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Abstract. Currently the Generalized Finite Element Method (GFEM) has been widely applied in the

modeling of localized solids failures. Its main advantage consists of the expansion of the Finite Element

Method (FEM) approach space by inserting functions (known as enrichment functions) that best locally

represent the behavior of the searched solution. Such functions may have specific characteristics or even

be generated numerically. On the one hand, the GFEM provides optimal convergence, however, it is

prone to introduce linear dependencies into its System of equations, making the matrix ill-conditioned or

even singular. The so-called stable version of the Generalized Finite Element Method (SGFEM) explores

a modiíication in the enrichment functions to improve the conditioning of the stiffness matrix. Flowever,

such a modification leads to loss of precision in problems such as strong discontinuities. In order to rec-

oncile the incompatibility between the solution precision and the system matrix conditioning, this work

addresses a new modification of the space of GFEM shape functions associated with enrichment: flat-top
functions as Partition of Unit (PU) and a new PU based on trigonometric functions, these are used exclu-

sively in the construction of enriched shape functions. This new version of the GFEM presents a system

matrix conditioning almost insensitive to the mesh / discontinuity conflguration, even if the crack path

approaches the element nodes. In addition, for flat-top PU with a small stabilization parameter, this ver

sion is almost of the same precision as the GFEM. Since only the PU is modified, the presented proposal

can be easily implemented in pre-existing GFEM codes. Several representative numerical simulations of

benchmark tests are presented to validate the proposal, considering both the accuracy of the solution and

tlie conditioning of the system matrix.

Keywords: GFEM, Flat-top PU, Trigometric PU, Scaled Condition Number, Strong discontinuities.
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A stable and improved version ofthe GFEMfor the analysis ofproblems in elastic linearfracíiire

1 Introduction

In the last two decades several researches have demonstrated the effectiveness of the Generalized

Finite Element Method (GFEM) in solving problems with localized features as singularities and discon-

tinuities aa. The main concept of the GFEM is to incorporate the a priori knowledge of the behavior of

the solution in the approximation space, exploring the Partition of Unity (PoU) structure of the Finite

Element Method (FEM). In this way, for example, it is possible to account for a strong discontinuity

within a finite element by including of discontinuous functions in the so called enrichment space of ap-

proach. Such characteristics provide fiexibility as well a significant improvement in numerical accuracy

compared to FEM.

However, the unrestricted increasing of the approximation space can introduce ill conditioning in

the GFEM system of equations due to the lack of linear independence of the set of shape functions. As

a consequence, round-off errors can assume strong deleterious effects over the quality and representa-

tiveness of the numerical solution. Babuska and Banerjee [1,2] mathematically demonstrate, for regular
meshes with h refinement, that the condition number of the stiffness matrix grows at a rate of

even when a non-polynomial function is used as enrichment. Such a result is much worse compared to

the FEM where growth rate is of 0{h~‘^). This GFEM drawback can sometimes represent an impor-

tant constraint, especially in solving nonlinear problems due to the accumulation of rounding errors, and

convergence problems in iterative linear solvers as shown Béchet et al. [3] and Fries and Belytschko

[4]. Several studies propose methodologies for the solution of this adversity, for example, Béchet et al.

[3], Laborde et al. [5] and Menk and Bordas [6], but with limited success.

In addition, when local expansion of the approximation space result from enrichment limited to

a certain portion of the domain it may occur so-called blending elements, that is, elements containing

enriched and unenriched nodes, which do not reproduce completely the enrichment function. The pres-

ence of these elements penalizes the approximate solution convergence rate, as shown by Laborde et al.

[5], Chessa et al. [7], Fries [8], Gracie et al. [9], Tarancón et al. [10] and Shibanuma and Utsunomiya

[11]. Several approaches to solve this problem are found in the literature, for example in Chessa et al.

[7], Fries [8] and Shibanuma and Utsunomiya [11]. However, implementation of these approaches in

pre-existing GFEM codes is not simple and optimal convergence is not always guaranteed, as shown in

Aragón et al. [12].

The drawback cited above was recently addressed by Babuska and Banerjee [1, 2], who proposed a
modification in the enrichment function that minimizes this problem. The version of GFEM incorporat-

ing this modification has been referred to as the Stable Generalized Finite Element Method (SGFEM).

Such modification aims to create an enriched shape function space that is almost orthogonal to the FEM

approximation space while preserving GFEM fiexibility and convergence features. Babuska and Baner

jee [1, 2] mathematically demonstrate that the stiffness matrix conditioning of the SGFEM grows at a
rate of that is, about the same order as the FEM.

However, Gupta et al. [13] and Gupta et al. [14] observed that the direct extension of the idea

presented by Babuska and Banerjee [1, 2] does not guarantee optimal convergence for two-dimensional

and three-dimensional crack problems. The optimal convergence order is retrieved in Gupta et al. [13]
and Gupta et al. [14] employing additional regularizations to the discontinuity functions. Later on, Zhang

et al. [15] and Zhang et al. [16] point out that the strategy employed by Gupta et al. [13] and Gupta et al.

[14] still does not guarantee robust conditioning in relation to the relative position of the crack line to the

mesh.

Investigating the properties of the so-called higher order SGFEM, Zhang et al. [17] demonstrate

that for enrichments with higher degree polynomial functions (>2), the firstly suggested modification

imposed on the enrichment functions is not a sufficient condition to guarantee a good conditioning of

the solving system. Thus, a further modification to be applied to the enrichment space is proposed, and
is equivalent to the replacement of the conventional FEM PoU functions (hat-functions) by the flat-top
PoU. From one-dimensional numerical analysis, Zhang et al. [17]demonstrate that the new modification

ensures local linear independence between the FEM approach space and the enrichment space. These
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authors refer to this new version of GFEM as High Order SGFEM due to higher convergence rates

obtained (>2).

Recently, Sato [18] and Sato et al. [19], based on the suggestion given Zhang et al. [17], extended

the flat-top PoU formulation to two-dimensional analyses and, through quadrilateral íinite element dis-

cretization obtained results that showed good conditioning as a consequence of the linear independence

between the EEM approximation space and the enrichment function space. Similarly, Ramos and Proença

[20] and Ramos [21] extend the flat-top PoU formulation to triangular finite elements then obtaining sta-

ble results with optimum rates of convergence. However, despite analyzing crack domain problems, these
authors did not address the robustness of the condition number with respect to the crack position relative

to the mesh geometry.

This paper adresses that issue as well in the context of two-dimensional analysis from the per

spective of quadrilateral finite element discretization. Therefore, constituting original contributions, we

formulate a new PoU based on trigonometric functions for quadrilateral íinite elements. Moreover, it

is demonstrated that the exclusive use of flat-top PoU only does not satisfy the robustness condition in

relation to the relative position of the crack line. In this context, we present a new methodology based

on the previous selection of which enrichment each PoU will be applied to. Thus, a broader version of

GFEM is obtained, which considers any enrichment functions as well as different PoUs.

2 Model Problem

In this study, it is considered a domain Ü = U U G of elastic and cracked linear behavior. In

the absence of volume forces, the equilibrium equation and the constitutive relations for the problem are
defined as:

V • cr := 0 cr := C ; e in U, (1)

where cr is denoted Cauchy tension tensor, í is Hooke’s constitutive tensor and e it is the tensor of small

deformations. Then Neumann boundary conditions are defined over dO, such that.

(2)t (j ■ n

where n is the externai normal unit vector of dCl, t are prescribed externai distributed loading. It is
assumed that the crack surface is free of loads. In our simulations Dirichlet boundary conditions are

pointwise imposed in order to eliminate rigid body displacements. Through the Equations (1) and (2) the

strong form is defined.

Weak formulation reduces strong continuity requirements over test functions, thus enabling to look

for approximate Solutions in an enlarged space, Proença [22]. In this context, the weak form is defined

through the Principie of Virtual Work,-that States: Eind u G (ü) such that Vn G (U)

B{u, v) := F{v) (3)

where.

B{u, v) := cr{u) : e{v) dfl,
n

(4)

t ■ V d{dCl)F{v) := ?

díl
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where, u and v are test functions belonging to the Hilbert space Thus, for the problem under

analysis, using the Galerkin method can be applied to find an approximation Uh of the exact solution u

defined in Equation (3) and belonging to a finite dimensional space. Therefore, the discretized problem

consists on: Find Uh G S{fl) such that V-y;,, G S{ü)

t ■ Vh d{dü)a{uh) : e(vh) dCl (5)
n ao.

Formally, by using the Galerkin method, a subspace S(O) of (Cl) is adopted that contain approx
imation functions {test) of the exact solution. Therefore, S(Cl) C H^(Cl), and depends on the numerical
method used to construct the approximation. In the following sections we demonstrate the construction

of numerical approximations through the approximation spaces provided by GFFM and SGFFM.

3 On the GFEM and SGFEM

The GFFM is a Galerkin method whose approximation space is obtained by expanding the FFM

approximation space with special functions that well approximate locally the solution of the problem

under analysis. Such expansion is built by exploiting the PoU properties of the shape functions of the

FFM. In short, the shape functions of GFFM are constracted by the product between PoU (pi provided

by the FFM elements and the enrichment functions, i.e.,

■'pi ^ Li (6)

Let, J/i = {0,..., N] the set of indexes of discretization nodes adopted on finite elements of dimension

h and N the number of nodes, i € If^ C Ih such that is the set with the node indexes of the elements

e belonging to cloud/patch tUj and Li is the rti + l dimension vector which contain enrichment functions

linked to the üjí cloud, that is.

L^ = {V-f : 0 < j < V-f G H\ 4^ ^ 1}, (7)

where rii is a nonnegative integer tied to the amount of cloud-bound üjí enrichment functions.

In GFFM, Pi, i G Ih, are linear and bilinear lagrangian functions with defined cloud support Wj,

i.e., the patch defined by the elements sharing the same node i, Oden and Duarte [23]. According to

Melenk [24], such functions constitute a PoU, because they agree with the unit sum property, that is,

Pi(x) = 1, yx e Cl, and ensure conformity to the global approximation obtained.

Therefore, in terms of a general representation, the GFFM test function space is defined by the

Fquation (6) that.

E

I^iLihi ^ {piipfhf : 0 < j < ni, t G h} := Si -F ^2 (8)

ieih

where,

Ui

‘52 = {C : C =
ieih i=i

S ® represent the degrees of freedom tied to the nodes of the discretization mesh. 5i refers

to the approach space of the FFM and <S2.to the space of enriched shape functions. Note that for patches

üji where n./ = 0 the local approach space S it’s the same as FFM.

{C:C<51 (9)

ieU
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Proposed by Babuska and Banerjee [1, 2], in the hereby denoted Classical SGFEM , GFEM enrich-

ment functions are locally modified to make tbem null on patch nodes Wj. This can be done through the

following transformation;

ií)(-Í)
(10)

where, for two dimensional problems,

(11)

■ipy is the modified enrichment function, j Is interpolation of the nodal values of 'ip^^ over

the patch iVi and {xk,yk) are the coordinates of node k.

With the modification obtained, the same procedure presented in Equation (8) is used to construct

SGEEM approximation spaces, resulting in,

(i)

ni

5i + 52, = =

i&Ih J=1

S — 'y ^ piLibi (12)

i&h

As mentioned earlier, although the expectatiqn of optimal convergence is an excellent feature of

GFEM, to obtain it is important that the resulting system of equations can be accurately and efficiently

solved, in other words, the system of equations must be well conditioned. The scaled condition number

R{K) as an indicator of matrix conditioning, defined from the condition number K2 (■) of Iho scaled matrix
K, as shown below:

íi{K) - K2{k) - k2{dkd) - ||i:||2||^ '1I2 (13)

-1/2
and 11-112 is the Euclidean norm.where, Z) is a diagonal matrix with Da = K--

Babuska and Banerjee [1, 2] demonstrate mathematically for one-dimensional problems enriched

with polynomial functions that ^{Kqfem) = 0{h~^) and ^{Ksgfem) = that is, the condi-
tioning of the SGFEM, in contrast to that of the GEEM, is of the same order of magnitude as the FEM.

However, Zhang et al. [17] State that the modification imposed by the SGFEM on enrichment functions

is not a sufficient condition to guarantee that there will be no linear dependencies. Therefore, these au-

thors suggest a second modification on S2 in order to ensure local linear independence of space íSi. This

change ultimately translates into the use of distinct PoUs for the construction of spaces cSi and §2 - Thus,
similar to that construction presented in Equation (8), SGFEM approximation space is now defined as.

5 cSi + (14)

where.

rii

= {C:C=EEv^*^"f}- (15)

i^h i=l

p* is a special PoU applied only to construct the enrichment space. In subsection 3.1 two types of PoU

p* are suggested that will be the object of study of this paper. Such partitions are denoted: flat-top PoU

and trigonometric PoU.
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Throughout the remainder of this work, SGFEM versions wili be referred to in accordance with

the PoU adopted to build the Thus, SGFEM-^^ refers to the version that uses flat-top PoU and

SGFEM^-^-^*^ when employed trigonometric PoU.

3.1 Special Partitions of Unity

The flat-top PoU was initially studied by Griebel and Schweitzer [25], Schweitzer [26, p. 97] and

Griebel and Schweitzer [27] aiming to reduce the linear dependence problem between enriched shape

functions constructed through hat-functions in the Particle-Partition of Unity Method. Besides these, with

the same objective Babuska et al. [28] employed flat-top PoU to study GFEM superconvergence points.

Zhang et al. [17] propose the following relations to constmct a regularized cf-degree flat-top PoU in

the one-dimensional finite element Cj := [xj,

for X G [xj, Xj -b ah]1

k\^
^ í X — Xj — ah\
V V (l-2ír)/i ;

for X G [xj + ah, Xj -b (1 — a)h]

for X G [xj + (1 a)h, Xj+i]0

(16)

for X G [xj, Xj + ah]1

X - Xj - crh\^\(
if^ix) = for X G [xj + ah, Xj -b (1 — a)h]1 - 1 -

(1 - 2a)h

for X G [xj + (1 - a)h, Xj+i]0

where, and íp2 are associated with the left and right nodes, respectively, of the element Sj. The
a parameter defining the flat region size is contained in the range 0 < cr < 0.5 and the parameter
k eW Controls the smoothness of the curve that connects the flat regions. Zhang et al. [17] also perfoim

numerical analysis on one-dimensional problems and prove that flat-top PoU guarantees stability due to

good matrix conditioning.

Sato [18] and Sato et al. [19] through tensorial product of the 1-D relations extend the flat-top PoU

formulation to quadrilateral finite elements, and present results that indicate its effectiveness for well

controlling matrix conditioning. The Figure 1 illustrates the flat-top PoU defined for quadrilateral finite

elements presented by Sato [18] and Sato et al. [19].

Figure 1. Two-dimensional flat-top PoU representation in quadrilateral finite elements, for a —

0.25, cf 1 and /i = 2.

.o.
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However, Ramos [21] demonstrates that the use of flat-top RoU, despite generating an almost or-

thogonal enriehment space in relation to the FEM approximatiou space, demands a complex integration
procedure and higher computational cost. Moreover, aiming to provide higher order of continuity, con-
sidering the one-dimensional master.finitè element ê := [—1, 1], the following PoU is proposed:’

(l + 07r\

4 J
Al + C)vr

cpiiO = cos^ ^2(0 =sin^ (17)
4\

where, ^ G [—1, 1] and (pi, (^2 refer to the left and right nodes of the master finite element, respectively.
The functions presented in Equation (17) are PoU, once for ^ l-

The trigonometric PoU described in Equation (17) can be understood as a regularization of the flat-

top PoU of Equation (16) when a —>■ 0 and keeping its derivative nüll at the paích boundaries. It is

emphasized that both trigonometric and flat-top PoU respectdhis property.

The extension of trigonometric PpU to qüadrilateral domain finite element [-1, 1] x [-1, 1] (see
Eigure 2) follows frorn the tensorial product (í)i(^) X (77), .

^(1-1-77)77'^
V 4

2/'(í+^)7r\ '2/'(l+V)^)

(l+íA')V) = cos^ cos^
4 /

, <F2(C, A-sin COS

4 ■; 4‘ //
(18)

Ai + eAV . /(I +?])7r\¥’3(^, V) = siA sin^
4 4V- V 7

(17 • 2 Ai + 6^^7^4 (^,í?) = coA sin

4, 4

Figure 2. Trigonõmetric PoU, representation for qüadrilateral finite element. .

ea

4 Numerical examples and discussipn

Let be considered a cracked Õ = [—a, .a]^ two dimensional domain with unit thickness and dimen-

sion a = 0.5. The crack tip Fç = {x : —0,5 < 7 < 0,0, y = 0, 0} is located at the point C — (0, 0) -
(see Figure 3). A state of plane strain is considered, as well an elastic linear behavior material with

longitudinal modulusof elasticity £ = 1,0 and Poisson’s ratio 7/= 0.3.'

The loading refers to the first term of asymptotic expansion. which represents Mode I of the exact
solution of the crack problem in infinite domain, for more details check Szabó and Babíiska [29]. It is also

' ^ ■' ' ' . CILAMCE2019
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A stable and improved version of the GFEMfor the analysis of problems in elastic linear fracture

noted that the loading is self-balancing, and its choice of loading allows the representation of the exact

solution of the problem. Pointwise restrictions were imposed to eliminate rigid body displacements.

Figure 3. Panei representation with edge crack.

a a

vxxwwwWWWlllIllfí
'J

Ti-

a

Hr.

Tc e.
X

C

^ a

To represent the displacement discontinuity across the crack line, two strategies were employed.

Firstly double nodes were used. Therefore the meshes are such that the element borders match the crack

line. Secondly, the Heaviside function was adopted to account for the crack opening. In this case the
mesh is such that the crack line crosses the elements.

In the discretization six uniform quadrilateral finite element meshes are considered. The geome-

try of finite element meshes depends on the strategy used to describe the displacement discontinuity

present in Fc- Thus, in the first group of numerical experiments double knot strategy is employed and

singular enrichment is adopted to account for displacement discontinuity. The elements have dimension

h — a/2*, z = 1, 2,..., 6, leading to mesh grid with 2^*+^) x 2^®+^^ cells. In the second group of
experiments, which combine the Heaviside function and singular functions to represent the displacement

discontinuity, the elements have a dimension h — 1/ (2(®+^) + l), j = 1, 2, ..., 6, generating mesh
grid of + l) X (2('''+^) + l) cells. For convenience, the first group of meshes will be referred to

as even and the second as odd. As an example, in Figure 4 illustrates the geometry of the quadrilateral

finite element mesh of dimension h = 1/8 and h — 1/9.

Figure 4. Finite element discretization of dimension h = 1/8 and h — 1/9, respectively . (a) Even mesh.
(b) Odd mesh.

(b)(a)
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It is also emphasized that the evaluated problems have analytical solution for the displacements

{u) and for tensions (o"), Therefore, the approximate solution convergencè assessment is based on the

raeasurement of the relative error in the energy norm being described as

h
(o- )dü— cr — (T

nua

(19)
w|in '“lln

^crdÜ
n

where, í) refers to the problem domain, and cr" are, respectively, the approximate solution obtained

for displacements and stresses, ||•u||^ is the displacement measure in energy norm, and l|e^||n indicates
the error measure in energy norm.

As already mentioned, the system of equations of GFEM, and its other versions, can be linearly

dependent. Thus, to find a solution in the analyzes described throughout this chapter in situations where

the stiffness matrix presented a bad condition, the matrix preconditioner proposed by Strouboulis et al.

[30]. This strategy consists of applying a small perturbation to the scaled stiffness matrix and iteratively

correcting the approximate solution obtained from the succesive system of equations.

It is also noteworthy that in the numerical simulations using the flat-top PoU defined by Sato [18]

and Sato et al. [19], the value 0.1 for the parameter c was adopted, as recommended by those authors.

4.1 Enrichment strategy I

In order to obtain an optimal convergence rate for the cracked domain problem, that is, 0{h), In
this section we evaluate the Solutions provided by the GFEM versions when only singular enrichment

functions airaing to represent the exact solution near the crack tip. So, be Fc a crack with the tip located

at C, Oden and Duarte [23] and Duarte et al. [31] suggest the use of such a set of functions as enrichment

for the displacement field capable of representing the singular behavior of the stresses near the C. Such
functions are defined as.

Y 1\ 0 1 30
K — -

- n\í

cos---cosyJ ,sjr [^(^«+2
1 . 30

sin - — - sin —
2 2 2

= \ Yf
2yL V

(20)
Y 3\ . 0 l . 30 ^ \í A

LV 2y

1 30
=

COS - + - COS yr

2L \

where, (r, 0) is the polar coordinate system defined according to local cartesian coordinates (S, y)
located at the crack tip Fc (see Figure 3), k = {3 — Av) (for a State of Plane Strain) and v is the Poisson’s
ratio. Still from Equation (20), and are used to enrich the approximation according to local

directions x and y, respectively. In short, the singular enrichment vector is defined by:

1

in direction x,

in direction y.

= (21)

Thus, the enrichment vector L'^ is used, described in Equation (21), locally in the vicinity of the

crack dp. The enrichment zone is limited by a circular region B{C, i?.), where C is the position of the
crack tip and the radius R = 0,25 is constant and independent of h (see Figure 5). The set with the

indexes of the nodes enriched by the vector Lf is then defined as follows.
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Jf = {i € 4 : Xi G B{C, R)}.

where x = (x, y). This enrichment strategy, known as geometric enrichment is used, for example, in

Fries and Belytschko [4], Guptaet al. [13] and Guptaet al. [14], In fact, Gupta et al. [13] and Guptaet al.

[14] demonstrate that, for GFEM, this strategy provides optimal convergence rates, however the stiffness

matrix condition numher still presents increasing rate of

Figure 5. Scheme of the enrichment zone. represents nodes enriched by the set of singular functions.

(22)

Rò
t3 E3 E! ^

Tc C
a B a E! B

-£3 Ef-

Figure 6 shows that the GFEM presents optimal convergence rate 0(h) while SGFEM, SGFEM:'^^
and reveals convergence rates remaining around 0{\/h). On the other hand, it is observed

that the condition numher of GFEM grows with order of 0{hr‘^) whereas for the other versions the
results indicate increasing rate order of 0{hr‘^). In fact, Classical SGFEM does not provide optimal

convergence rate if the same enrichments adopted in GFEM are used. According to Ndeffo et al. [32] and

Sanchez-Rivadeneira and Duarte [33], this is because the approximation spaces of GFEM and SGFEM

are different, even when adopting both enrichments. Moreover, although SGFEM presents optimal con

vergence order in the experiment performed, Zhang et al. [15] demonstrates mathematically that this

condition cannotbe guaranteed in any situation. Still according to these authors, the use of on nodes

belonging to is sufficient to approximate the singular behavior of the solution, however, it is not

efficient to approximate displacement discontinuity in Fc.

Figure 6. Enrichment with . (a) Relative error in energy norm. (b) Scaled condition numher.

10®

10-1 10^

10®

UJ

aí
10®

10^
10-2

10®

10®
10®lOi lOi 10®

h-1 h-1

(a) (b)
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In order to obtain optimal convergence order, additional enrichments were employed in the SGFEM,
SGFEM^^ and SGFEM'^^-^^. So, be

ll° = {i G 4 : Xi G es and e^ Fl Fc 0} (23)

the set with the node indexes of the elements intercepted by the crack Fc- The strategy used is to add

the following terms to the approxiraation space of such versions of SGFEM,

(X - Xi y-Vi
(24)

h h

where i G fl (see Figure 7). This set of functions will he referred to throughout the paper

by function Singular Linear. In fact, Sanchez-Rivadeneira and Duarte [33] demonstrate that the use of

this set of functions retrieves the optimal convergence rate of the SGFEM cracked domain prohlem in

triangular finite element discretization, however, demonstrate that this strategy can generate dependences

between and In fact, the conditioning problem indicated by these authors was observed after

direct application of as depicted in Eigure 8. It can be observed that the use of these additional

enrichments provided an optimal convergence order 0{h) in all versions of SGFEM, however, led to

loss of stability in relation to matrix conditioning. In particular, it is noted that such strategy generated

a growth rate of the scaled condition number of the order of that is, much higher than that

obtained even in the GFEM, which is of the order of

Eigure 7. Scheme of enrichment zones for SGFEM and other versions. represents the nodes belong-

ing to Jl and the enriched nodes helonging to J^.

--yt H}-{ h-f M H{ H Iv-
-(-^hhhmhFÀ-■^c

f}

Through the Eigure 6b it is noticed that the modification imposed in Classical SGEEM did not

guarantee stability of the stiffness matrix conditioning and, once adding there is a worsening of

this scenario. Thus, in search of a strategy that avoids the presence of linear dependencies between the

enrichment functions themselves, a new modification on the space of the SGFEM-^^ and SGFEM^-^-^*^
is hereby proposed. Essentially, a mixed use of the flat-top or trigonometric PoU will be explored. So, be

(25)

the SGFEM£^ and SGEEM^/^*^ approach spaces are defined as.
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S = ,Y (Lf -{Lf)) bf + x; (Lf - (Lf)) bt+
iFilh

(26)
SC

where íp* represents, depending on the methodology employed, the flat-top or trigonometric PoU and

b* are the degrees of freedom related to this PoU. bf and bf^ refer to the degrees of freedom linked to
singular enrichment and Singular Linear, respectively.

Briefly, the idea is to apply the flat-top and trigonometric PoU on only in J^, that is, in the
region where the linear parcels of the singular functions are added (see Figure 7).

Therefore, the results illustrated in Figure 8 demonstrate that both the SOFEM^j^ and SOFEM^/^*^
preserve the optimal convergence order 0{h) and, on top of this, provide a scaled condition number of

the order 0{h~‘^), that is, the same order as that obtained from the FEM. Regarding the measurement of

the relative error in energy norm, it is observed that the versions of SOFEM-^^ and SGFEM^-^-^*^ present
very close results to SGFEM.

Figure 8. Enrichment with and (a) Relative error in energy norm. (b) Scaled condition number.

1
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4.2 Enrichment strategy II

This section is to present the behavior of GFEM versions when representing strong discontinuities

Crossing finite elements. Thus, the Heaviside function is used, which is commonly represented in the
literature as follows:

1, Z{x, y) > 0

\ -1, Z{x, y)<0
nix, y) = (27)

where Z{x, y) — Q is verified by the crack line. It is mainly intended to evaluate the aspects related to

robustness in the considered simulations.
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Remark 1. According to Babuska et al. [34], the version of GFEM that meets the following properties
will be denoted Robust SGFEM.

1. Optimal order of convergence;

2. Conditioning of stiffness matrix dose to that of FEM;

3. Robutness of the stiffness matrix conditioning in relation to the relative position of the crack to the
mesh.

Zhang et al. [15] were the first to point out that the satisfaction of conditions 1 and 2 does not imply the

satisfaction of condition 3. In addition, they demonstrate that the modification imposed on the GFEM,

defined using Equations (10)-(12), does not generate a Robust SGFEM.

Again, we use the vectors of enrichment functions if, i G J^, and Singular Linear Lf^, i G J^.
However, theHeaviside function is added on nodes belonging to J^f, where \ I^. Nevertheless,
as shown in Gupta et al. [13] and Gupta et al. [14], the modification of the Heaviside function according to

the suggestion given by Babuska and Banerjee [1,2] provides Oigjh) convergence rates, so not optimal
(,0{h)). To restore the convergence rate, Gupta et al. [13] suggest using the function set called Heaviside
Linear, defined as:

{X - Xi) {y - Vi)
L'^^{x, y) = \ nix, y) nix, y) (28)

hi hi

therefore, these parcels were also added to the enrichment in J| to GFEM, SGFEM-^^ and SGFEM^-^'^'^.
Regarding the enrichment zones, it is observed that n J| = 0, i.e., the nodes belonging B{C, R) are
not enriched by the heaviside function and its linear parcels. The definition of these enrichment zones is

in agreement with several works presented in the literature, such as Gupta et al. [13], Gupta et al. [14]

and Zhang et al. [15]. For more details, the Figure 9 illustrates the scheme of enrichment regions.

Figure 9. Scheme of enrichment zones for SGFEM, SGFEM^^ and SGFEM^-^-^*^. represents the
nodes belonging to represents the nodes belonging to and “ x ” represents the nodes belonging
to J'th

B

•é- O—ii
C

4 ■© El-

>9 [3 EH—^

In subsection 4.1 the issue of linear dependence between and in SGFEM was discussed.

Therefore, in order to avoid ill conditioning, the analyzes described below the approximation spaces

defined in Equation (26) were expanded by including the Heaviside function and its linear parcels. In

addition, it is emphasized that the space of the GFEM enrichment functions is defined by the use of Lf,
i G JZ and the Heaviside function on nodes belonging to J^.

The results obtained are depicted in the Figure 10 and it is observed that all versions of GFEM pre

sented optimal order of convergence, i.e, 0{h). On the other hand, for GFEM and SGFEM, from mesh

refinement h = 1/9 on, the scaled condition number strats growing by approximately Mean-

while, the conditioning of the stiffness matrix attached to the SGFEM-^^ and SGFEM^-^^*^ has stable
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behavior of throughout the analysis. It is also noted that the presented results

closer to those obtained in SGFEM, thus evidencing a better accuracy in relation to SGFEM-^^. These
results demonstrate that, for the analysis performed, SGFEM'^^ and SGFEM^^^*^ can be considered a

Robust SGFEM as they meet all the conditions described in Remark 1.

Figure 10. Enrichment with l-L, e (a) Relative error in energy norm. (b) Scaled condition
number.
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5 Conclusion

In this Work, new versions of GFEM have been numerically tested by combining singular enrich

ment functions and purely discontinuous functions. In particular, the main line of investigation was to

evaluate the effect of the modifications employed on Classical SGFEM with respect to the matrix con-

ditioning and the order of convergence of the relative error in energy norm. The main contributions are
summarized below.

Based on the results presented, it can be seen that in fact the use of flat-top PoU in the space of

approximation of enrichment functions provided, in most of the evaluated experiments, the control of

matrix conditioning. Similarly, it was observed that trigonometric PoU also played an important role in

controlling the scaled condition number of the stiffness matrix. In particular, it is clear that, at this point,

the results obtained using this PoU were in good accordance with those presented by the SGFEM-^^.
This information demonstrates that trigonometric PoU provides good matrix conditioning, in addition

requiring a lower computational cost when compared to flat-top PoU.

Regarding the order of convergence of the error, compared to SGFEM the measurement of the rela

tive error in energy norm obtained in the SGFEM^^ and SGEEM^-^^*^ is higher, as expected. However,
the convergence rate for both methods is of the same order as that obtained in SGFEM.

In addition, the selection strategy presented, in which one chooses which enrichment to combine to

each PoUs, has proved to be an efficient altemative for maintaining of the scaled condition number of the

order of 0{h^‘^), that is, the same obtained for the FEM. Moreover, as observed, the use of this technique

guaranteed robustness in relation to the relative position of the crack to the mesh in the horizontal crack

fracture domain problem.

Finally, it can be concluded that the use of different PoUs in the GFEM enrichment space is really

an effective altemative to keep under control the stiffness matrix conditioning. The results indicate the

possibility of further improvement of this technique to enable more accurate Solutions.

CILAMCE2019

Proceedings ofthe XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Nalal/RN, Brazil, Novemher 11-14, 2019



C. S. Ramos, M. H. C. Bento, S. .P B. Proença

Acknowledgements

The authors would like to acknowledge the National Council for Scientific and Technological De-

velopment (CNPq) and São Paulo Research Foundation (FAPESP), under process number 2019/00434-7,

for the financial support.

References

[1] Babuska, I. & Banerjee, U., 2011. Stable generalized finite element method (SGFEM). Technical

Report.

[2] Babuska, 1. & Banerjee, U., 2012. Stable generalized finite element method (SGFEM). Computer

Methods in Applied Mechanics and Engineering, vol. 201, pp. 91-111.

[3] Béchet, E., Minnebol, H., Moes, N., & Burgardt, B., 2005. Improved implementation and robustness

study of the X-FEM for stress analysis around cracks. International Journal for Numerical Methods

in Engineering, vol. 64, n. 8, pp. 1033-105.

[4] Fries, T. & Belytschko, T., 2010. The extended/generalized finite element method: An overview of

the method and its applications. International Journal for Numerical Methods in Engineering, vol.

84, n. 3, pp. 253-304.

[5] Laborde, R, Pommier, J., Renard, Y., & SalaÜn, M., 2005. High-order extended finite element

method for cracked domains. International Journal for Numerical Methods in Engineering, vol. 64,

n. 3, pp. 354-381.

[6] Menk, A. & Bordas, S. P. A., 2011. A robust preconditioning technique for the extended finite

element method. International Journal for Numerical Methods in Engineering, vol. 85, n. 13, pp.
1609-1632.

[7] Chessa, J., Wang, FI., & Belytschko, T, 2003. On the construction of blending elements for local par-

tition of unity enriched finite elements. International Journal for Numerical Methods in Engineering,

vol. 57, n. 7, pp. 1015-1038.

[8] Fries, T, 2008. A corrected XFEM approximation without problems in blending elements. Interna

tional Journal for Numerical Methods in Engineering, vol. 75, n. 5, pp. 503-532.

[9] Grade, R., Wang, H., & Belytschko, T, 2008. Blending in the extended finite element method by

discontinuous galerkin and assumed strain methods. International Journal for Numerical Methods in

Engineering, vol. 74, n. 11, pp. 1645-1669.

[10] Tarancón, J. E., Vercher, A., Giner, E., & Fuenmayor, F. J., 2009. Enhanced blending elements for

XFEM applied to linear elastic fracture mechanics. International Journal for Numerical Methods in

Engineering, vol. 77, n. 1, pp. 126-148.

[11] Shibanuma, K. & Utsunomiya, T, 2009. Reformulation of XFEM based on PUFEM for solving

problem caused by blending elements. Finite Elements in Analysis and Design, vol. 45, n. 11, pp.
806-816.

[12] Aragón, A. M., Duarte, C. A., & Geubelle, P. H., 2010. Generalized finite element enrichment func-

tions for discontinuous gradient fields. International Journal for Numerical Methods in Engineering,

vol. 82, n. 2, pp. 242-268.

[13] Gupta, V., Duarte, C. A., Babuska, I., & Banerjee, U., 2013. A stable and optimally convergent

generalized FEM (SGFEM) for linear elastic fracture mechanics. Computer Methods in Applied

Mechanics and Engineering, vol. 266, pp. 23-39.

CILAMCE 2019

Proceedings ofthe XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



A stable and improved version of the GFEMfor the analysis of probleins in elastic linearfracture

[14] Gupta, V., Duarte, C. A., Babuska, L, & Banerjee, U., 2015. Stable GFEM (SGFEM): Improved

conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics. Computer

Methods in Applied Mechanics and Engineering, vol. 289, pp. 355-386.

[15] Zhang, Q., Babuska, L, & Banerjee, U., 2016. Robustness in Stable Generalized Finite Element

Methods (SGFEM) applied to Poisson problems with crack singularities. Computer Methods in Ap

plied Mechanics and Engineering, vol. 311, pp. 476-502.

[16] Zhang, Q., Banerjee, U., & Babuska, L, 2019. Strongly Stable Generalized Finite Element Method

(SSGFEM) for a non-sraooth interface problem. Computer Methods in Applied Mechanics and Engi

neering, vol. 344, pp. 538-568.

[17] Zhang, Q., Banerjee, U., & Babuska, L, 2014. Higher order stable generalized finite element

method. Numerische Mathematik, vol. 128, n. 1, pp. 1-29.

[18] Sato, F. M., 2017. Numerical experiments with stable versions of the Generalized Finite Element

Method. Master’s thesis, São Carlos School of Engineering, University of São Paulo, São Carlos'.

[19] Sato, F. M., Piedade Neto, D., & Proença, S. P. B., 2018. Numerical experiments with the General

ized Finite Element Method based on a flat-top Partition of Unity. Latin American Journal ofSolids

and Structures, vol. 15.

[20] Ramos, C. S. & Proença, S. P. B., 2018. Sobre o emprego da partição da unidade flat-top no MEFG.
In XIIISIMMEC 2018, Vitória, BR.

[21] Ramos, C. S., 2019. Flat-top and trigonometric Partitions of Unity in the Generalized Finite El

ement Method. Master’s thesis, São Carlos School of Engineering, University of São Paulo, São
Carlos.

[22] Proença, S. P. B., 2010. Introdução aos Métodos Numéricos. São Carlos, SP.

[23] Oden, I. T. & Duarte, C. A., 1997. Clouds, cracks and FEM‘s. Recent Developments in Computa-

tional and Applied Mechanics, pp. 302-321.

[24] Melenk, J. M., 1995. On Generalized Finite Element Methods. Ph.d. thesis, University of Maryland.

[25] Griebel, M. & Schweitzer, M. A., 2002. A particle-partition of unity method - Part ü; Efflcient

cover construction and reliable integration. SIAM Journal on Scientific Computing, vol. 23, n. 5, pp.
1655-1682.

[26] Schweitzer, M. A., 2003. A Parallel Multilevel Partition of Unity Methodfor Elliptic Partial Differ-

ential Equations. Number 29 in Lecture Notes in Computational Science and Engineering. Springer,

Berlin, Heidelberg, 1 edition.

[27] Griebel, M. & Schweitzer, M. A., 2007. A Particle-Partition of Unity Method - Part VI: Adaptiv-

ity. In Griebel, M. & Schweitzer, M. A., eds, Meshfree Methods for Partial Differential Equations

III, number 57 in Lecture Notes in Computational Science and Engineering, pp. 121-147. Springer,

Berlin, Heidelberg.

[28] Babuska, I., Banerjee, U., & Osbom, J. E., 2007. Superconvergence in the generalized flnite element

method. Numerische Mathematik, vol. 107, n. 3, pp. 353-395.

[29] Szabó, B. & Babuska, L, 1991. Finite Element Analysis. lohn 'Wiley and Sons, New York.

[30] Strouboulis, T., Babuska, L, & Copps, K., 2000. The design and analysis of the generalized finite

element method. Computer Methods in Applied Mechanics and Engineering, vol. 181, n. 1-3, pp.
43-69.

[31] Duarte, C. A., Babuska, L, & Oden, I. T., 2000. Generalized finite element methods for three-

dimensional structural mechanics problems. Compiiters & Structures, vol. 77, n. 2, pp. 215-232.

CILAMCE2019

Proceedings of the XL Ibero-Laíin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



C. S. Ramos, M. H. C. Bento, S. P. B. Proença

[32] Ndeífo, M., Massin, R, Moes, N., Martin, A., & Gopalakrishnan, S., 2017. On the constraction

of approximation space to model discontinuities and cracks with linear and quadratic extended finite

elements. Advanced Modeling and Simulation in Engineering Sciences, vol. 4, n. 1, pp. 6.

[33] Sanchez-Rivadeneira, A. G. & Duarte, C. A., 2019. A stable generalized/extended FEM with dis-

continuous interpolants for fracture mechanics. Computer Methods in Applied Mechanics and Engi

neering, vol. 345, pp. 876-918.

[34] Babuska, L, Banerjee, U., & Kergrene, K., 2017. Strongly stable generalized finite element method:

Application to interface problems. Computer Methods in Applied Mechanics and Engineering, vol.

327, pp. 58-92.

CILAMCE 2019

Proceedings of the XL Ibero-Latin-American Congress on Compuíalional Methods in Engineering, ABMEC.
Natal/RN, Brazil, Novemher 11-14, 2019




