness.

The point process (N,T)zzo is adapted to (fs;r),zo and E[N,T|S;r] > NST for s < t, that s,
NtT is an uniformly integrable S;r—submartingale. Then, from Doob-Meyer decomposition,
there exists a unique right-continuous nondecreasing Ts;r-predictable and integrable process
(AIT),ZO, with Ag = 0 such that (MtT),Zo, with N[T = A;r + M,T, is an uniformly integrable
i”stT—martingale.

The compensator process is expressed in terms of conditional probabilities, given the avail-
able information, and it generalizes the classical notion of hazard. Intuitively, it corresponds
to producing whether the failure is going to occur now or not, on the basis of all observations
available up to, but not including the present time. Furthermore, the 37 -compensator can be
written in the regenerative form as

T )
AT =3 Unse<ti A1)
n
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where each AET)” ) is a deterministic function of its arguments. Thus, the compensators
are piecewise deterministic functions; each occurrence of a point causes a new function to
be selected.

Our aim now is to define a conditional cumulative residual inaccuracy measure between
two independent non-explosive point processes, T and S, and to proceed, as in Bueno and
Balakrishnan (2024), to use a superposition process V = (V,,),>1 with compensator (A +
B)tV = A;r + BS, as in Definition 2.2.

At this point, the original compensator process A;r is replaced by (1 — oz)A,T with

1 - a)AT Z 1 T,,<Z<T,,+1 - a)AE:l‘)T] Tn);

B,S is replaced by (1 — oc)BtS with

I—a)BP =) Iis,<r<s5,,1)(1 —“)B((:i)sl S0
n

the superposition process V. = (V,),>1, with compensator A; 4+ B;, is replaced by (o —
1)(A; + B;) with

A=) A+B) =Y Ly, —a)A+ B, o
n

Following (Bremaud 1981), the original measure P is then replaced by a new measure
0V, such that Q" is absolutely continuous with respect to P and

Vv .
d&% — LV = oZn=11vzn) pJo @d(A+B)s

which, in case where 0 < o < 1, is an uniformly integrable and locally square integrable
martingale under P.

We define a conditional cumulative inaccuracy measure between two univariate non-
explosive point processes at any J;-stopping time 7, in particular, at time ¢ as follows

Definition 3.2.3 Let T = (7},),>0 and S = (S,,)»>0 be point processes with J,-compensator
processes (A;);=0 and (B;);>0, respectively, defined on a complete probability space
(2,3, P). Let (V,)n>0 be their superposition process. Then, the relative conditional cumu-
lative residual information generating function by time ¢ is

t t
CRCRIGQ(NT, N[S) — EQV |:/ e(O(—l)(Bz—At)dlj| + EQV [/ e(a_])(A’_Bt)dti|
0 0

provided the integral exists.
Therefore, we can extend it as

oo oo
CRCRIGE((NT, NS) — EQV [/ e(a—l)(Bt—At)d[] + EQV [/ e(l)l—l)(At—Bt)dt} .
0 0

provided the integral exists.
The interpretation of Definition 3.2.3 is given in the following theorem which is proved
in Appendix.
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Theorem3.2.4 Let T = (Ty)n>0 and S = (Sy)n>0 be nonexplosive point processes and
V = (V=0 be their superposition process. Then,

N/ N,
CRCRIGu(NT, N5y = Eyv {Z Z[(Sk —Tj_1) + (Tj — Sk=1)

o 1)|B%

k
-B TjAS AT'/\S](|]

—(a=1)|A] Foasl _

+1Tj—1 = Skl(@ = Dle Tinsi Lisp<7; 1}

—(@—1)|BX o —A] —DjA) o —BE
FISie1 — Tjl@ — Die (@1 TinSk Tj/\Skl _e(or )| TinS; TjASkl]l(T/SSk,I}}}
and

o0
CRCRIGO,(NT,N%:EQV[Z[(W Vo) + (@ = DIVa—Vail(e” (“‘”‘A'@n‘%‘—(e“"“"‘"v""””‘)]}'

n=

4 Preliminaires, Applications and Results
4.1 Preliminaires

Now, we consider another point process S = (Sy,),>0 With J;-compensator process (B;);>0,
related to the counting process NtS observed at

\S;g = 0'{1{S,->s},i >1,0<s < t}s

with w
Zl Sn<t<Sn+l}B(tn|S]

Then the following result is adapted from Kwiecinski and Szekli (1991).

Theorem 4.1.1 If for point processes NtT and Nts, possibly defined on different probability

spaces,
(n) < pm

B n>1
(tnltrsestn—1) — = (tnls1,.80-1)" ="

for s = t, coordenatewise and for PT almost sure, then there exists a probability space
(Q.3, P) and point processes NT and NS on it such that NT = NT, N,S =" NY and
PINT <NS, 120 =1.

At this point, we consider an additional extension of Kullback-Leibler (KL) divergence,
at time t, between T and S defined possibly on different probability spaces.

Definition 4.1.2 Let T = (7,,),>0 be a point process defined on a complete probability space
(2,3, Q1), with J;-compensator process (A;);>0, and S = (Sy,)»>0 be another point process
defined on a complete probability space (€2, J, Q2), with J;-compensator process (B;);>0.
Then, the KL divergence, at time ¢, between T and S is

t t
JE(T,S) = Ey, [/ Asds] +Eg, [/ Bsds] :
0 0
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4.2 Applications and Results

In what follows we provide several applications of the developed theory, including gen-
eral repair processe, minimal repair point processes, coherent systems, Markov-modulated
Poisson processes and Markov chains. In all cases we present the inequality

JE(T,8) < JE(T,R).

As JE(T,S) can be view as a metric between the process T and the process S, the
inequality indicates that the distance between T and S is lower than the distance between T
and R providing a better approximation for T. These include to choose a better repair police,
a small parameter distribution, a small set of infinitesimal characteristics of a Markov chain,

4.2.1 Application to a General Repair Process

Let T = (T)n>1, with Ty = 0, be a point process defined in a complete probability space
(2,3, P), observed with the history

o~

ST =o{lir,-5,0<s <t,n=1,2,..)

satisfying Dellacherie’s conditions of right continuity and completeness, describing failures
times of a system, with lifetime 7', at which instantaneous repairs are carried out. We assume
that 7,,, n > 1, are totally inaccessible i‘stT—stopping times.

Let (N,T )¢=0 be the corresponding point process defined as

N' =52 1i7,<

and (A,T) =0 be the S;r—compensator process of (N;);>o in the regenerative form as
T (n)
AL =) V<<t AU -
n

To model varying degrees of repairs, we assume that the nth repair has the effect that the
distribution of failures is that of an unfailed item of age D, > 0, where (Dj,),>0, with Dy = 0,
is a sequence of nonnegative random variables such that D), is i‘sr;n -measurable. Therefore,
under repairs, the general term of the new fs,T-compensator of (Ny)i>0 1s D,(") = Af'i)T D, -
In the case when D,, = T, foralln € N, (N;);>0 is a nonhomogeneous Poisson procesg with
general term compensator function D,(") = A,("). When D, = 0foralln € N, (N;);>pisa

renewal process with general term compensator function Dt(") = Az(’i)Tn'

We now proceed with a change of probability measure, say, from P to Q, following
Girsanov theorem, see (Bremaud 1981), in which the occurrence times are retained. We can
write

t
W _ g
Dt - At_Tn+Dn _/ dAS’
(T,~Di)v0

and then establish the theorem.
Theorem 4.2.1.1 The process (L;);>o defined by
<y Jy dA—[} A <y AL
Ly = (s (g,—p,yvop) 70 elo 44~ Jim-mmvo s = (17 7, _p, o) 117=01eATu-Div0

is an integrable TstT—martingale, with E[L;] = 1.
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Proof We have to prove that L, is JT adapted, the martingale property E[L,|3T] = L, and
L, is integrable.
Clearly, as T is 3J;- measurable and A; is J;- predictable we have that L; is S;r adapted.
We have to prove that, forall 7, < s <t < T4+1, E [L,lSXT] = Ly, which is equivalent
to proving that

~ - ] A ~
E[L—L,3T1=E {[(1{T>(T,,fD,,)v0})l{T*” — (Lr>T—povop) 7= ] e (Tan>v°|\ssT} =0.

Observe that if T < s,then T < ¢ and E[L,; — Ls|3T] = 0. Also,if T > t,then T > s
and E[L; — Ls|3T] = 0.
IftT, <s <T <t < T,41, we observe that
{Nins =k} 0Ty =5 < Tyg1} = {Niar, =k} T, <5 < Thg )
Therefore, for any generator U of J;, there exists a generator V of I7, such that
UN{T, <s <Tyn1} =V N{l, <5 < Ty}

and, as in Theorem 32, Appendix 2, of Bremaud (1981), the information before s is the same
as the information before T),. Also, observe that if, T > T, (1{7>(1,-p,)v0}) = 1. Hence,

(n) (n)
E [Lfm;r] =E [(1{T><Tan)v0})eA”"*”"WO|33] =k [EA(T'FD")V%;F]

(n) (n)
=E [eAU'n—un)vom; } = eAm-bavo = [,
n

(n)
The third equality follows because eATu-Davo js 3;” -measurable. Also, as :TSOT ={Q, 7},
we have E[L,] = E[Lo] = E[¢”0] = 1 and L, is integrable. Hence, the theorem. O

Theorem 4.2.1.2 Under the probability measure Q defined by the Radon-Nikodym derivative

doQ A®
Tp e = Loo = (l{r>1,—D,v0))e" Tn=Duv0,
(N,(") — Aﬁli)T,,qLD,,)on is an S;r-martingale, where N,(n) is Ny restricted to [T,,, Ty+1)-

Proof Clearly, we have

t

Eo[A(t =T, + Dp)l = Eg [/
(

A® !
dAs] =E [(1[T><Trun>vo))e (T"*D"’V”f dAs]
T,—Dp)VO n—Dn

! (n)

A

=E [/ (Lr>(1,-Dyyv0))e ”n*DHWOdA_Y]
(T —Dy)VO

t (n)

A

=E [/ (I7> (1, —Dy)vo}€ ‘T"*D'”Vost:|
(T, —Dn)VO

A(ﬂ)
= E[(Li7>1,—pyvope =L lyr _pyvo<r<)] = Egllir<n],
and conclude that, under Q, (Nt(") — A,@Tn + Dn),zo is an S;r-martingale, where N,(") is N;

restrict to [Ty, Ty41)-
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Thus, the proof gets completed and, under Q, At('i)Tn 4D, is the unique general term of the
i‘s;r -compensator of (N;);>0.

To proceed with a repair policy, we must look for the most convenient type of repair we
should use to best approximate the ideal system performance.

Let us now consider the point process S = (S,),>1, with Sy = 0, corresponding to
the counting process (N¢)t>0, resulting from repairing the process T, characterized by a
sequence of \sT -measurable nonnegative random variables (U, ),>1, with Uy = 0, and J mst
compensator process

Z Wt <i=t) B (r|T. STy

with B((zn|)T1 ) = A;'?Tn U, under a probability measure Q1. ‘

Further, let us consider another process R = (R;)y>1, Ro = 0, corresponding to the
counting process (N;);>0, resulting from repairing the process T, characterized by asequence
of I NsT -measurable nonnegative random variables (V,,),>1, with Vy = 0,and \st -compensator

process
Z Ut <r<1 CPr
with C ((:")Tl ) = At( T,+v, under a probability measure Q5.
Clearly, if

PHw:U,(w) < V,(w), n=1,2,3,..H) =1,
as A,(") is nondecreasing, we will have

Pw: A" . < A" L n=123,.)=1

From Theorem 4.1.1 we have IT"(NtT < N;S, t > 0) = 1, and we then finally obtain
JE(T,8) < JE(T.R).

To motivate this result, let U, = 0 for all n (a renewal process) and V,, = T,, for all n
(a minimal repair process). As P({w : Uy(w) < V,(w), n =1,2,3,...}) = 1, we can
conclude that the renewal process produces a better approximation for T than a minimal
repair process. O

4.2.2 Application to a Minimal Repair Process

A repair is minimal if the intensity A,T is not affected by the occurrence of failures; in other
words, we cannot determine the failure time points from the observation of 1! . Formally, we
have the following definition.

Definition 4.2.2.1 Let T = (7},),>0 be a point process with an integrable point process N7
and corresponding S;-intensity (k )i>0. Let I Nst = a{)LST, 0 < s < t} be the filtration
generated by AT. Then, the point process 7 is said to be a minimal repair process (MRP) if
none of the variables 7, n > 0, for which P(7,, < c0) > 0, is an 3% -stopping time.

If T is a non-homogeneous Poisson process, then A; = A(¢) is a time dependent deter-
ministic function, and it means that the age is not changed as a result of a failure. Here,

S?‘T {Q, @} forall t € R, and the failure times 7}, are not 3 o, —stopping times.
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Let (T,)n>0 be a Weibull process with parameters 8 and 61, that is, we consider the ordered
lifetimes 71, ..., T, with a conditional reliability function given by

N /P
i i—1
Gi(tilt1, ... ti—1) = exp y — (E) +( o )

for 0 < t;_; < t;, where t; are the ordered observations.
The 37 -compensator process is then

N GROINGE

Jj=1

Now, suppose we observe the Weibull process (S;,),>1, with parameters 8 and 6,, through
the family G5 = (G%),-0, where

G? =o{l(s,>5). 0<s5<1)

satisfies Dellacherie’s conditions of right continuity and completeness asserted by the exper-
imenter for (7},),>0. We can then calculate J,C(S, T), where (NtS — B;)>0 1s an uniformly
integrable martingale, as

t t t /e \P t 7 g\B
JzC(S’ T) = E|:/ Asds—i-/ Bsdsi| =FE / (—) ds+/ (7) ds
0 0 0o \01 o \ 0
B B
_ B (6] + 06, -
B+1\ olo)

Also, let (R,),>1 be a Weibull process, with parameters 8 and 63, observed through the
family GR = (GF)rzo, where

GR =o{l(r,~5), 0<s <1}

satisfies Dellacherie’s conditions of right continuity and completeness asserted by the exper-
imenter for (7},),>0. We then have

tﬁ+l 9/3 0/3
JER,T) = L0
B+1\ ofo)

The GR-compensator process of (Ry)n>0 1S C((Z;I ) = (9’7)ﬂ.

If we assume 63 < 6,, we then have (é)ﬁ < (é)‘3 and so, in this case, Theorem 4.1.1
holds, that is, ‘
JES,T) < JCR,T).

4.2.3 Application to a Parallel System Minimally Repaired at Component Level

Let (Uy)n>1 be a sequence of random variables independent and identically distributed as
exponential, with scale parameter c, through the family F = (3;);>0, where

Qg[ :U{I{U,,>S}7 n Z 1305S < t}

satisfies Dellacherie conditions of right continuity and completeness.
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Let (T,,)»>1 be the point process and the corresponding counting process
Ny =222 1z, <)

definedby T =T, =U; vU; =max{U;,Us}and Tj,41 =T, + Uyy2,n > 1.

The intensity of Ny is A; = al{y, av,<s) and so Tsﬁ\ = o{l{y,aty>1), 0 <5 < t}. Clearly,
T is not 37~ measurable and 7, = Ty + U3 + ... + U,41, n > 2, are not 37~ measurable.
Therefore, N; is a minimal repair point process.

The conditional survival function of 77 is

P(Ty > 1]3,) = e @U-UInt",
where U1 /\ Ua = min{U}, U,}. However, its physical lifetime is identically distributed as
Uy vU — Uy AUy = Uy — Ui,

where Uy \/ Uy = max{Uj, U,}, which has an exponential distribution with parameter «.
Furthermore, the interarrival times 7,1 —T,, = U, 42,7 > 1, are independent and identically
distributed as exponential with parameter «.

Therefore, the general term of the compensator function is

(n)

Wltr,ty) = %X

Next, suppose we observe a sequence of random variables (V,,),> of independent and
identical exponential random variables with parameter 8 through the family GX = (Gf‘),zo,
where

GY =o{ly,=5, n>1, 0<s <1}

satisfies Dellacherie conditions of right continuity and completeness to generate minimally
repaired two-component parallel systems, as above, with lifetimes S. We can then calculate
Jtc (S, T), where (NtS — B;):>0 is an uniformly integrable martingale and the general term
of the compensator function is

) _
Bisisy.su) = B X5

Alternatively, we can observe a sequence of random variables (W,),> of independent
and identically exponential random variables with parameter y through the family G% =
(G,W)tzo, where

Gtw = O’{I{WH>S}, n>1 0<s< [}

satisfies Dellacherie conditions of right continuity and completeness to generate minimally
repaired two-component parallel systems, as above, with lifetimes R. We can then calculate
JtC (R, T), where (NtR — C)r>0 1s an uniformly integrable martingale and the general term
of the compensator function is
(n) _
Slstsnsamn) = VXS
Here, if 8 < y, we have

()

(5151500s80-1)

_ )
BXs<yxs= C(S|Sl;uysn—l)
and we can then use Theorem 4.1.1 to conclude that

JEES,T) < JE R, T).
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4.2.4 Application to a Markov-Modulated Poisson Process

A Poisson process can be generalized by replacing the constant intensity with a randomly
varying intensity, which takes one of n values A;, 0 < A; < oo, i € S ={1,2,....,n},n € N.
The changes are driven by a homogeneous Markov chain X = (X;);>0 with values in S,
with infinitesimal parameters ¢;, as the rate to leave state i, and g;; as the rate to reach state
Jj from state i.

The point process T = (T},),,>1 corresponding to the counting process N = (N;);>,, With

oo
= ln=.
n=1

has a stochastic intensity Ay, with respect to the filtration (J;);>0, generated by N and X:
o{Ny, Xs;, 0<s =<t}.

Then, N is said to be a Markov-modulated Poisson process with smooth semi-martingale
representation

t
N[ :/ )\.Xsds +M[,
0

where (M;);>0 is a 3;-martingale and Ax, = > 7_; A l{x,=j).
Furthermore, the indicator of state j at time ¢, 1{x,— j}, also has its smooth semi-martingale
representation as

lix,=jy = Lixo=j) / Zl{xr—t}quds+Mt(J)

where (M;(j)):>0 1S a zero mean J;-martingale.

Hence,
Nt=/ SO s rgigds + My

j=1i=l

The general term of the compensator function is

)
Ayt ) = / ZZ)‘ Lx,=iygijds.

71 i=1

The cumulative residual inaccuracy measure, at time ¢, J,C (T, T*), between the counting
process (N;*);>o related a Markov chain (X);>o with infinitesimal matrix Q* = [q;fi], i,j€
N, asserted by the experimenter’s information of the true Markov chain (X;);>0 having
infinitesimal parameter Q = [g;;],1, j € Ny is given by

t non ¢ noon
JtC(T,T*) =F / ZZle{X[:i}q,‘de + E / ZZ)\jl{Xt:i}qi*jds
j=1i=1 j=1i=1
The general term of the compensator function, where (N;* — B;) is a 0 mean J,-martingale,

n
(n)

j=li=1

is
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Let us now consider another process (N;*);>0 related to a Markov chain (X}*);>0 with

infinitesimal matrix Q** = [q;‘j*], i, j € N4, asserted by the experimenter’s information of

the true Markov chain (X;);>0. Now, the general term of the compensator function, where
(N;* — Cy) is a 0 mean ;-martingale, is

C(")

t non
k3k
IR D ) BT

j=1i=1
If we assume that max,-,jeNJr{q;‘j} < min,-,jeNJr{q;‘j*}, then

B™ (n) 1,

<C n >
(tnltysestn—1) — ~(tnlS1,s80-1)° -

and we can then use Theorem 4.1.1 to conclude that

JE(T, T%) < JE(T, T™).

4.2.5 Application to a Markov Chain

Let (X;):>0 be a Markov chain defined on a probability space (€2, I, P) and adapted to some
history (3;);>0. The observations are through its internal history

X =o(X;, s <1}

forallt > 0, and Stx C J;forallt > 0. Then, I é(o records all the events linked to the process
(Xt)tzo-

The J;-Markov chain is associated with a sequence of its sojourn times (7,41 — T;,) >0,
with Ty = 0, and its infinitesimal characteristics Q = [g¢; ;1, (i, j) € NTXNT_If, for each
natural number i, we have

q9i = qu', j <09,

J#
the chain is said to be stable and conservative. We set g; ; = —g¢;.

We are now interested in the cumulative inaccuracy process between point processes
N,X (1): the number of transitions into state / during the interval (0, ], related to Markov
chain’s occurrence times.

The J;-compensator of N;(/) is

t
/ Zqz',zl{xﬁi}du,
0

i#l
provided

t
Z[ qi11{x,=iydu < oo.

izl Y0
The general term of the compensator function is
;o
AEZ),I,_,,,H) = /0 ; qi1l{x,=iydu.

To evaluate the cumulative inaccuracy measure, at time ¢, between the counting process
N/ (1), related to Markov chain (X});>o with infinitesimal matrix Q* = [qi’f j]’ i,j € N4,
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asserted by the experimenter’s information of the true Markov chain (X;),>0 that has infinites-
imal matrix Q = [g; ;1,i, j € Ny, with counting process N, (!), using Definition 3.1.5, we
have

t s t s
JIC(X, X*) = E f / Z‘h’,ll{Xu:i}d” ds |+E / / Zqi*,ll{XuZi}d“ ds
0 0 il 0 0

i#l

Now, the general term of the compensator function @g(t), where (N;* — B;) is a 0 mean

I -martingale, is
t n
() _ * .
Bt —/ § :qi,ll{Xuzl}du'
U

Let us now consider another process (N,);>¢ related to a Markov chain (X;*);>o with
infinitesimal matrix Q** = [q;fi*], i, j € N4, asserted by the experimenter’s information of
the true Markov chain (X;);>0. Now, the general term of the compensator function, where
(N}* — C,) is a 0 mean J;-martingale, is

t n
()
C(tn‘tl-nvtn—l) =/ qu**}kl{xltzl}du
0 s

If we assume that max;en, {¢/;} < min;en, {¢;;*} , then

(n) (n)

n>1
(tnlt1yestn—1) — ~(nls1,-8n-1)° -

and we can then use Theorem 4.1.1 to conclude that

JEX, X*) < JE (X, X*),

5 Concluding Remarks

In this work, using a martingale approach, we have extended a relative cumulative residual
information generating measure, (RCRIG (T, S)),toaconditionalone CRCRIG (T, S)).
Using the same technique, we get a conditioned Kullback-Leibler (J €S, 1)) divergence
measure. Interestingly, this concept is identical to the cumulative residual inaccuracy measure
of Bueno and Balakrishnan (2022). The conditional relative cumulative residual information
generating measure generates the Kulback measure through its first derivative at « = 1.

We have also extended the conditional relative cumulative residual information generating
measure of univariate non-explosive point process (CRCRIG,(NT, N5)) to a dynamic
conditional one. Then, we have made of conditioned Kulback-Leibler divergence to compare
measures between two non-explosive point processes through stochastic inequalities between
compensator processes related to the respective counting processes. Several applications and
examples have been given, especially in reliability theory. In our future work, we plan to
make use of conditioned classes of distributions, such as multivariate increasing (decreasing)
failure rate distributions given the observed past, J;, to provide sufficient conditions for
such inequalities to hold. We are currently working in this directions and hope to report the
corresponding findinges in a future paper.
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Appendix

Theorem3.2.4 Let T = (T,)n=0 and S = (Sy)n=0 be nonexplosive point processes and
V = (V>0 be their superposition process. Then,

NI NS
CRCRIG(NT,N%) = Eyv {ZZ[(& = Tj—1) + (Tj = Si-1)
j=1k=1

—(a— 1)\A

—Bk
+1Tj-1 = Skl@ = Dle

sy (Ot DIBY. 5, —AT s, |
TinSgt _ TjASk TjASk ]l(SkSTlfl)

—(a—1)|BE o —A] —1)|Af. o —Bk
IS — le(a — Dle (@=1)] T; Ay TjASkl _ e(oz )| TSy TjASkl]l(TfSSk—l)}l
and

o0
CRCRIG((N" N%)=Eqy [Z [(Va= Vi) + @ = DIV, = Vil eI =1 — (el DI, =53, ‘)]}
n=1

Proof First, we observe the partitions of R: Q = Uk 1(Sk—1, 8k], 2 = U ~1(Tj-1, T;].
Thence Q = Uk:1 U]:1 (Sk—1 Vv Tj—1, Sk A Tj) is a partition of R.

We let (7,)),,>0 be an increasing sequence of 3,-stopping times as the localizing sequence
of the stopped martingale (NIT/\)TT — Ajac1)i=0 and let (t3)n>0 be an increasing sequence of
J;-stopping times as the localiz;ng sequence of the stopped martingale (stm,,s - B, Mf) >0

and then apply the Optimal Sampling Theorem.
Note that 7, = r”T \Y, ‘L'ns is also an J;-stopping time and that the point process (Sk)k>0
define a partition of R, that is, ®+ = U2, (Sk—1, Sk]. Therefore, we can write

t Tn SEATj ATy  .J
E v VB =A) g | — F Z @ DB =A]) 4,
Qo 0 Qo s

j=1k=1"S- VT

Naw Na SkAT ATy
=Eyv Z / [1+/(a 1)e@=DE=4) g (Bk — alyjde
Sk—

j=1k=1

SkATj ATy

NI NS
=EQv ZZ[(SkATj/\Tn*Sk—I VTj,|)+/

j=1k=1 Se=1vTj-1

s . .
(@ — 1)/0 e DBI-AD g Bk — A§)dz]

NI

n N Sk—1VTj- SkATj ATy X j .
=Egyv { Z|:(Sk AT ATy—Si—1 V TH)+/0 /S dt | (@ — e @ DE A g(Bk _ Al)
1k=

k—1VTj—1
SkATj ATy SkATj ATy E aj .
+ / (/ dt) (@ = De@ VB =AD 4Bl — Aﬁ)“
Sk—1VTj- s
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T N
an an

=Egv iz Z[(Sk AT Nty — Sk—1 VTj—1)

j=1k=1
Sk—1VTj-1 (B j k .
+/ (Sk ATj ATy — Sg—1 V Tjp) (@ — 1)e@ DB =40 (kA
0

SkATj P j )
+/S (Sk ATj ATy — ) — 1)e@ DB =49 g (gk A§)“

k—1VTj—

T

N3
= EQV {ZZ[(Sk VAN Tj ATy — Sk—1 V ijl)
j=1k=1

Sk—1VTj-1 k_ Al
+/ (Sk ATj ATy — Skt V Tj—1) (@ — e DB =40 g gk

Sk—1VT;j ; .
TS n Tj ATy — Skt V Tj_1)(a — De@ DB=AD g 4]

(=}

Sk AT Aty « j
+/ (sk AT ATy —s)(a — 1e@ DB =40 g gk
Sk—

Sk/\Tj/\r,z X j .
/ (Sk ATj ATy — ) (o — 1)e@ D _As)dAi} }
S

k—1VTj—1

NI NS

n

= Egyv {Z Z[(Sk ATj ATy — Sk—1 V Tj—1)
j=1k=1

(afl)(BékajSk

F(SkAT) ATy — Sim1 V Tj—D (@ — De (s <5evTin)

(@—1)(Bk —Al )
=Sk AT ANty — Sk—1 VTj—1)(a — De U <o)

—1)(Bk —A]
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NI N3
= EQV{ZZ[(Sk AN Tj ATy — Sk—1 V T.,',l)
j=1k=1

~1)(BE —A]
+ Sk ATy = TjmD(e — D VB4 g oy

(a—1)(BX —AL )
—(Tj Nty — Sk—1) (e — De TN <80

)e("‘“’(3§k‘

A
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If we now let 7,, — oo, we have

NT NS
=Egv {Z Z[(Sk ANTj = Sp-1VvVTj-1)
=1 k=1

(@—1)|B% Al
— Sk — Tj—1l(@ — De® 155 Sk‘l{SkSijl}
—<a—1)|B’;j—A~;_\

+I1T) — Si-1l(@ — De fl{TjSSkfl}Jro_O“.

Also, by the same reason, we have

NT NS
T
Egv [/ e(aq)(BﬁA,)d,] = E{ZZ[(S" AT = Si—1 vV Tj—1)
0 J=1k=1
(a—1)|A}, =Bk |
—|Tj = Sg—1l(a — De B <)
(a—1)|A) —Bk
ISk = Tyl — De @My g o +°‘°]}'
Hence
NT NS
CRCRIG(NT,N5) = Eyv [22[2 X (S = Tj—1) + (Tj — Si—1)
j=1k=1
~@=DIAT 5 =Bh s, | @=DIBE 5 A7 s |
+1Tj—1 — Skl(e — Dle IR — e I g <10y
—(a—1)|B5 o —AL o —DjAL o —BE
1Sk — Tjl(@ — Die (a=1)] TjASk T/A5k| _ e(Of )l T} Sy T/Mkl]l(TjsSkq)iI}'

and as 7, goes to oo we have

o0
CRCRIG,(NT,NS)=E v lz [|Vn—vn71 \+(a—1>\vn—anu(e‘(““)‘A%‘B"Vn‘—(e(“‘”"‘%‘%')]],
n=1
as required. m}
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