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Abstract

It is unclear who benefits the most from atherosclerotic cardiovascular disease (ASCVD) screening imaging. This study aimed to
identify features associated with positive coronary artery calcium scores (CACS) in individuals with diabetes using machine
leamning (ML) techniques. ELSA-Brasil is a cohort study with 15,105 participants aged 35 to 74 years in six Brazilian cities. We
analyzed 25 sociodemographic, medical history, symptom-related, and laboratory variables from 585 participants from the Sao
Paulo investigation center with CACS data and no overt cardiovascular disease at baseline. We used six ML algorithms to build
models to identify individuals with positive CACS. Feature importance was determined by SHapley Additive exPlanations (SHAP)
values. The best performer ML algorithm was the XGBoost Classifier (accuracy: 94.8%). Age (SHAP: 0.220), systolic blood
pressure (SHAP: 0.102), and body mass index (SHAP: 0.075) were the most important variables to identify ASCVD in individuals
with diabetes in XGBoost models. Considering all ML models in our analysis, age, systolic blood pressure, and sex were frequently
influential variables. We obtained high accuracy with our best model, using information generally present in current clinical practice.
ML models may help clinicians select patients with characteristics most probably associated with a positive CAC. Age, systolic
blood pressure, body mass index, and sex may be useful markers to identify those at higher risk for subclinical ASCVD.
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Introduction

Cardiovascular diseases (CVD) are the leading cause
of mortality in most countries (1). Data from the Global
Burden of Disease study show an increase in the absolute
number of deaths, years of life lost, and years of life
adjusted for CVD disability in recent decades (2,3). CVDs
are also the leading cause of death in Brazil, where age-
adjusted mortality rates are still higher than in high-income
countries.

Most CVD burden is due to atherosclerotic CVD
(ASCVD). Diabetes is a well-known ASCVD risk factor.
Persons with diabetes are more likely to develop ASCVD
(4), including coronary heart disease (CHD), stroke, pe-
ripheral arterial disease, cardiomyopathy, and congestive
heart failure. Before the onset of clinical conditions,
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ASCVD may be detected by imaging techniques such
as carotid ultrasound or computed tomography (CT) for
coronary artery calcium scores (CACS) quantification.
Diabetes has also been associated with these markers of
subclinical atherosclerosis (5,6).

Although there is consensus about the association
between diabetes and ASCVD, it is unclear which
subgroup of individuals with diabetes should be referred
for further evaluation of atherosclerotic disease. While
blood pressure measurements and resting electrocardio-
grams (ECGs) are recommended for most patients with
diabetes (4,7), the screening for coronary artery disease
(CAD) is not recommended routinely by the American Dia-
betes Association (ADA) in asymptomatic individuals (4).
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ADA recommends that CAD be investigated only in
symptomatic patients (including those with atypical car-
diac symptoms), signs or symptoms of associated
vascular disease (including carotid bruits, transient
ischemic attack, stroke, claudication, or peripheral arterial
disease), or electrocardiogram abnormalities (4). On the
other hand, the European Society of Cardiology (ESC)
recommends that carotid or femoral ultrasound or coro-
nary CT angiography be considered risk modifiers (7).
However, the value of these advanced imaging tech-
niques in routine practice has not yet been demonstrated.

Screening for asymptomatic CAD in patients with
diabetes mellitus (DM) remains controversial. With com-
puted tomography (CT), non-invasive estimation of the
atherosclerotic burden (based on CACS) and identification
of atherosclerotic plaques causing significant coronary
stenosis [CT coronary angiography (CTCA)] can be
performed. While a CACS of 0 is associated with a
favorable prognosis in asymptomatic subjects with DM,
subsequent strata in CACS (to 1-99, 100-399, and
>400) are associated with a 25 to 33% higher relative
mortality risk compared to the previous step (6).

The Brazilian Longitudinal Study of Adult Health
(ELSA-Brasil) is a cohort study with 15,105 participants
aged between 35 and 74 years in six centers in different
cities. At baseline assessment, multiple laboratory tests
were performed to diagnose diabetes. Additionally, a
subset of 4,548 participants from the S&o Paulo investiga-
tion site underwent CACS determination (8). This created
a favorable scenario to analyze which characteristics are
the most important to identify individuals with diabetes
with a higher probability of presenting positive CACS.

In this study, we used ML algorithms to evaluate the
most important sociodemographic, clinical, and laboratory
features to predict positive CACS in individuals with
diabetes at ELSA-Brasil baseline assessment.

Material and Methods

Study design

This study used data from the ELSA-Brasil cohort (8),
a prospective study focused on diabetes, cardiovascular,
and other related chronic diseases of the Brazilian
population (9). The study baseline was between 2008
and 2010, with 15,105 participants aged between 35 and
74 years in six centers in different cities in the country
(Belo Horizonte, Porto Alegre, Rio de Janeiro, Salvador,
Séao Paulo, and Vitdria). The largest ELSA-Brasil research
center is in Sdo Paulo, with 5,061 participants (10). In the
Sao Paulo investigation center, participants were invited to
assess CACS by computed tomography at baseline.

Study sample

The S&o Paulo investigation site had 5,061 partici-
pants, from which 4,548 (89.9% from the S&o Paulo
set) had their coronary artery calcium scores (CACS)
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determined. In this set, we identified 649 individuals with
diabetes. Finally, after excluding 64 (9.9%) individuals with
previous myocardial infarction (Ml), stroke, or myocardial
revascularization, we defined the remaining 585 as our
study sample.

Diabetes definition

The diagnosis of diabetes at baseline of the ELSA-
Brasil was based on the presence of at least one of the
following criteria: medical history of diabetes, use of
medications for diabetes treatment, fasting glucose >126
mg/dL, oral glucose tolerance test after 2 h >200 mg/dL
or glycated hemoglobin >6.5% (9).

CACS assessment

The scans were performed with a 64-detector CT
scanner (Philips Brilliance; Philips, Netherlands). The field
of view included the entire heart, and the axis direction
included data from the bifurcation of the pulmonary
arteries to the apex of the heart during an expiratory
pause. The images were analyzed using specific software
(Brilliance Workspace). Data are reported as the absolute
value of CACS in Agatston points (10,11). Higher CACS
are associated with more advanced atherosclerosis. The
presence of coronary artery calcification, as indicative of
subclinical ASCVD, was defined as a CACS >0.

Other variables

Initial variable selection from the ELSA-Brasil dataset
followed targeted meaningful clinical information. There-
fore, we preselected variables containing information
usually retrieved during the first consultations of an
individual with diabetes in standard clinical practice.
Age, sex, educational level, income, race, smoking status,
family history of CVD, prior hypertension or dyslipidemia
diagnosis, time from diagnosis, and medication use were
self-reported. Hypertension was defined as using medica-
tion to treat hypertension, systolic blood pressure >140
mmHg, or diastolic blood pressure >90 mmHg. High-
density lipoprotein (HDL), triglycerides, and total choles-
terol were included. Dyslipidemia was defined as low-
density lipoprotein (LDL)-cholesterol >130 mg/dL or the
use of cholesterol lowering medications. Glycated hemo-
globin, blood glucose, and body mass index were also
included. Chronic kidney disease (CKD) was defined as
glomerular filtration rate (GFR) <60 mL/min/1.73 m? using
the CKD-Epi formula (Chronic Kidney Disease Epidemiol-
ogy Collaboration) (12), as previously published about
CKD in ELSA-Brasil (13,14).

According to the Rose questionnaire, dyspnea was
classified according to intensity as: 1) no dyspnea, 2)
dyspnea during intense activity, 3) dyspnea during light
activity, and 4) dyspnea at rest. Additionally, chest pain
was classified as: 1) no chest pain, 2) atypical chest
pain, 3) chest pain when walking fast, and 4) chest pain
when walking slowly (Supplementary Data S1) (15,16).
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The complete list of variables used is described in
Supplementary Table S1.

Statistical analysis

Data management is detailed in Supplementary Data
S2. Categorical variables are presented as counts and
proportions and continuous variables are presented as
means and standard deviations. We used extreme
gradient boosting (XGBoost), random forest (RF), K-
nearest neighbor (KNN), logistic regression (LR), support
vector machine (SVM), and decision tree (DT) ML
techniques (17-22) to classify study participants accord-
ing to subclinical/undiagnosed ASCVD status. The ML
algorithms selected for analyses were extensively tested
in different research scenarios. Supplementary Tables S2
to S7 present the parameter sets for all models.
Explanatory variables were sociodemographic (age, sex,
race, educational level), medical history (hypertension and
dyslipidemia treatment and time since diagnoses, smok-
ing status, and family history of CVD), symptom-related
(recurrent exertional chest pain or dyspnea at baseline),
clinical (body-mass index, systolic and diastolic blood
pressure), and laboratory (fasting and post-load plasma
glucose, glycated hemoglobin, total, LDL, and HDL
cholesterol levels, triglycerides, and estimated glomerular
filtration rate). Data were randomly divided into training
(n=468; 80%), validation (n=59; 10,1%), and test (n=58;
9,9%) sets, following best practice procedures (23-25).
Model accuracy and related metrics were calculated using
the test set. Feature importance was determined by
SHapley Additive exPlanations (SHAP) values (26).
SHAP values evaluate which variables are the most
influential in model prediction and are applied to various
ML techniques under a unified framework. According to
this metric, we present the five most influential variables in
each model. Although the decision tree model had lower
accuracy than other models, we also show the first three
decision nodes in this model, as its results are easy to
interpret. We used Python language version 3.10 and the
ML library scikit-learn 1.3.0 to produce this work.

Results

Table 1 presents the characteristics of the study
sample. There were 294 participants with a CACS=0
(563.1% women) and 291 participants with a CACS>0
(64.9% men). The average age was 56 years (interquartile
range [IQR]: 49-62 years). High age, male sex, low
glomerular filtration rate (all P<0.001), high albumin-
creatinine ratio, White race (P=0.006 for both), dyslipide-
mia (P=0.042), and current smoking (P=0.044) were
associated with CACS > 0.

Table 2 presents the performance metrics for the
models used in this study. Model accuracy varied from
67.2% (decision trees) to 94.8% (XGB). In this model, age
(SHAP: 0.220), systolic blood pressure (SHAP: 0.102),
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and body mass index (SHAP: 0.075) were the variables
with the highest SHAP values. The list of the five variables
with the highest SHAP values for all models is shown in
Table 3. Age (all models), systolic blood pressure, and sex
(five models) were the most frequent variables of the most
influential variables. More detailed SHAP value informa-
tion for all ML models is presented in Supplementary
Table S8 and Supplementary Figure S1.

Due to the easy and intuitive interpretation of decision
tree results, we also show the three first decision nodes in
that model (Figure 1). Age and sex were the main
variables for predicting positive CACS in decision tree
models. With a cutoff at 53.5 years, blood glucose (young
men and women) and systolic blood pressure (older men
and women) were the variables selected in the initial
nodes.

Discussion

In our study, model accuracy for predicting positive
CACS in ELSA-Brasil participants with ASCVD varied
across ML models from 67.2 to 94.8%. The algorithm with
the best performance was the XGBoost, and in that
model, the most influential variables in identifying indi-
viduals with positive CACS were age, systolic blood
pressure, and BMI. Considering all ML models in our
analysis, age, systolic blood pressure, and sex were
frequent influential variables. This reinforces the inter-
twined relationship between diabetes and other cardio-
vascular risk factors in the development of ASCVD.

Developing models that accurately identify ASCVD
may result in better resource allocation and reduced CVD
burden. This is even more promising if these models
include routine healthcare data, reducing extra costs.
Other authors have used ML models to predict ASCVD
and related conditions in different settings. Miranda et al.
(27) used a dataset including age, sex, and hematological
test data from 6,837 individuals, 4,702 of whom had CAD.
Their best model (adaptive boosting) had an accuracy
of 78% in identifying individuals with CAD diagnosis.
Although those authors also reported SHAP values (the
highest absolute values were attributed to sex, leukocyte
count, and thrombocyte count), it is important to note that
they did not include variables clinically related to ASCVD,
such as high blood pressure, blood glucose, or smoking.
Given the correlation between blood cell counts and some
traditional ASCVD risk factors (28), this may impair the
interpretation of variable importance in those analyses.
Miao et al. (29) used adaptive boosting performance to
identify individuals with CAD in four medical-based
datasets. They found accuracy rates from 77.8% (Long
Beach Medical Center) to 96.7% (University Hospital in
Switzerland). The very high accuracy found for the latter
may be partially explained by imbalanced data, as 93.4%
of individuals in that dataset had CAD diagnosis. Lee et al.
analyzed data from 2,133 individuals from Korea who
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Table 1. Characteristics of the study sample according to coronary artery calcium score (CACS) values.

Variable CACS=0 CACS>0 Total
(n=294) (n=291) (n=585)
Male sex (%) 138 (46.9%) 189 (64.9%) 327 (55.9%)
Age (years) 526184 59.1+84 55.8+£9.0
Self-reported race (%)
Black 61 (20.7%) 34 (11.7%) 95 (16.2%)
Mixed 78 (26.5%) 8 (23.4%) 146 (25.0%)
White 144 (49.0%) 152 (52.2%) 296 (50.6%)
Other 11 (3.7%) 37 (12.7%) 48 (8.2%)
Educational level (%)
Less than high school 65 (22.1%) 73 (25.1%) 138 (23.6%)
High school 138 (46.9%) 91 (31.3%) 229 (39.1%)
College or above 91 (31.0%) 127 (43.6%) 218 (37.3%)
Income (%)
Low (<USD$1245) 119 (40.5%) 80 (27.5%) 199 (34.0%)
Middle (USD$1245-3319) 120 (40.8%) 121 (41.6%) 241 (41.2%)
High (>USD$3320) 55 (18.7%) 90 (30.9%) 145 (24.8)
Smoking (%)
Never smoked 165 (56.1%) 127 (43.6%) 292 (49.9%)
Past smoker 94 (32.0%) 122 (41.9%) 216 (36.9%)
Current smoker 35 (11.9%) 42 (14.4%) 77 (13.2%)
Hypertension (%) 179 (60.9%) 208 (71.5%) 387 (66.2%)
Dyslipidemia (%) 138 (46.9%) 182 (62.5%) 320 (54.7%)
Use of antihypertensives (%) 157 (53.4%) 179 (61.5%) 336 (57.4%)
Use of blood glucose lowering medication (%) 157 (53.4%) 195 (67.0%) 352 (60.2%)
Use of lipid-lowering medication (%) 215 (73.1%) 183 (62.9%) 398 (68.0%)
Dyspnea (%)
No dyspnea 213 (72.4%) 246 (84.5%) 459 (78.5%)
During intense activities 69 (23.5%) 38 (13.1%) 107 (18.3%)
During light activities 8 (2.7%) 3 (1.0%) 11 (1.9%)
At rest 4 (1.4%) 4 (1.4%) 8 (1.4%)
Chest pain (%)
No chest pain 253 (86.1%) 255 (87.6%) 508 (86.8%)
Atypical 19 (6.5%) 24 (8.2%) 43 (7.4%)
Walking fast 16 (5.4%) 9 (3.1%) 25 (4.3%)
Walking slow 6 (2.0%) 3 (1.0%) 9 (1.5%)
Body mass index (kg/m?) 306+t54 294144 30.0£5.0
Systolic blood pressure (mmHg) 124.8+17.0 130.5+18.5 127.6+18.0
Diastolic blood pressure (mmHg) 78.7+£10.9 79.3+10.9 79.0+10.9
Fasting plasma glucose (mg/dL) 140.2+51.8 151.0+57.8 145.6 £55.0
Glycated hemoglobin (%) 6.5+15 6.7+1.7 6.6+1.6
HDL cholesterol (mg/dL) 49.5+11.5 49.2+11.8 49.3+11.6
LDL cholesterol (mg/dL) 110.5+36.6 114.0+38.6 112.3+37.6
Triglycerides (mg/dL) 169.0£130.2 156.6 £ 84.6 162.8£110.0
Total cholesterol (mg/dL) 195.1+46.9 197.8+52.0 196.5+49.5
Serum creatinine (mg/dL) 0.92+0.2 1.0+04 0.96+0.3
Albumin-creatinine ratio (mg/g) 18.6 £62.7 71.3+383.6 44.8+275.2
Glomerular filtration rate (mL/min/1.73 m?) 83.7+15.3 7821171 80.9+16.4

The glomerular filtration rate was calculated according to the CKD-Epi estimation equation.

underwent coronary CT during a health checkup program  performance was achieved by XGBoost (area under the
to identify whether LR, XGBoost, or CatBoost (Categorical  receiver operating characteristic [AUROC] curve: 0.82),
Boost Classifier) were accurate in detecting participants  followed by catboost (AUROC: 0.75) and LR (AUROC:
who had had a CACS > 100. Input features included age,  0.59) (30). In comparison, the ensemble models in our
sex, and anthropometric and laboratory exams. The best  study (RF and XGBoost) and KNN showed at least as
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Table 2. Performance metrics for the machine learning models.

Machine learning model CACS Performance metric
Precision Recall F1-score Accuracy

X Gradient Boosting CACS=0 0.92 0.98 0.95 0.95
CACS>0 0.98 0.92 0.95

Random Forest CACS=0 0.94 0.85 0.89 0.91
CACS>0 0.88 0.95 0.92

K-Nearest Neighbors CACS=0 0.94 0.83 0.88 0.89
CACS>0 0.84 0.95 0.89

Logistic Regression CACS=0 0.71 0.69 0.70 0.73
CACS>0 0.75 0.77 0.76

Support Vector Machines CACS=0 0.69 0.66 0.67 0.69
CACS>0 0.69 0.72 0.70

Decision Tree CACS=0 0.62 0.74 0.68 0.67
CACS>0 0.73 0.61 0.67

CACS: coronary artery calcium score. Metrics definitions are as follows: Precision=(TP) / (TP + FP);
Recall = (TP) / (TP + FN); F1-Score = 2 * [(Precision * Recall) / (Precision + Recall)]; Accuracy = (TP +
TN) /(TP + FP + FN + TN). TP: true positive; TN: true negative; FP: false positive; FN: false negative.
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Figure 1. Decision tree model for positive coronary artery calcium (CAC) classification. CVD: cardiovascular disease; BP: blood

pressure; Class 0: CAC=0; Class 1: CAC>0.

high accuracies as these studies. Based on those results,
we may hypothesize that ML models may support the
decision to investigate subclinical or undiagnosed ASCVD
in individuals with diabetes. However, it is important to
note that intervention studies are needed to quantify the
risks and benefits of this screening strategy before it is
applied clinical practice.
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In our article, age, sex, and systolic blood pressure
were important features for classification. They were the
top 3 influential variables (according to SHAP values) in
two ML models (RF and DT). They were frequent among
the other models’ top 5 influential variables. It is
noteworthy that systolic blood pressure was at least as
informative for classification in our study as diabetes
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Table 3. SHapley Additive exPlanations (SHAP) values for the
five most influent variables in each machine learning model.

Variable SHAP
X Gradient Boosting
Age 22.0
Systolic blood pressure 10.2
Body Mass Index 7.5
Albumin-Creatinine Ratio 7.2
Blood Glucose 6.5
Logistic Regression
Age 65.7
Sex 56.3
Use of blood glucose lowering medication 33.8
Dyslipidemia 32.5
Black race 30.2
Random Forest
Age 27.6
Systolic blood pressure 6.7
Sex 58
Blood glucose 4.7
Glomerular filtration rate 4.2
Support Vector Machines
Age 25.7
Sex 15.7
Dyslipidemia 7.5
Dyspnea during intense activity 5.7
Systolic blood pressure 55
K-Nearest Neighbors
Age 21.0
Blood glucose 12.8
Systolic blood pressure 10.0
Glomerular filtration rate 7.4
Albumin-creatinine ratio 6.4
Decision Tree
Age 44.2
Systolic blood pressure 5.9
Sex 47
Blood glucose 4.6
Glomerular filtration rate 0.1

SHAP values are reported in 1072 units.

control (measured by fasting plasma glucose and glycated
hemoglobin). Blood pressure (BP), glycated hemoglobin,
and LDL-cholesterol contribute to CHD risk among
patients with diabetes, and most clinical guidelines
address these risk factors, aiming at strict control goals
(31). Although a recent study by Wong et al. (32) including
pooled data from three large cohorts in the US suggests
that BP control may be a minor contributor to CHD risk in
individuals with diabetes (compared to glycated hemoglo-
bin and LDL-cholesterol), our data pointed otherwise. We
may hypothesize two reasons for this finding in our study.
Wong et al. studied CHD incidence in individuals with
diabetes over a period of approximately 10 years while we
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evaluated the presence of coronary calcification. Although
CHD events and subclinical atherosclerosis arguably
represent a continuum of the same phenomenon, cardio-
vascular risk factors may play different roles in triggering
CHD events (for example, leading to plaque instability and
rupture) (33,34), which at least partially explain the
observed differences. Second, this may be a population-
specific finding, and blood pressure control can be a more
important determinant of atherosclerotic disease in the
Brazilian population with diabetes, reinforcing the need to
explore this association in our population. Finally, our data
also suggest that one should not rely too heavily on the
absence of cardiovascular symptoms, such as dyspnea
and chest pain, to rule out ASCVD in individuals with
diabetes, as these variables had little influence in the most
accurate models.

Our study has strengths. ELSA-Brasil is a large
epidemiological study with documented protocols and
quality control (35). This ensures data integrity through
high-quality clinical data to address relevant clinical
conditions, as in the present study. In our study, we could
address subclinical atherosclerosis using coronary CT.
Further studies are needed to establish CACS potential for
CVD screening and the optimal target population for
coronary CT, while helping enhance CVD risk estimation
in specific settings. It is reasonable to argue that the most
promising of these settings is the quantification of
atherosclerosis development in individuals at high pre-
sumable CVD risk, such as those with diabetes and
additional risk factors. Some limitations must also be
pointed out. As we could not apply the selected models in
external samples, it is not possible to draw conclusions
about the accuracy of our models in other populations.
Therefore, some of our findings may be specific to our
population. Our sample size was relatively small, mainly
because the analyses had to be restricted only to
participants from the ELSA-Brasil investigation site in
Sao Paulo. On the other hand, hosting this study in ELSA-
Brasil ensured high-quality data and data integrity (as
explained above). Additionally, we had a very balanced
dataset (according to the response variable), which
optimized analyses and minimized problems due to
sample size.

In conclusion, we built highly accurate ML models to
identify individuals with diabetes with positive CACS at the
ELSA-Brasil baseline. The algorithm with the best
performance was XGBoost. Considering all ML models,
the most influential variables in classification were age,
systolic blood pressure, and sex. These findings may
support clinical decisions when assessing if an individual
with diabetes should be referred for CACS assessment.
Future studies may address whether CVD screening
using coronary CT in patients classified at higher risk
according to ML-based models is beneficial and cost-
effective.
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