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Abstract. We consider the time evolution of an exactly solvable cellular
automaton with random initial conditions both in the large-scale hydrodynamic
limit and on the microscopic level. This model is a version of the totally
asymmetric simple exclusion process with sublattice parallel update and thus
may serve as a model for studying traffic jams in systems of self-driven particles.
We study the emergence of shocks from the microscopic dynamics of the model. In
particular, we introduce shock measures whose time evolution we can compute
explicitly, both in the thermodynamic limit and for open boundaries where a
boundary-induced phase transition driven by the motion of a shock occurs. The
motion of the shock, which results from the collective dynamics of the exclusion
particles, is a random walk with an internal degree of freedom that determines the
jump direction. This type of hopping dynamics is reminiscent of some transport
phenomena in biological systems.
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1. Introduction

In the framework of a macroscopic description of many-body systems far from thermal
equilibrium one is often faced with a scalar conservation law of the form

0 0
where j is the current given as a function of the time-dependent local density p = p(z, 7).
Such a partial differential equation is known to emerge, for example, as the large-scale
behaviour of microscopic models of stochastic-driven interacting particles such as the well-
known asymmetric simple exclusion process (ASEP) [2]-[4]. For nonlinear current-density
relations j(p) solutions to (1) may have discontinuities which are known as shocks [1]. It
is by now well understood that macroscopic shock solutions of (1) correspond to traffic
jams on the microscopic scale which are ubiquitous in systems of self-driven particles such
as molecular motors in cells, vehicular highway traffic, or pedestrian dynamics (see [5]-
8] specifically for the important case of molecular motors and [9] for an up-to-date and
comprehensive general overview). It is therefore of considerable interest to study the
microscopic properties of shocks in detail.

So far most investigations of the microscopic structure of shocks have focused on
stochastic interacting particle systems. Work on the ASEP has revealed very detailed
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information about the microscopic shock structure [10]-[14], [44], [15]-[18]. The main
tools in these investigations are the introduction of a second-class particle that serves
as the microscopic definition of a shock and of shock measures which are measures
that connect two stationary regimes of different constant density and thus correspond
to step function density profiles on the macroscopic scale. Recently we have extended
these ideas to study an exclusion process with deterministic bulk dynamics [19], the so-
called cellular automaton 184 (CA 184) defined on the infinite integer lattice Z [20].
This model is a discrete time version of the totally asymmetric simple exclusion process
(TASEP) where particles jump only in one direction, subject to a parallel update rule.
Random initial conditions in CA 184 have been known for some time to lead to non-trivial
relaxation dynamics [21,22]. We have shown that interesting dynamics appear also for
shock measures for which we have defined a microscopic shock position and studied the
structure of the shock [19].

It is the aim of this work to go beyond the approach of [19] and to study shocks in
deterministic CA by considering a finite system with open boundaries which is expected
to exhibit boundary-induced phase transitions [23,24]. To this end we slightly modify the
updating rules of CA 184 in a way that leaves the macroscopic behaviour (1) essentially
unchanged, but facilitates the treatment of the microscopic properties. We shall consider
a CA that corresponds to a TASEP with sublattice update. For open boundaries
the stationary distribution of this model exhibits a boundary-induced phase transition
between a free-flow low-density phase and a congested high-density phase [25]. Here
we introduce a microscopic definition of the shock position, establish various microscopic
properties of the shock, and use these results to study the dynamics of the non-equilibrium
first-order phase transition in terms of the dynamics of a shock, which corresponds to a
traffic jam of particles on the lattice.

This paper is organized in the following way. In the next section we introduce the
model and review some of its stationary properties. We also outline the large-scale
behaviour which is given by an equation of the form (1). In section 3 we define a
microscopic shock and explore some of its fundamental properties. In section 4 we study
the dynamics of the phase transition. In section 5 we summarize our results and draw
some conclusions.

2. Cellular automaton with sublattice update

2.1. Definition of the model

In this cellular automaton, which describes driven ballistic motion of particles with hard-
core repulsion, each site k on the integer lattice Z is either occupied by a particle or empty.
We denote the occupation number at time step ¢ by 7,(k) € {0,1}. Each update of the
discrete time dynamics consists of two steps. First all even—odd pairs of sites (2k, 2k + 1)
are updated such that in each pair a particle on site 2k jumps to site 2k + 1 provided that
2k 4+ 1 was empty. Otherwise nothing changes. Therefore at the intermediate time ¢/

N (2k) = n(2k)m(2k + 1)
ne(2k + 1) = (2k) + m(2k + 1) — . (2k)n(2k + 1).

In the second step the pairing is shifted by one lattice unit and each pair (2k — 1,2k) is
updated with the same jump rule.

(2)
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In a finite system with L sites (where L is even) the first step is applied only to the
bulk pairs (2,3),...,(L —2,L —1). The boundary sites 1 and L are updated as follows:
on site 1 a particle is injected with probability « if it was vacant. Otherwise nothing
changes. On site L a particle is removed with probability [ if it was occupied. Otherwise
nothing changes. The boundary update attempts occur independently and we have

ne(1) = with probability (1) + o/(1 — n,(1))

ny(l) =0 with probability (1 — a)(1 — 7,(1)) 3)
(L) =1 with probability (1 — 5)n.(L)

ny(L) =0 with probability 1 — (1 — B)n:(L).

Schematically we can represent the bulk update in each pair as follows

00 — 00 0A — 0A 4
A0 — 0A AA — AA (4)

where A denotes a particle and 0 a vacant site. It is convenient to write update rules only
for those configurations that undergo a change, i.e. we may simply write

A0 — 0A. (5)
For the boundaries we have the update rules

Site 1: 0— A with probability « (©)
Site L: A —0 with probability (.

The boundary occupations remain unchanged with the respective complementary
probabilities 1 — a, 1 — . Owing to the similarity with the original cellular automation
CA 184, where all particles are updated in parallel in one time step, we shall refer to the
present lattice gas model as sublattice CA 184 (sICA184).

The Markovian time evolution of the process can be encoded in a transfer matrix
which for a periodic chain of L sites (L even) is of the form [25, 26]

L/2 L/2
T — HTQj,l . H T2_] — TOdd Teven. (7)
J=1 7j=1

The local matrices T act non-trivially on sites j and j + 1, on all other sites they act as
unit operators. For an explicit representation we choose a spin-1/2 tensor basis where spin
down at site j represents a particle (up-pointing arrow) and spin up a hole (down-pointing
arrow). With the Pauli matrices 0% the matrix 7; = (1—0%)/2 is the projection operator
on particles on site j, 0; = (1 + 07)/2 is the projector on holes and sj[ = (o £io})/2
create (s; ) and annihilate (s]") particles respectively. This leads to

1 00 0

- teT ot —

(8)

o O O

1 1
0 0
0 0

—_— o O

Jig+1
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For open boundaries with injection of particles on site 1 and removal of particles on
site L the local transfer matrix 77, acting on sites L and 1 is given by

Tp = (1+a(s; —o1))(1+B(sp — 1))
l—a 0 B(1 - a) 0
« 1 af B
- 0 0 (1-a)1-p5) 0 ' )
0 0 a(l—p) 1—=056/ 1.

The product form of T}, reflects the independence of injection and removal of particles at
the two boundary sites.

2.2. Review of stationary properties

2.2.1. Infinite system. Let a particle distribution on Z be translation invariant (i.e. the
distribution does not change, if it is shifted along Z) and let it either have no particles on
odd sites (and hence have no neighbouring particles) or have no vacancies on even sites
(and hence have no neighbouring vacancies). Then, in both cases, this distribution is also
time invariant both for CA184 and sICA184. We shall refer to time-invariant distributions
as stationary distributions. Indeed, the following stationary properties of SICA184 are very
similar to those of CA184 and our discussion follows largely the corresponding discussion
in [19].
The particle density is defined by the space average

p= lim % > m(k). (10)

L—oo
k=—L+1

Evidently, in the first case (no particles on odd sites) the particle density in the system is
p < 1/2, while in the absence of vacancies on even sites one has p > 1/2. At stationary
particle densities up to 1/2 the system is said to be in the free-flow phase since according
to (2) one has 1,11 (k + 2) = m(k), i.e. each particle moves two lattice units at each time
step due to the absence of particle pairs. At densities larger than 1/2 the system is said to
be in the congested phase, since in any large enough region there are always some particles
that cannot move in a given time step. Here in each step each vacancy moves two lattice
units to the left. At density exactly equal to 1/2, the stationary particle arrangement is
trivial; this is the ordered configuration where particles on even sites and vacancies on
odd sites alternate. Notice that because of particle conservation the density (10) is time
independent for any microscopic configuration 7.

Let us denote by j(p) the particle current in a stationary distribution with particle
density p, i.e. the expected number of particles crossing an arbitrary bond in one time
step. We have

j(,o):{Qp if p<1/2

2(1—p) if p>1/2. (11)

This current-density relation, called a fundamental diagram in traffic engineering,
determines the hydrodynamic behaviour (1) of the model, see below. Notice that the
current-density relation (11) is the same as for CA184, except for a trivial factor of 2
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which comes from our choice of time unit (two single update steps constitute one complete
time step).

In order to prove (11) we first introduce for a particular initial configuration 7y the
time-integrated current Jp(k) = Zthl my(k) where my(k) (taking values 0 or 1) is the
number of particles that have crossed the bond k,k + 1 at time step ¢, starting from a
configuration 7y. Clearly Jr(k) is a fluctuating quantity whose distribution is completely
determined by 7y, unlike in the case of stochastic dynamics, which generate non-trivial
universality classes of current distributions [27]-[33]. By the law of large numbers we
obtain from the time-integrated current the average current

Gr = lim %JT(k) (12)

T—o00

if the law of large numbers holds for the particle numbers 7, (k) independently of k, i.e. one

has for all k € Z

p= lim ! > 0. (13)

L—oo
i=k—L+1
If the configuration is taken from a stationary measure, i.e. it has no particle blocks
(p < 1/2) or no vacancy blocks (p > 1/2) then j, = j(p). This is the situation that
we shall encounter and therefore we do not distinguish between the two currents, unless
necessary.

Clearly, the sICA184 is highly non-ergodic, since any arrangement of particles without
neighbouring pairs of particles or vacancies gives rise to a stationary distribution. A special
family of stationary distributions results as the deterministic limit of the random version
of sICA184 where the same hopping rules are applied except that particles jump with
probability p rather than deterministically. It follows from the work of [34,35] that the
unique family of time and translation-invariant measures of this process are Bernoulli
product measures with alternating sublattice densities por = pe, por+1 = po such that

Do = (1—p)pe
’ 1_pe+<1_p)pe

The total density is then p = (pe + po)/2. In the limit p — 1 these measures converge to
measures of the kind described above, but with the special feature that for p < 1/2 one
has p. = 2p and p, = 0 while for p > 1/2 one has p, = 1 — 2p and p, = 1. Consequently,
for p < 1/2 the number v of vacancies on even sites between consecutive particles at
even positions 2k;, 2k; 1 is a geometrically distributed random variable with parameter
2p, i.e. Problv = k] = 2p(1 — 2p)*. Likewise, for p > 1/2, the number of particles on odd
sites between vacancies on odd sites is geometrically distributed with parameter 1 — 2p.

(14)

2.2.2.  Semi-infinite open system. The stationary measures introduced above arise also
in a different interesting context, namely in a semi-infinite system with open boundary
conditions. To set the stage, consider the non-negative ‘semi-line’ of Z, that is, the set
No ={0,1,2,...}. Let us postulate that all these sites are empty at time 0. Let us insert
particles at time 1,2,... at the left boundary site 0 by the following rule: if at time ¢
there is no particle at 0, then we put a particle at 0 at time ¢ + 1 with the probability
«, independently of any previous injection event, otherwise, we do not put a particle at
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time t + 1. As time tends to infinity, the distribution of inserted particles is the same as
if we constructed the particle distribution on Z in accordance to the geometric process
described above, and then take its restriction to Ny. The total density is p = a/2.

Likewise one may study an open right boundary, i.e. the sICA184 dynamics on the
left semi-line {...,L — 2, L — 1, L} with boundary processes defined as follows: if at
time t there is a particle at L, then we remove this particle at L at time ¢ + 1 with the
probability (3, otherwise, the particle stays at L at time ¢ + 1. If initially the left semi-
line was completely filled with particles then effectively vacancies travelling to the left
enter the system at its right boundary. As a result the distribution of particles tends to
the geometric distribution as time diverges. If one takes the restriction of the geometric
distribution on the left semi-line as the initial distribution the process is stationary. The
total density is p =1 — (/2.

2.2.8. Open boundary conditions. The stationary distribution for a finite system with open
boundary conditions as defined above was first studied in [25] where rigorous results for
the current and the density profile were obtained by solving recursion relations. These
results were later reproduced in [36] using a different method, namely the matrix product
ansatz [37]. We mention the following properties of the stationary distribution.

For a # [ the density profile, i.e. the expected density pr, = (nx) as a function of
space, is essentially constant in the bulk, with corrections that decay exponentially in
the (lattice) distance from the boundary. Hence there is a boundary layer of microscopic
width. Moreover, due to the sublattice update there is an alternating sublattice structure
in the density profile. Specifically, for « < ( the bulk density is o on even sites and 0
on odd sites. There is a boundary layer at the right edge of the system. The stationary
current is j = a = 2p where p is the total bulk density. For o > (3 the bulk density is
1 — [ on odd sites and 1 on even sites. There is a boundary layer at the left edge of the
system. The stationary current is j = 5 = 2(1 — p).

This shows that there is a boundary-induced first-order phase transition along the line
a = [ where the bulk density has a jump discontinuity. As the phase transition line is
approached, the width of the boundary layer diverges. Along the phase transition line the
density profile is linear on both sublattices. According to the arguments of [23,24] this is
the signature of a shock-driven phase transition. One postulates that the two boundaries
mimic boundary reservoirs with constant densities py, pg of virtual reservoir particles and
that a shock profile with a jump discontinuity connects the boundary densities. Because
of mass conservation, a shock between densities p;, po moves with velocity

v, = j(,Ol) — j(p2) (15)

P1— P2
For the present model, py = p; = «/2 and ps = pr = 1 — /2. Then in the low-
density phase the shock has positive velocity and is thus driven to the right edge of
the system where it remains localized, leaving the bulk at density p = p, < 1/2. In
the high-density phase the shock has negative velocity and is thus driven to the left
edge of the system, leaving the bulk at density p = pgr > 1/2. Within this theory of
boundary-induced phase transitions the boundary layers are the microscopic signature of
two effects, small fluctuations of the shock position, which is argued to be microscopically
sharp, and boundary correlations. At the phase transition line the shock velocity is zero,
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but fluctuations are expected to lead to an unbiased random motion, leaving the shock
everywhere with equal probability in a stationary measure. This then explains the linear
density profile. The exact results of section 3 will be used to probe these theoretical
predictions, identify the random motion of the shock and determine the origin of the
structure of the boundary layer.

2.3. Large-scale behaviour

So far the lattice spacing has been implicitly set to unity. In order to study hydrodynamic
scaling we introduce a lattice spacing a and study the model under Eulerian scaling
a — 0, with rescaled macroscopic space and time coordinates * = ka, 7 = ta. Particle
conservation and local stationarity suggests that the large-scale behaviour of sSICA184 is
then governed by the hydrodynamic equation

0 0
—_ — = 1

where j is the current given as a function of the local coarse-grained density p by (11)
and

(o) = 1-3(0) an

is the collective velocity. We remark that our approach to studying the relation between
microscopic dynamics and macroscopic behaviour, which is in the spirit of [38], is very
different from the route taken in [39] for CA 184 where a discrete difference equation
is taken as the starting point from which both a continuum equation and the cellular
automaton dynamics are derived as some limiting case.

We obtain as the scaling limit for sICA 184

0
2—p if p<1/2
_28_:16'0 if p>1/2.

Clearly, any constant density profile is a (trivial) solution of this equation. Moreover, as
long as initially the local density is everywhere below or above 1/2; the initial density
profile travels with fixed velocity 41, but remains unchanged in shape. This includes
shock profiles which are initially step functions of the form

(o) = p(a0) = {

P %f r < Z (19)
P2 it x > xg

with p; < pa. If both p; and ps are below (above) 1/2 then the shock will travel with
speed vs = 2 (v = —2). The macroscopic shock position at time 7 is then given by
xs(T) = xo £ 7. Notice that this result is already clear from the microscopic dynamics
on the lattice scale since at macroscopic timescales any domain that was initially finite
(on lattice scale) and non-stationary will have relaxed into a locally stationary state and
hence under the condition that both p; and p, are below or above 1/2 we are dealing
with a configuration in which indeed all particles (or vacancies) travel ballistically with
speed £2.
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The situation is somewhat more intricate if one of the densities in an initial step profile
is below 1/2, while the other is above one half. Consider first p; < 1/2 and py > 1/2.
According to the Lax criterion for the existence of shocks [1] one expects shock solutions.
In particular, the initial step function remains unchanged in shape and the macroscopic
shock travels with speed (15). Notice that vy — 2 as ps — 1/2 and v3 — —2 as p; — 1/2.
This suggests that the discussion in the previous paragraph may be extended to initial
profiles that are not everywhere strictly below or above 1/2, but satisfy the less stringent
inequality po(x) < 1/2 or po(z) > 1/2 for all x.

Next we consider an initial downward step with p; > 1/2 and py, < 1/2 which
does not satisfy the Lax criterion for stable shocks. In lattice gases with stochastic
dynamics one expects on the macroscopic scale the evolution of rarefaction waves from
initial conditions with jump discontinuities that do not correspond to the microscopically
stable shocks. These rarefaction waves are scaling solutions p(u) with the scaling variable
u = x/7, obtained from the hydrodynamic equation (16) as solutions of the implicit
equation u = v.(p). Since the current (11) as a function of the density is piece-wise linear
and therefore has a discontinuous piece-wise constant derivative, this method is not well
defined for our problem.

In order to study this problem for sICA184 we take a direct microscopic approach
and consider two stationary distributions on Z with the respective densities p; and ps
such that ps < p;. From these we construct a new distribution by taking the restriction
on (—o0, ko] of the first one, and the restriction on [ky + 1, +00) of the other one, where
ko is an odd site. It follows directly from the definition of the dynamics that particles
at positions >k, do not interact and move ballistically with speed 2. Hence they may
be completely ignored and without loss of generality we can set p, = 0 for investigating
what happens to the step. Notice that by construction of the shock measure all odd sites
<k are occupied by a particle. Next we realize that the microscopic dynamics imply that
the maximum output of particles from a given site is at most one per time unit and that
this maximum is reached for a time interval of length s if and only if there are at least s
particles on even sites to the left of k. For the initial configuration considered here s = oo
and hence in each time step a particle is injected into the empty region >ky. Hence inside
that region a locally stationary domain with density 1/2 grows with speed 2. Coming
back to the original initial state this domain is followed by the initial domain of density
p2 < 1/2. Applying similar arguments (in terms of vacancies travelling to the left) to the
region <kg one finds that also there a locally stationary domain with density 1/2 develops
and spreads with speed —2 to the left. There it connects to a region with original density
p1 > 1 / 2.

Therefore on the macroscopic scale two consecutive stable down step with densities
(p1,p%), (p*, pe) arise, with intermediate particle density p* = 1/2. Macroscopic mass
conservation gives the propagation speed of these discontinuities according to (15) (where
p2 = 1/2 for the first step and p; = 1/2 for the second step).

3. Microscopic properties of the shock

We stress that step discontinuities where ps < p; do not satisfy the Lax criterion for
stable shocks and we shall not regard them as shocks. Indeed, the evolution of such steps,
starting from two stationary branches with densities p; o, is completely described above

doi:10.1088,/1742-5468,/2011/07 /PO7007 9
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even on the microscopic level. The problem of interest that remains and is studied in this
section is the existence and dynamics of a well-defined microscopic position of a shock in
a genuine shock initial state where py > p;.

In order to attack this problem we first introduce in the spirit of [11] second-class
particles, denoted B. A second-class particle is updated like a first-class particle when
there is no first-class particle inside a pair of sites. In the presence of a first-class particle
it behaves like a vacancy. The corresponding jumps can be represented schematically as

B0 — 0B  AB — BA. (20)

The structure 7' = T°44T" of the transfer matrix for the time evolution of this extended
process remains unchanged. The only difference is in the representation of the local
transfer matrix 7} for neighbouring pairs of sites which becomes a 9 x 9 matrix owing to
the fact that now each site can be in three states, namely vacant, occupied by a first-class
particle, or occupied by a second-class particle. A natural choice of basis for these three
states is

1 0 0
=10, [AH={L], [B)=]0]. (21)
0 0 1

Writing down 7j in the corresponding tensor basis is then straightforward.

3.1. Shock measures

Consider now shock measures which are defined as follows. With probability one there is
a second-class particle located at some lattice position k. At all other sites the measure is
stationary with density p; < 1/2 of first-class particles to the left of the (single) second-
class particle and stationary with density p, > 1/2 of first-class particles to the right of
the second-class particle. We shall consider the position of the second-class particle as
the microscopic shock position. According to the sublattice structure of the invariant
measure one puts on all even (odd) sites to the left of the second-class particle a first-class
particle with probability o = p;/2 (probability zero), independently of each other. All
odd (even) sites to the right of the second-class particle have a vacancy with probability
B = (1 — p2)/2 (probability zero), independently of each other. Depending on whether
the shock position is even or odd, this construction defines two families of shock measures
of product form which in the basis defined above are represented by the tensor vectors

pak-1) = ---[0) ® o) @ [0) @ ) © [B) @ [A) @ [y) @ [A) @[7)--- (22)

|pak) = ---10) @) @ [0) @ [B) @ |7) © [A) @ |y) © [A) @ |7) - - (23)
where v =1 — 3 and

p=1| » |=0-p)0)+plA) (24)
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represents occupancy of a site by a first-class particle with probability p. The site index
in the measure denotes the location of the second-class particle basis vector |B) in the
tensor product.

In order to study the time evolution of these shock measures we decompose the
marginal distribution next to the second-class particles as follows

|pak-1) = (1 =) ---]a) @[0) ©[0) ® |B) @ [A) @ |y) @ [A) -
ta---la)e0)©4) 9 |B)e[A) oy @A) (25)

lpor) =03+ ]a) ®10) ® |B) @ |0) @ |A) @ |7) @ |A) - - -
+(1=0) ) ®|0)®[B)®|A) @A) @ [7) @[A)---. (26)

(For the odd site index we have decomposed the marginal corresponding to left
neighbouring site 2k — 2 and for even site index we have decomposed the marginal
corresponding to right neighbouring site 2k + 1.) Applying the evolution rules we thus
find

Tpor—1) = o?|pok—3) + a(l — )| por—2) + (1 — @) (1 = B)|por—1) + B(1 — )| par) (27)

T|por) = 5| pors2) + B = B)|pors1) + (1 — @) (1 = B)|pan) + (1 — B)|par—1). (28)

Interestingly these are the evolution rules for a partially asymmetric random walk that
evolves under the sublattice dynamics of sICA184, hopping with probability 3 to the right
when the walker is on an even site and with probability « to the left when the walker is
on an odd site.

This closure of the time evolution on the set of shock measures is rather remarkable.
It implies that we may regard the microscopic shock position as a random variable
X (t) such that the shock position performs a single-particle sublattice random walk with
partially asymmetric transition probabilities determined by the particle densities in the
two branches of the shock. Moreover, the microscopic structure of the shock as seen from
the second-class particles remains unchanged for all times. We have for the conditional
probability of finding a first class at a distance n from the location X () second-class
particle

1 n > 0 odd
1-p n > 0 even
odd
t) := Prob n=1X(t) =kodd| = 29
284, (n.1) = Problre = 11X (1) = kodd AP (29)
0 n < 0 even
1 n > (0 even
1-p n > 0 odd
°ven (n t) := Prob =1|X(t) =k =
P (n, 1) i= Problr, = 11X () = beven] =4~ 7 "7 0 (30)
0 n < 0 odd.

All conditional correlations between first-class particles are independent of time and
factorize.
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3.2. Shock motion

We define Py(t) := Prob[X (¢) = k] as the probability of finding the shock position at time
t on site k. The forward evolution rules (27), (28) imply the following master equation
Popa(t+1) = a® Py (t) + (1 = B) Poy(t) + (1 — @) (1 = B) Po—1(t) + B(1 — ) Par—2(t)
(31)
Poy(t +1) = 3° Py (t) + (L — @) P (t) + (1 — @)(L — 8) Poi(t) + (1 — ) Pagega (1)
(32

From this we first compute the sublattice probabilities P,(t) = >, Par41(t) and Pu(t) =
> Por(t) then find the shock on the odd or even sublattice.
It is convenient to define a sublattice probability vector

Po = (5)- )
Then we obtain from (31), (32)
P+ 1)) = AIP() 39

~—

with the time evolution operator

_(1=(a+P)(1~a) (a+pB)(1-p)
A_< (a+p8)(1—-a) 1—(a+6)(1—5))- (35)

The formal solution of (34) has the simple form
|P(t)) = A'|P(0)) (36)
where |P(0)) is the initial distribution of the shock position on the even or odd sublattice.

In order to obtain the long time behaviour we diagonalize A. The two eigenvalues \;
are

A =1, A= (a+pB-10°=\ (37)

Since A is not symmetric the left and right eigenvector are not Hermitian conjugate.
Instead we find for the right eigenvectors

- (2) - () (39

and for the left eigenvectors

These vectors form an orthonormal basis with scalar product (i|j) = §; ;. Notice that
because of probability conservation (S| = (1| is a left eigenvector of A with eigenvalue 1.
The right eigenvector with eigenvalue 1 represents the stationary distribution, i.e. [1) =
|P.). Now we can write

AT =P (S| + A2)(2 (40)
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and therefore
|P(t)) = [P.) + X'(2| P(0))[2). (41)

Hence the relaxation of the sublattice distribution to stationarity is exponential with
relaxation time 7 = 1/In|\|. For A = 0 the relaxation is immediate.

Next we study the mean drift of the shock. To this end we introduce the sublattice
first moments Qo (t) = >, (2k+1)Pay1(t) and Qe(t) = >, 2k Por(t) and the first-moment
vector

Q= (&41). (2
Then we obtain from (31), (32)

|Q(t + 1)) = AlQ(t)) + A[P(1)) (43)
with

_ —2a” (B—a)(1-p)
A‘(w—axrﬂw 252 )' 44)
Equation (43) has the structure

[t + 1)) = Al@(1)) + [V(2)). (45)
This recursion has the formal solution

|B(t)) = A'|P(0)) +iA”|\I/(t—1 —n)). (46)
This yields

Q) = AIQ(O) = 3 A"AA1 P(0)) (a7)

In order to compute (X (t)) = (S|Q(t)) we have to fix the initial values in this solution.
We assume that at time zero the shock is at site zero. Then |Q(0)) = 0 and

0
Py = (7). (13)
After some straightforward algebra this gives
-\
(X (1) = (SIAIP)t + T—-(51412)(2[P(0))
] I TR R O (49)
T2 a_g “ “ DY
and we read off the drift velocity of the shock
X _
v, = lim X)) _ (S|A|P,) =2 f-a (50)

t—oo 2—a—f
doi:10.1088/1742-5468,/2011 /07 /POT007 13
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As expected, this expression agrees with the general form of the drift velocity (15). It
can be obtained directly from stationary sublattice occupation probabilities (38) and the
right and left jump rates through the formula vy = 2(P, — aP,).

Finally we consider the fluctuations of the shock position. To this end we define the
sublattice second-moment vector

ro) = (1)) 1)

with the sublattice moments R,(t) = Y, (2k + 1)*Py11(¢) and Ro(t) = >, (2k)*Po(t).
The master equations (31) and (32) yield

[R(t+1)) = AlR(t)) + 24]Q(1)) + BIP(1)) (52)

with the matrix

~ e (a+B)(1- B)
b= (<a+ﬁ><l ) 4p? > ' (53)

Using (46) we find

t—1 t—1 t—2
[R(t)) = A'|R(0)) +2) _ A"AA"Q(0) +2) T ATAD T AFTTANTE T P(0))
n=0 n=0 k=n
t—1

+ Y A"BATITMP(0)). (54)

n=0

Now we observe that |R(0)) = 0. Therefore the first line in this equation does not
contribute. Using the expansion (40) we obtain

[y
[\

(X2(1) =2 ) [(SJA|P.)? + N7(S|A|2) (2| A| P.) + A7 7H(S| A|P.)(S]A2)(2 |P(0))

n

Il
o
il

n

[y

+ XS AR IPO)] + Y [(SIAIR) + X (SIBl2)(2|P(0))].

n

Il
o

(55)

The scalar products are easy to compute using the explicit expressions for the eigenvectors
of T and matrices A, B given above. Putting everything together we finally arrive after
some more straightforward algebra at

b P~ (X@P (et B —a)(1-5)
t—00 2t (2—a—p3)3

(56)

Fluctuations are large for ‘small’ shocks where both p; and p, differ only slightly from
1/2 and they are small if only one of two densities is close to 1/2. If one density is exactly
1/2 (o« = 1 or f = 1) the shock moves ballistically. Along the line § = 1 — o where the
eigenvalue A vanishes the diffusion coefficient takes the simple form D = 4a(1 — «).
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3.3. Shock motion as a random walk with internal degree of freedom

The sublattice dynamics of the shock position can be interpreted in a different way by
assigning a binary internal degree of freedom f = + to the random walker. This degree
of freedom denotes the present direction of motion. The dynamics in one time step are as
follows. If the walker is in state + it can move to the right with probability § or reverse
direction (without moving) and go to state — with probability 1 — 3. On the other hand,
if the walker is in state — it can move to the left with probability « or reverse direction
(without moving) and go to state — with probability 1 — a. So after one time step the
following transitions may occur:

(kv _)
(k’+)_>{(k+1,+)

(k, +)
(=)= {Uc—l,—)

with probability 1 —

57
with probability (57)
W%th probab%l%ty 11—« (58)
with probability a.

Iterating yields the evolution after two steps:

((k_17_>

(k?, —|—) —

(ka _) -

[ (k+1,+)

with probability a(1 — /)

with probability (1 — a)(1 — )
with probability 5(1 — /)

with probability (32

with probability o?

with probability a(1 — «)

with probability (1 — a)(1 — 3)
with probability G(1 — «).

(60)

Notice that after two steps the internal state 4+ does not leave its original sublattice. For
example, if at time zero the walker is in a positive state on the even sublattice, then at all
even times it will be positive on the even sublattice and negative on the odd sublattice.
Therefore two time steps of this random walk with speed flip are equivalent to a single
time step in the random walk with sublattice update.

4. Open boundaries

The theory of boundary-induced phase transitions postulates that for stochastic
interacting particle systems the random motion of a shock causes a discontinuous non-
equilibrium phase transition from a low-density phase to a high-density phase [23]. With
the results of the section 3 we have proved the validity of this heuristic argument for the
sICA184 with deterministic bulk dynamics. Moreover, it turns out that we can explicitly
compute relaxation times. To this end we have to specify the dynamics of the second-class
particle at the open boundaries of the system.

4.1. Open boundaries and second-class particle

It is helpful to think of the injection and removal of particles as input and output from
particle reservoirs. Indeed, we can represent these reservoirs as sites 0,L + 1 on the
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integer lattice [16] where in the presence of a single second-class particle in the system
each reservoir site can be in two states, the reservoir state (denoted R for right or left
boundary respectively) or the second-class particle state (denoted F'). In terms of these
states the update rules of the boundary sites are:

left boundary k = 1 with reservoir states R, F' at k = 0:
RO — RA with probability «
RB — BA with probability o (61)
FO— RB with probability 1.

The configurations RO and RB remain unchanged with probability 1 — «.

Right boundary k = L with reservoir states R, F at k= L + 1:
AR — OR with probability
BR — OF with probability 3 (62)
AF — BR with probability 1.

The configurations AR and BR remain unchanged with probability 1 — .

Correspondingly we have to redefine the shock measures (22), (23) to include the
boundary state. We represent the reservoir state by the basis vectors

m=(s). m-(1) (63)

and also define measures for the bulk sites 1,..., L
|Hiow) = ) ® 0) © ) ®10) @ - - ® |er) @ |0) (64)
|bnign) = [7) @ [A) @ [1) @ |A) ® - @ [7) ® |4) (65)
where as above 7 = 1 — 3 and no second-class particles are present. With these definitions
we define as new shock measures for the sites 0,..., L + 1
|fi41) = |R) @ |thow) ® |F) (66)
|fkt1) = |R) @ [paks1) @ |R) (67)
|fiok) = |R) @ |piar) ® | R) (68)
|f0) = |F) @ [pmign) ® [R). (69)

One may think of the state F' as marking the microscopic shock position in a reservoir
site.

Applying the update rules we recover equations analogous to (27) and (28) for the
bulk sites with &k = 2,...,L/2 — 1. In addition we obtain for the boundaries

Tliprs) = ®|fin) +a(l — o)) + (1 = a)| 1) (70)
Tlpr) = a(l = B)iar-1) + (1= a)(1 = B)|iaw) + Blir+1) (71)
T|pn) = alfio) + (1 — a)(1 = B)[a1) + B(1 — a)|f2) (72)
Tlfio) = (1 = B)|fo) + B(1 = B)|in) + 5%| i) (73)
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Thus the evolution of the shock measures is closed under the action of sICA 184
and corresponds to a sublattice random walk as defined above, but with reflecting
boundary conditions where jumps outside the integer interval 0, ..., L+ 1 are suppressed.
Representing the shock position by a probability distribution Py(t) we obtain a master
similar to (31) and (32) for k =1,..., L/2, augmented by the boundary equations

Pra(t+1) = (1= a)Pru(t) + 6PL(t) (74)

4.2. Relaxation

First we study the stationary distribution by making an ansatz Pj, = %*/Z and
Py ., = A*y**™/Z. The constant A* accounts for the possibility of a sublattice structure
and Z ensures normalization of the stationary distribution. This ansatz satisfies the
master equation with y = 3/a and A* = 1. Normalization requires Z = (1—y2)/(1—y).
We point out a slight difference to the work [40] where the stationary distribution of
sICA184 is studied using a family of shock measures without second-class particles. For
that definition one has a geometric distribution of shock positions with the same parameter
y = [/, but with sublattice anisotropy A* =1 —«a — [ [40].

For 8 > « the shock position is typically close to the right boundary with a localization
length 1/1n (5/a) and exponentially decaying density profile away from the right boundary
to the bulk value p; = a/2 < 1/2. This corresponds to a low-density phase of the
particle system. Conversely 3 < « corresponds to the high-density phase with bulk
density p; = 1 — /2 > 1/2. At the phase transition line 5 = « the shock position
is uniformly distributed, corresponding to a linearly increasing average density profile.
Hence the stationary phase of sICA 184 with second-class particle is identical to that
of the original sICA184 without second-class particle [25] and to that of CA184 without
second-class particle [47,48].

In order to compute relaxation times to stationarity one has to solve the eigenvalue
problem for the full master equation (31)—(75). For the solution we first ignore the
boundary conditions and make the preliminary ansatz Py(p,t) = A'(p)Fy(p) with the
eigenfunction

Fo,_1(p) = A(p)y%fleip(%fl) (76)

For(p) = y?Fe??>. (77)

Here p is a pseudomomentum, A(p) is an amplitude to be fixed by the sublattice structure
of the bulk master equation and A(p) is the eigenvalue corresponding to p. Inserting this
ansatz into the bulk master equation (31) and (32) yields a quadratic equation for A(p)
with the solutions

A*(p) = 21 —a) [ﬁeip —ae P £ \/(ﬁeip +ae )’ +4(1—a—pF)]. (78)
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With this one obtains corresponding eigenvalues

AE(p)=a+ 22 29/ + (79)

where
r=1—a-40, y = (Be” + e ) /2. (80)

Notice the symmetry relation A*(p) = A*(iln(3/a) — p). Hence the most general
eigenfunction with eigenvalue A*(p) has the form

Gr(p) = Fr(p) + R(p) Fx(iln (8/a) — p) (81)

with the boundary conditions
BQF,Q + ﬁ(l — Oé)F,l — Oé(l — B)FO — OézFl = O (82)

?Frys+a(l—B)Fp0—B(1 —a)Fp — B*F, =0. (83)

which are obtained from (74) to (75) by equating these relations to the bulk relations (31)
and (32) for k = 0 and k = L + 1 respectively. The boundary conditions determine the
reflection amplitude R(p) and give rise to an eigenvalue equation for the pseudomomenta
p. Generically this is a transcendental equation for which one cannot write solutions in
closed form. However, it turns out that along the curve g = 1 — « the algebra simplifies
very considerably and closed expressions for the solutions can be obtained. This curve
runs across the phase diagram and therefore captures all the essential features of the two
phases and the phase transition line. Therefore in what follows we restrict ourselves to
this case. Notice that we exclude the trivial limiting cases & = 0 and 1 where the shock
moves deterministically backward on the odd sublattice or forward on the even sublattice
respectively until it hits the boundary where it remains fixed for all times.
For f =1 — « one has

Af(p) =P, AT(p) =~ (84)
1l -«

and

At (p) = ((1 —a)e? + oze_ip)2, A~ (p) =0. (85)
and the eigenfunctions have the simple form

1—a\* 2ipk —2ipk
Gar(p) = ( — e + R(p)e ™" (86)
!
Gop—1(p) = 1_ aGQk(p>- (87)

The left boundary condition (82) yields
1 —a)e® — (1 —2a) — e 2P
R(p) = (321) : : 3a—2ip°
(1 —a)3e? + a(l —a)(l — 2a) — ade 2P

With this result the right boundary condition (83) factorizes into the form

(%
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For non-vanishing eigenvalues A,, = A(p,) this has the solution p = 0 which corresponds
to the stationary distribution with eigenvalue A = 1 and the relaxation solutions with

1 « nm
n = —1 , =0,1,...,L/2.
P 21“(1—a)+L+2 n=0 / (90)
Therefore
nmw

A,, = D cos® 91
cos ( T 2) (91)

where D = 4a(1 — «) is the shock diffusion coefficient.
The relaxation spectrum ¢, with the inverse of the relaxation times 7, = 1/¢, is

defined by the expression AL = exp(—e,t). This yields the longest relaxation time
7" = 1/InD. At the phase transition point o = 1/2 the relaxation is diffusive. For
large system size L one has asymptotically

L2
2

Tpn =

(92)

m2n2

and in particular the longest relaxation time 7% = L? /72

5. Conclusions

In summary, we have studied the large-scale behaviour of a CA that corresponds to
the deterministic limit of the TASEP with sublattice update and we have investigated
the microscopic properties of shock solutions to the hydrodynamic equation (16) that
corresponds to these dynamics. An essential microscopic feature that produces shocks
on the macroscale seems to be a sufficiently strong bulk driving force. Purely boundary-
driven or weakly irreversible particle hopping models do not exhibit traffic jams, which
is also in agreement with experimental results, see for example [41]-[43] for some well-
established applications of such models to experiments on soft matter systems. On the
other hand, we conclude from our present study that noise in the dynamics does not seem
to be necessary to generate shocks. Indeed, the absence of noise does not even necessarily
alter the internal microscopic structure of a shock.

However, the time evolution inherits non-trivial randommness from the initial
distribution of particles (in an infinite system) or from random injection/removal of
particles at the boundaries of a finite system. The main results of our analysis are as
follows.

(1) The evolution of the coarse-grained density exhibits shocks on the macroscopic scale,
travelling with average velocity (15). For initial downward steps with p; > 1/2 > ps
a double step structure with an intermediate density 1/2 develops. This structure is
the analogue of a rarefaction wave. On the microscopic scale this constant profile is
realized by an alternating particle-vacancy configuration.

(2) We have defined a microscopic marker particle using the second-class particle
technique. Seen from the position of this particle, which we define as the microscopic
shock position, a product measure with alternating densities as in the stationary state
of a translation-invariant periodic system is also stationary inside the two branches of
the shock, similar to the family of shock measures without second-class particles that
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was introduced in [40]. The second-class particle performs a random walk with speed
flip. We have computed analytically the shock velocity and diffusion coefficient of the
shock. Our results are exact and valid for all densities p;, po of the two branches of
the shock. This is in contrast to the stochastic TASEP with sublattice update where
analogous results are valid only for a one-dimensional parameter manifold of shock
densities [44, 45].

(3) For a finite system with open boundaries we have found that the long time dynamics
are given by a microscopic shock (traffic jam) that performs a biased random walk
with reflecting boundaries. We have computed explicitly the relaxation times along
a specific, but generic curve in the phase diagram. Away from the phase transition
point the longest relaxation time is finite even in the thermodynamic limit and given
by the shock diffusion coefficient. The stationary density profile has a boundary
layer whose structure is solely determined by microscopic fluctuations of the shock
which is pinned to the boundary on the macroscopic scale. At the phase transition
point the shock performs an unbiased random walk and the longest relaxation time
diverges quadratically with system size. Therefore the system is dynamically critical
with dynamical exponent z = 2. On the macroscopic scale this corresponds to a step
function profile where the shock is located at an arbitrary position.

The microscopic sharpness of the shock, which is implicit in our construction,
is useful for applying hydrodynamic arguments to a finite lattice, as it allows for a
good approximate description of dynamics on the lattice scale in terms of macroscopic
arguments involving shocks [46]. The stationary phase diagram is similar to that of
CA184 [47,48], as predicted by the general theory of boundary-induced phase transitions.
It would be interesting to investigate the boundary layers in CA 184 in more detail in
order to gain a better understanding of the interplay of the fluctuating shock position
and boundary correlations which in general determine the microscopic structure of the
boundary layer.

We finish with a remark of a general nature on the microscopic dynamics of the
shock. Quasi-one-dimensional random motion with stochastic speed flips occurs in
various biological systems, in particular in cargo transport by molecular motors along
microtubules in cells. To explain the alternating direction of motion, some authors
postulate a coordination complex that prevents one group of motors from performing
during some period of time. Some external stimulus is assumed to determine the
activity of the coordination complex. A different mechanism that has been proposed
in recent years is a tug-of-war: two intrinsically oppositely moving motor species attach
to the cargo at the same time and try to pull the cargo in their intrinsic direction of
motion. Due to fluctuations, sometimes one group of motors ‘wins’ over the other.
Quantitative predictions from a tug-of-war model have been checked against experimental
data from lipid droplet transport in Drosophila embryos [49]. Good agreement with
experimental data suggests that indeed the collective tug-of-war mechanism is responsible
for the observed reversal of motion rather than the action of some external coordination
complex. From a statistical physics perspective this observation is interesting in so far
as it demonstrates that a tug-of-war is a generic collective mechanism for motion with
stochastic speed change. This system is only one example of a biological process with
stochastic speed change. Another example is the run-and-tumble dynamics of certain
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bacteria, see [50] for recent work on this problem. It is therefore interesting on general
grounds to understand which collective processes can lead to the motion of a single particle
with stochastic speed change. Our model provides such a mechanism, where the speed
changes are triggered by the arrival of clusters of first-class particles from the right or
vacancies from the left.
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