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We investigated the effect of both the calibration set size (number of samples) and the calibration sampling
strategy on the performance of vis–NIR models to predict clay content and exchangeable Ca (Ca++). We
evaluated the following calibration sampling algorithms: Kenard–Stone (KSS), conditioned Latin hypercube
(cLHS) and fuzzy c-means (FCMS), which are commonly used in spectroscopy and digital soil mapping. These
algorithmswere tested separately using afield-scale dataset and a regional scale dataset. For each datasetwe ran-
domly selected a validation subset and the remaining samples were used as candidates for calibration sampling.
The accuracy of vis–NIRmodels of clay content and Ca++were compared on the basis of the sampling algorithms
used for selecting the calibration samples.We also tested 38 different calibration set sizes varying from 10 to 380
samples. The vis–NIR models were calibrated by using the support vector regression machine (SVM) algorithm.
The training root mean square error (RMSE), the normalized RMSE and the prediction RMSE were used to eval-
uate the sensitivity of the models to both the sampling algorithm and the calibration set size. In addition, we in-
vestigated the sample representativeness of each algorithm and we suggest a novel and simple methodology to
identify an adequate calibration set size based only on the vis–NIR data (i.e. without prior knowledge of the re-
sponse variables).
As expected, our results show that the error of the soil vis–NIRmodels depends on the calibration set size.When
the number of calibration samples is relatively small the sampling algorithm may play an important role on the
accuracy of the vis–NIRmodels. On the other hand, if the calibration set size is large enough, the samplingmethod
is not a critical issue. Concerning the sample representativeness, we found for all the algorithms that the original
distribution of the vis–NIR data can be better replicated by increasing the calibration set size. The results indicate
that the calibration samples selected by the cLHS and by the FCMS algorithms better replicate the original vis–NIR
distribution of all the samples, in comparison to those samples selected by the KSS algorithm.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

During the last two decades a growing interest on the quantification
of soil attributes bymeans of soil sensing techniques has emerged.Most
of these techniques such as infrared spectroscopy have a great potential
for high resolution soil sampling and mapping because they are faster
and cost-effective compared to conventional methods (Bramley and
Janik, 2005; Kim et al., 2009). For example, for soil mapping purposes,
visible and near infrared spectroscopy (vis–NIR, 400–2500 nm) can be
used as a tool for increasing the number of analyses (increasing the
sampling density) and consequently the mapping accuracy without
l Ecosystems, Swiss Federal
ätstrasse 16, 8092 Zürich,

irez-Lopez).
considerable increase in costs (Wetterlind et al., 2010). In this respect,
for a given area in which vis–NIR data is available at high spatial
resolution, it is possible to calibrate vis–NIR models of soil attributes
by using the spectra of a small but representative number of soil sam-
ples. Such models can be used to predict attributes efficiently over a
large number of soil samples (collected within the same geographical
domain) using only their vis–NIR spectra. In this context, the strategy
for selecting an adequate calibration set in terms of representativeness
and size (number of samples) is of fundamental importance to ensure
models with good generalization ability, especially when such models
are calibrated from complex datasets such as soil spectral libraries
(Ramirez-Lopez et al., 2013a).

Despite the well-known potential of vis–NIR spectroscopy to obtain
soil information at high spatial resolution, research on both the
sampling strategy and the adequate calibration set size has not received
enough attention (Grinand et al., 2012; Kuang and Mouazen, 2012). In
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principle, the optimal calibration set size could vary depending on the
pedodiversity within the geographical domain under study. Hence,
strategies for identifying the optimal calibration set size without an
explicit prior knowledge of the response variable of interest are of
great importance for the practical application of soil spectroscopy at
the field scale.

In soil spectroscopy, a calibration set of n samples implies not only
n number of spectra but n reference measurements of a given response
variable (soil attribute). Despite that (inmost of the cases) a large nmay
lead to reliablemodels, usually in practical applications n is rather small
due to budget and/or time constraints related with the measurements
of the response variable. Small calibration sets are usually prone to
generate models with poor generalization ability. In this sense, Brown
et al. (2005) indicated that the calibration sampling strategy is crucial
when the number of samples that can be included in the calibration
set is restricted. Furthermore, Minasny and McBratney (2010) stressed
the importance to investigate the relation between the calibration
sampling strategy and the generalization ability of the models.

Regarding the sampling strategies for obtaining a calibration set, the
most common methods that have been applied in pedometrics are the
fuzzy c-means based sampling (de Gruijter et al., 2010) and the Latin
hypercube sampling (McKay et al., 1979; Minasny and McBratney,
2006). Another calibration sampling method that is widely employed
in chemometrics (Daszykowski et al., 2002) and often used in soil
spectroscopy is the Kennard-Stone sampling (Kennard and Stone,
1969). All these algorithms attempt to cover adequately the multivari-
ate space of a set of predictors. Nevertheless, several authors have
shown that the strategies employed for covering the multivariate
space can lead to different levels of prediction accuracy (e.g. Debaene
et al., 2014; Fu et al., 2011; Rodionova and Pomerantsev, 2008; Siano
and Goicoechea, 2007).

In this context the main objectives of this paper were: i. investigate
the effect of both the calibration set size and the sampling algorithm
on the predictive performance of soil vis–NIR models for predicting
clay content and exchangeable calcium (Ca++); ii. analyze the sample
representativeness on the basis of three different calibration sampling
algorithms; iii. propose a method to identify an adequate calibration
set size based only on the analysis of the vis–NIR data (i.e. without
prior knowledge of the response variables).

2. Theory

2.1. Kennard–Stone sampling (KSS)

The KSS (Kennard and Stone, 1969) has been widely used in
quantitative spectroscopy and has shown good performance in
terms of calibration sampling (e.g. Daszykowski et al., 2002; Wu et al.,
1996; Zhu et al., 2009). The KSS, initially called uniform mapping
algorithm, is a deterministic sequential approach that attempts to select
samples uniformly distributed in the predictor space. The KSS procedure
to select a training or calibration subset of n samples (Xtr ¼ xtr j

� �n
j¼1)

from a given set of N samples (X ¼ xif gNi¼1, note that n b N) consists of:

1. Find in X the sample xtr1, which is closest to the mean (μ), allocate it
in Xtr and remove it from X.

2. Find in X the sample xtr2,which is the most dissimilar to xtr1, and
allocate xtr2 in Xtr and remove it from X.

3. Find in X the sample xtr3, which is the most dissimilar to the ones
already allocated in Xtr. Allocate xtr3 in Xtr and then remove it from
X. Note that the dissimilarity between Xtr and each xi is given by
the minimum distance of any sample allocated in Xtr to each xi.

4. Repeat the step 3 n − 4 times in order to select the remaining
samples (xtr4, …, xtrn).

For distance computations in the KSS algorithm, the Euclidean
distance is commonly used. However, due to the fact that the
measurement of the similarity between samples in soil vis–NIR
datasets is a very complex task (Ramirez-Lopez et al., 2013b),
other strategies to measure the vis–NIR distance between samples
can be adopted for the application of the KSS algorithm.

2.2. Conditioned Latin hypercube sampling (cLHS)

In soil spectroscopy, the cLHS (Minasny and McBratney, 2006)
has been used for calibration sampling and uncertainty analysis
(e.g. McBratney et al., 2006; Viscarra Rossel et al., 2008). The cLHS
attempts to cover the multidimensional distribution corresponding to
a set of predictor variables by using a stratified random sampling. In a
one-dimensional space, the cumulative distribution of the variables of
X is divided into n (number of sampling points) strata and the idea is
to select one sample per stratum. However, in a multivariate space
this task becomes more complex. In cLHS, the calibration subset Xtr

with n samples taken from a set X with N samples (where n b N)
must form a Latin hypercube. In the case of continuous variables, the
objective function (O, Eq. (1)) of the cLHS integrates two objective
functions O1 and O2, so that

O ¼ O1 þ O2: ð1Þ

In this respect O1 is given by Eq. (2):

O1 ¼
Xn
i

Xm
j¼1

η qij≤Xtr jbq
iþ1
j

� �
−1

���
��� ð2Þ

wherem is the number of variables, η(qji ≤ xtrj b qj
i + 1) is the number of

samples in Xtr whose cumulative distribution values at the jth variable
fall in the stratum that comprises qji and qj

i + 1. On the other hand, O2

is based on the differences between C and A which are the correlation
matrices for X and for Xtr respectively. The O2 is calculated as follows
(Eq. (3)):

O2 ¼
Xm
i¼1

Xm
j¼1

Cij−Aij

���
���: ð3Þ

A simulated annealing scheme is carried out in order to find a subset
Xtr that returns an O as close as possible to zero where the cumulative
distributionofXtr is representative for the original cumulative distribution
of X. The reader is referred to Minasny and McBratney (2006) for
additional details on the cLHS algorithm.

2.3. Fuzzy c-means sampling (FCMS)

Cluster-based sampling is a popular method to select representa-
tive calibration sets in vis–NIR spectroscopy as well as in soil science
(de Gruijter et al., 2010; Naes, 1987). As its name implies, FCMS
works on the basis of the fuzzy c-means clustering algorithm
(Bezdek, 1981; Dunn, 1973) and a nearest neighbor search. The
algorithm creates sample partitions (clusters) of a given dataset.
For each sample in the dataset, its probability to belong to each clus-
ter is computed. The highest probability found determines the
(main) cluster membership of each sample. It is expected that sam-
ples belonging to the same cluster will share similar characteristics
while the dissimilarity between samples in different clusters will
be maximized. In this process, cluster centroids are calculated. The
optimal fuzzy c-partitions and centroids are found by using the
following objective function (Eq. (4)):

J U;V ;Cð Þ ¼
XN
i¼1

Xc
j¼1

um
ij d xi;v j

� �2 ð4Þ

where V ¼ v j

n oc

j¼1
, is a matrix of prototypes of cluster centroids,

d(xi,vj)2 is the squared distance between each sample and each
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prototype, m is a fuzzy exponent, c is the number of clusters and
uij is given by Eq. (5):

uij ¼
d xi; v j

� �−2= m−1ð Þ

Xc
q¼1

d xi;vq

� �−2= m−1ð Þ
:

ð5Þ

In practice, different results of the final cluster centermay be obtain-
ed due to different initializations of the cluster centers which may lead
to different local minima of the objective function. Concerning the
metrics used to compute the similarity between samples, the Euclidean
and the Mahalanobis distances are the most commonly used ones, how-
ever other metrics can also be used.

In fuzzy c-means clustering, the only two parameters that need to be
set are m (which controls the fuzziness of the cluster model) and c.
Values ofmmay vary between 1 (which corresponds to a hard cluster-
ing) and infinity (soft clustering) and a typical choice is m = 2 (Sun
et al., 2012). When fuzzy c-means clustering is used for calibration
sampling purposes it is necessary to carry out an additional step i.e. a
nearest neighbor search in order to select the nearest sample to each
cluster centroid. The set of nearest samples is then the final calibration
set. In this sense the number of clusters determines the number of
calibration samples to be selected.

3. Material and methods

For this study,weused afield scale dataset anda regional scale dataset
of legacy soil samples, which included their reflectance spectra. The
datasets used here were not specifically collected for this study. These
samples were collected and analyzed by other people for agronomic
purposes.

3.1. Description of the field scale dataset

3.1.1. Field sampling
The field scale dataset covers an area of 5 km2 and it is located in São

Paulo State (Brazil, 22°24′30″S and 48°29′58″W) at altitudes ranging
from 500 to 709 m. This area belongs to a single field which has been
historically cultivated with sugarcane. A set of basaltic flows alternated
with sandstones of the Serra Geral Formation underlies the area. The
predominant soils are: Arenosols, Ferralsols, Acrisols, Cambisols and
Nitisols (IUSS Working Group WRB, 2006).

The field sampling campaign was carried out in 1999, and it was
based on a dense regular grid of 100 × 100 m where soil samples were
collected at 0–0.20 m (459 samples) and 0.80–1.00 m (452 samples).
These are arbitrary depth intervals commonly used in this region of
Brazil by surveyors and farmers in intensive soil sampling campaigns
for soil fertility assessment in sugarcane farms.

3.1.2. Soil vis–NIR spectral scanning and pre-processing
Soil samples were oven-dried for 24 h at 45 °C, and sieved (2 mm

mesh) prior to spectral scanning. To obtain the reflectance vis–NIR
spectra of the samples, they were scanned using an Infrared Intelligent
Spectroradiometer (Geophysical and Environmental Research Corpora-
tion, Buffalo, Ney York), which was the sensor available at the time
(1999). The final spectrum of each sample was an average of 100 scans
of the same sample. The spectrawere obtained in the form of absorbance
(log 1/reflectance)with spectral resolution of 2 nm in the range from400
to 1000 nm and 4 nm in the range from 1004 to 2500 nm. The spectra of
each sample comprised 830 spectral variables. Since the region between
400 and 450 nm presented unusual high reflectance values, we decided
to exclude the variables within this spectral range from data. Therefore
the final spectra of the field scale dataset comprised 773 variables.

We tested several spectroscopic transformation and pre-processing
methods in order to enhance the spectra. Since such methods did not
improve the spectral models the raw absorbance spectra obtained
from the sensor system were used.

3.2. Description of the regional scale dataset

3.2.1. Area and samples
The samples of this dataset are spread over an area of approximately

464 km2 which is located in the central–eastern portion of the state of
São Paulo (Brazil, 22°51′51″S and 47°36′08″W). The field scale dataset
(Section 3.1) falls within the area of the regional dataset.

In this dataset, soil samples correspond to 318 soil profiles collected
in different soil surveys over the past 10 years in agricultural fields
where sugarcane is the principal crop. The depth intervals at which
these profiles were sampled are: 0–0.2 m (318 samples), 0.4–0.6 m
(317 samples), and 0.8–1.0 m (291 samples).

In terms of parent material the area is dominated by sandstone,
siltstone, and shale with inclusions of limestone, basalt, and colluvial
deposits. Elevations range from 489 to 709 m. The soils are classified
as Arenosols, Ferralsols, Acrisols, Alisols, Nitisols, Cambisols and Lixisols
(IUSSWorking GroupWRB, 2006). Additional details on the terrain var-
iability of this area are given in Behrens et al. (2014).

3.2.2. Soil vis–NIR spectral scanning and pre-processing
The sampleswere air-dried and sieved (2mm). The spectral scanning

was carried out in September 2008. The vis–NIR (400–2500 nm) reflec-
tance spectra of the samples was measured using a FieldSpec Pro sensor
(Analytical Spectral Devices Inc., Boulder, CO)which is characterized by a
fullwidth halfmaximumof 3 nm for the 350–1000 nmregion and 10nm
for the 1000–2500 nm region. The final spectrum of each sample was an
average of 100 scans. The reflectance spectra were resampled to a
spectral resolution of 4 nm obtaining a total of 526 spectral variables.

For this dataset we also tested several spectroscopic transformation
and pre-processing methods in order to enhance the spectra. As in the
field-scale dataset, such methods did not improve the spectral models,
therefore the raw absorbance spectra were used in this study.

3.3. Soil analyses

The soil attributes evaluated in this study were clay content and
exchangeable calcium (Ca++). For samples of both the field and the
regional datasets the ion exchange resin method (Raij et al., 1987) was
used for Ca++ analysis. The densimeter method (Camargo et al., 1987)
was used to measure the clay content.

3.4. Calibration: sampling, set size and SVM modeling

All the statistical analyses were carried out in R 2.15.3 (R Core Team,
2013).

In order to avoid multi-colinearity and high dimensionality related
problems inherent to the vis–NIR spectra, all the sampling procedures
were carried out on a principal component (PC) space of the vis–NIR
spectra. The number of PCs retained in the analysis was based on the
amount of spectral variance explained. The PCs that accounted for less
than 0.1% of the total spectral variance were ignored. Each retained PC
variable was standardized dividing it by its standard deviation.

KSS, FCMS and cLHS were used for selecting calibration samples. For
selecting the FCMS sets, a stand-alone function of this algorithm was
implemented in R 2.15.3. The R package ‘prospectr’ (Stevens and
Ramirez-Lopez, 2013) was used to select the KSS samples and ‘clhs’
(Roudier, 2012) to select the cLHS samples. Both packages include
functions dedicated to calibration sampling and offer other options for
selecting representative sets.

In the case of FCMSwe used a fuzzy exponent of 2. For KSS and FCMS
the Euclidean distance metric was used. As we standardized the PCs,
in this case the Euclidean distance is equivalent to the Mahalanobis
distance (De Maesschalck et al., 2000).
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As validation sets, we randomly selected a set of samples correspond-
ing to 138 profiles (275 samples, 30% of the total of samples) from the
field dataset and a set of samples corresponding to 83 profiles (249 sam-
ples, 27% of the total of samples) from the regional dataset. The remain-
ing samples were used as candidate samples for the calibration of the
vis–NIR models of soil attributes. To simplify the terminology, we will
call this set of samples the “training population”. For selecting these val-
idation sets, we sampled by profiles instead of individual samples in
order to avoid pseudo-replication of samples (Terhoeven-Urselmans
et al., 2010). Fig. 1 shows the spatial distribution of the candidate profiles
for calibration sampling as well as the validation profiles for both
datasets. For each calibration sampling approach (KSS, cLHS and FCMS)
we selected from the training population different calibration sets with
sizes varying from 10 to 380 samples in steps of 10 samples.

For each calibration set selected by each sampling method, the
support vector regression machine (SVM) algorithm (Drucker et al.,
1996) was used for calibrating models of clay content and Ca++. The
reason for using SVM instead of the classical partial least square (PLS)
regression was to ensure good prediction performance. Viscarra Rossel
and Behrens (2010) showed that SVM outperforms several machine
learning algorithms including PLS. Briefly, the SVM uses the kernel
trick (Aizerman et al., 1964) to perform a non-linear transformation of
the original predictor space into a high dimensional space (without
the need to compute it explicitly) with linear or nearly linear structure.
We used the linear function kernel (LFK) or dot product in order to keep
themodels as simple as possible. The LFK does not require any parame-
ter (or hyper-parameter for the SVM models) to be optimized. There-
fore, in this case the only parameter to be optimized in the SVM
algorithm was the penalty factor (C).

Training the SVMmodels consisted in tuning the C parameter. In this
respect, we tested six possible values (0.1, 0.25, 0.5, 1, 2 and 4) of C. A
total of 50 bootstrap resampling iterations were used for both tuning
C and assessing the accuracy of the SVM models. The optimal C param-
eter was chosen as the one that minimized the training root mean
square error (RMSE; Eq. (6)):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yi−ŷið Þ2
vuut ð6Þ

where yi is the observed value of the ith sample, ŷi is its correspondent
predicted value, and n is the number of samples. The normalized RMSE
(nRMSE) was also calculated for the calibrations (Eq. (7)).
Fig. 1. Spatial distribution of both the candidate profiles for calibration sampling (training populatio
nRMSE ¼ RMSE
ymax:−ymin:

ð7Þ

where ymax. and ymin. are the maximum and the minimum values of the
observed soil attribute in the calibration samples selected by each
sampling algorithm. The models obtained were applied on the valida-
tion sets and the RMSEs of these predictions were also computed.

As cLHS is a stochastic method, in order to obtain better estimates of
its performance, we repeated the calibration set sampling procedure 10
times for each calibration set size with its corresponding SVM calibra-
tion. The averages of the 10 repetitions are the final RMSEs and nRMSEs
reported here. The same procedure was carried out for the FCMS,
because the random initialization of the clustering algorithm may
produce different sampling results (as explained in Section 2.3).

3.5. Sampling representativeness

In order to further evaluate the performance of the sampling
algorithms we carried out an analysis of the representativeness of the
calibration sets in the PC space. As explained in Section 2.2, the cLHS
algorithm ensures that the selected sample sets properly represent the
original probability distributions of the explanatory variables observed
in the training population. In this respect, we also wanted to investigate
whether the KSS and FCMS (in addition to covering the predictor space)
can also guarantee a good representation of the original statistical
distribution of the vis–NIR data in the PC space.

For each sampling algorithm and for each calibration set size, the
sample mean (x) and the sample variance (s2) of the PC variables were
compared to the original mean (μ) and the original variance (σ2) of
the PCs of the training population. Note that σ2 is equivalent to 1 and
μ to 0 since the PC variables are standardized to zero mean and unit
variance. Both the absolute difference between variances (|s2 − σ2|)
and the absolute difference between means ( x−μj j) were computed
(Eqs. (8) and (9)):

s2−σ2
���

��� ¼ s2−1
���

��� ¼ 1
k
∑k

j¼1 s2j−1
���

��� ð8Þ

�x−μj j ¼ �x−0j j ¼ 1
k
∑k

j¼1 �xj−0
���

��� ð9Þ

where sj2 and xj are the sample variance and the sample mean of the jth
PC variable (i.e. xj), μj is the original mean of the jth PC and k is the total
number of PCs retained.
n) and the validation profiles in thefield scale dataset (left) and regional scale dataset (right).
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We also evaluated the mean squared Euclidean distance (msd) as
ameasure of dissimilarity between the estimates of the probability den-
sity functions of the training population and the estimates of the prob-
ability density function of a given calibration sample set in the PC
space (Eqs. (10) and (11)):

msd ¼ 1
k

Xk
j¼1

d2 Ps xj∈cs
� �

; Pp xj

� �� �
ð10Þ

where

d2ðPsðxj∈csÞ; PpðxjÞÞ ¼ ∫
b

a
ðPpðxjÞ−Psðxj∈csÞÞ2dxj: ð11Þ

Ps(xj ∈ cs) is the estimated probability density function of the jth PC
of a given set of samples cs (i.e. a calibration set), Pp(xj) is the probability
density function of the jth PC for the whole training population, a and b
represent the range of the jth PC, d2 represents the squared Euclidean
distance between the two single distributions being compared, k is the
total number of PCs retained and msd is the mean squared distance
between probability density functions. To estimate d2(Ps(xj ∈ cs),
Pp(xj)), the density values are estimated for some fixed points between
a and b. Brungard and Boettinger (2010) showed that the analysis of the
probability distributions of the predictor variables in calibration sets can
be useful for selecting adequate calibration set sizes in digital soil
mapping.

Overall, the evaluation of the representativeness in the predictor or
explanatory variable space at different sample set sizes through the
Eqs. (9)–(11), constitute a novel methodology which can be useful for
Fig. 2. Density plots of the soil
identifying an adequate calibration sample set size (as well as an
adequate sampling algorithm)without prior knowledge of the response
variables.
4. Results and discussion

4.1. Soil attributes and vis–NIR characteristics

Soil attributes in both datasets show a large variation (Fig. 2). In
terms of clay content and Ca++, the large variation in the field scale
dataset is mainly due to the high topographic variability. For instance,
the range in elevation of the area corresponding to thefield scale dataset
(500 to 709 m.a.s.l) is almost equivalent to the range in elevation of the
regional scale area (489 to 709 m.a.s.l). In the case of the regional scale
dataset, the influence of soil forming factors on the soil attributes should
be dominated by differences in both parent material and topography.

The vis–NIR reflectance spectra of the field dataset (Fig. 3a) showed
well defined absorption features near to 1455 and 1915 nm. These are
features relating to structural OH in clays as well as hygroscopic OH
(Ben-Dor et al., 2008; Demattê and Garcia, 1999; Petit et al., 1999).
The spectra of all samples showed the influence of iron oxides with
central absorption bands at 435, 550 and 850 nm,which is characteristic
of the presence of goethite and hematite (Demattê and Garcia, 1999;
Fernandes et al., 2004). In most of the samples we observed absorption
features in the 1415 nm, 2207 nmand 2160 nmwhich are related to the
kaolinite content (Demattê et al., 2004; Petit et al., 1999; Viscarra Rossel
and Behrens, 2010). Mean values of soil vis–NIR reflectance showed a
significant inverse correlation with clay content (r = −0.72; p b 0.05)
and with Ca++(r = −0.61; p b 0.05). This is probably related to the
attributes in both datasets.

image of Fig.�2


Fig. 3. Reflectance spectra of the field scale dataset (a) and regional scale dataset (b). The highlighted spectra correspond to the samples with the lowest mean reflectance, the highest
mean reflectance and the closest samples to the mean of the mean reflectance values.
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fact that soils with high clay content present high energy absorption,
while soils with high sand content present higher albedo due to higher
amount of quartz (White et al., 1997). Concerning the inverse correla-
tion observed for Ca++, it is possible that this is a consequence of a sec-
ondary correlation between Ca++ and clay content (r= 0.62; p b 0.05)
and not to a direct influence of the Ca++ on the albedo.

In general, the vis–NIR reflectance spectra of the soil samples in the
field scale showed similar shape and localization of the absorption
features but with considerable variability in their absorption intensities.
In this respect, we presume that there should be a specific group of clay
minerals that dominate the soils of the area, and that the main spectral
differences between samples are associated to the variability in the
proportions in which these minerals are mixed.

The vis–NIR spectra of the regional dataset (Fig. 3b) presented larger
variation in comparison to the field dataset (Fig. 3a). In the regional
dataset we also observed that most of the samples showed an absorp-
tion feature in the 1415 nm and 2207 nm related to the presence of
kaolinite (Petit et al., 1999). Furthermore,most of the samples presented
typical characteristics of energy absorption at 1455 nm and 1915 nm
assigned to hygroscopic water. Other features related to soil attributes
such as pedogenic oxides showed contrasting influence on the soil
spectra. A significant inverse correlation (r = 0.64; p b 0.05) between
mean reflectance and clay content was observed, however in this case
the correlations between Ca++ and mean reflectance (r = −0.05;
p N 0.05) and Ca++ and clay content (r = 0.09; p N 0.05) were not
significant.

In the PC analysis, 7 PCs were retained for the field dataset and 8 for
the regional dataset. In both cases, they accounted for 99.9% of the total
vis–NIR variation.

4.2. Sampling algorithms and the effect of the calibration set size

As expected, the results showed that the accuracy of the spectral
models can bemaximized (up to certain point) by increasing the number
of samples used to calibrate the models. This has been already reported
by several authors (e.g. Brown et al., 2005; Debaene et al., 2014;
Grinand et al., 2012; Kuang and Mouazen, 2012; Shepherd and Walsh,
2002). For all the sampling algorithms in both datasets and for calibra-
tion set sizes b 200 samples, we observed a general trend in which the
training RMSE, the nRMSE and the prediction RMSE decreased consider-
ably as the calibration set size increased (Fig. 4). In most of the cases at
calibration set sizes≥ 200 samples, the errors remained relatively stable.
However, in the case of the KSS in the field dataset, the training RMSEs of
clay content and Ca++ showed a slightly decreasing tendency.

The highest training RMSEs for the field dataset were returned
by the KSS algorithm and the differences between KSS and both
cLHS and FCMS were markedly high (Fig. 4a,e). In the case of clay
content, for calibration set sizes ≤ 90 samples the cLHS returned
better results than the FCMS (Fig. 4a). For example, the models of
clay content calibrated with 50 samples produced training RMSEs
of 10.8% with the KSS, 7.0% with the cLHS and 7.6% with the FCMS.
Similarly for the Ca++ models calibrated with 50 samples, the
KSS produced the highest training RMSEs of 19.3 cmolc kg−1,
while for the cLHS the training RMSE was 10.2 cmolc kg−1 and
12.0 cmolc kg−1 for the FCMS. For calibration set sizes N 90 samples
the FCMS produced lower training RMSEs compared to the cLHS.

The highest training RMSEs in the regional dataset were also
produced by the samples selected by the KSS algorithm (Fig. 4h,k). In
the case of clay content the differences between the KSS and both the
cLHS and the FCMS in terms of the RMSEtr were markedly larger for
calibration set sizes b 200 samples. In this case, the cLHS presented
lower performance than the FCMS. However, for the models of
Ca++ the cLHS presented the lowest training RMSEs for calibration
set sizes b 100 samples.

Concerning the nRMSEs in the field scale dataset, the FCMS and the
cLHS returned very similar results, while the models corresponding to
the KSS produced higher nRMSEs (Fig. 4b,f), especially for calibration
set sizes b 200 samples in the case of clay content. For the models of
Ca++, at calibration set size ≤ 30 the nRMSEs produced by the KSS
samples were dramatically higher than those produced by the cLHS
and the FCMS samples. For example, for the Ca++ models calibrated
with 10 samples, the KSS returned a nRMSE of 2.09 while the cLHS
produced an nRMSE of 0.73 and the FCMS a value of 0.78. For calibration
set sizes N 100 samples, the nRMSE of the models of Ca++ was very
similar for the three sampling algorithms.

In the regional dataset for clay content the three sampling algorithms
produced very similar nRMSEs for calibration set sizes N 230 (Fig. 4i).
Nevertheless, for calibration set sizes ≤ 20 the KSS samples produced
much higher nRMSEs in comparison to the cLHS and the FCMS samples.
Moreover, in the case of the models of Ca++, the three sampling
algorithms produced comparable results in terms of nRMSE (Fig. 4l).

The reason why the differences between the sampling algorithms
were considerably wider for the RMSEstr than for the nRMSEs is due
to the range of the soil attribute values of the samples selected by the
algorithms. For example, the ranges of the clay content values selected,
cLHS and FCMS were 6–81%, selected with the KSS, 7–75% with the
cLHS and 7–74% with the FCMS (calibration set size = 150 samples).
Similarly for the rest of the attributes and the rest of the calibration set
sizes we observed that the KSS tends to select a wider range of values
in comparison to the FCMS and the cLHS. This is due to the fact that
the KSS algorithm selects extreme samples while the FCMS and the
cLHS algorithms do not. Extreme samples can be advantageous for
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Fig. 4. Training RMSE, nRMSE and prediction RMSE of clay content and exchangeable Ca
++

against calibration set size in both datasets.
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calibration in some cases, especially when the relationship between the
predictors and the soil attribute is known, which is not often the case
(Minasny and McBratney, 2010). Moreover, in the case of soil vis–NIR
spectra collected in the field where spectral measurement errors (due
to uncontrolled conditions) are common, the use of the KSS is not rec-
ommended. After all, the spectra with large error measurements may
be interpreted by the KSS algorithm as highly dissimilar samples with
respect to the population measured and therefore some of them could
be selected.

Based on the prediction RMSEs, our results are not conclusive. We
found mixed results for the three sampling algorithms. At calibration
set sizes ≤ 40, the cLHS returned the lowest prediction RMSE for clay
content in the field dataset. However, at calibration set sizes N 40 the
KSS presented slightly lower results than both cLHS and FCMS. For
Ca++ the three sampling algorithms produced comparable results.
Nevertheless, at calibration set sizes ≤ 20 the KSS produced slightly
lower results in comparison to the other algorithms. For the predictions
of clay content in the regional dataset, the KSS was outperformed by
both the cLHS and the FCMS. For calibration set sizes ≤ 90 the cLHS
produced slightly lower prediction RMSEs than the FCMS, and for
calibration set sizes N 90 these algorithms produced comparable results.
For the Ca++ predictions in the regional dataset we can divide the
calibration set sizes in the three following regions: 10–30, 40–120,
130–380 samples. In the first calibration set size the KSS and the FCMS
returned very similar results while the cLHS produced the lowest
prediction RMSEs; in the second calibration set size region the KSS
produced lower results than the other algorithms; and in the third
calibration set size region the three algorithms produced comparable
results. Furthermore, by comparing the estimated uncertainties (training
RMSEs) and the generalization errors (prediction RMSEs) (Fig. 4), we
also found that the KSS selects samples that lead to overestimated values
of the uncertainty.

Despite the similar trends in both datasets, the errors corresponding
to regional scale dataset are larger to the ones observed in the field scale
dataset. This is probably due to a larger complexity in the regional scale
dataset in comparison to the complexity in the field scale dataset. For
example the spectra of the regional scale dataset (Fig. 3b) suggest that
the mineralogical variability of the samples of this dataset is larger
than the mineralogical variability corresponding to the samples in the
field scale dataset (Fig. 3a).

Regarding the set size, the differences between the errors produced
by samples selected by the different algorithms are larger for small
calibration set sizes. Apparently large calibration set sizes ensure a
good coverage of the PC space and for this reason the differences
between sampling strategy in terms of the modeling error are lower.
4.3. Sample representativeness in the PC space of the vis–NIR data

For the three algorithms the absolute difference between the sample
variance and the training population variance (|s2 − σ2|) as well as the
difference between the sample mean and the training population mean
( x−μj j) decreased as the calibration set size increased. In other words,
the original distribution of the PCs can be better replicated by increasing
the calibration set size. The s2 and thexof the calibration sets selected by
the cLHS showed the highest similarity to their training population
equivalents (σ2 and μ) (Fig. 5). The density distribution of the PCs in
the training population was better replicated by the samples selected
with the cLHS algorithm which showed the lowest msd values (Fig. 5).
In contrast, the density distributions of the PCs of the samples selected
with the KSS algorithm were considerably dissimilar to the density
distributions of the PCs of the training population, especially in the
case of the regional scale dataset. Fig. 5 shows that in the case of the
FCMS algorithm, the density distributions of the PCs of the training pop-
ulationwerewell replicated onlywhen the number of sampleswas larg-
er than 90.
To further illustrate the performance of the algorithms Fig. 6 shows
an example of the distribution of the first PC in the training population
and its correspondent distribution in a small calibration set (n=30) as
well in a large calibration set (n = 380) selected with each sampling
algorithm. The probability distribution of the first PC in the training
population is poorly reproduced by the samples selected with the KSS
and the FCMS algorithms when the number of samples is too small
(Fig. 6a,c). In contrast when the number of samples is large enough all
the algorithms replicate reasonablywell the original probability distribu-
tion (Fig. 6b,c).

In general, these results demonstrate the superiority of the cLHS in
terms of the replication of the original density distribution of the PC
variables in the training population. These results were expected since
the cLHS is a stratified sampling algorithm based on the cumulative
probability distribution of the variables, while the KSS and the FCMS
are distance-based algorithms.

We consider that a sampling strategy that is based only on the
maximization of the spectral dissimilarity between calibration
samples does not necessarily guarantee a model with good prediction
performance. A good sampling strategy must ensure both a good cover-
age of the predictor space and a good replication of the original distribu-
tion of the predictor variables. When the number of samples is large
enough, these requirements are fulfilled by the FCMS algorithm.

In general, for calibration set sizes b 130 samples the cLHS
outperformed the FCMS in terms of the replication of the distribution of
the training population (i.e. mean, variance and probability distribution;
Fig. 5). However, at calibration set sizes ≥ 130 samples the cLHS and
FCMS produced analogous results. Comparing the KSS to both the cLHS
and the FCMS in terms of the differences in the probability distributions,
the KSS was largely outperformed by the other algorithms.

4.4. Sample representativeness and predictive performance of the
vis–NIR models

Regardless of the calibration sampling algorithm, the calibration set
size has a similar effect on both the accuracy of the vis–NIR models
(Fig. 5) and the representativeness of the calibration sets (Fig. 6). The
larger the calibration set, the higher are the representativeness and
the accuracy up to certain limits. One could assume a similar sample
set size limit at which both the representativeness of a given calibration
dataset and the accuracy become stable. For example, in the regional
scale dataset the msd values returned by both the cLHS and FCMS
algorithms and the errors of the models calibrated for Ca++ become
relatively stable above 90 samples (Fig. 4f,k,l,m). A similar tendency
can be observed for the trainingRMSE andnRMSE of the vis–NIRmodels
of clay content (Fig. 4h,i). However, for the prediction RMSE this was
not clear (Fig. 4j). Although the error is largely reducedwith 90 samples,
a slight reduction tendency continues up to 200 samples.

Concerning the sampling algorithms, the tendencies observed for the
training RMSE and nRMSE are similar to the tendencies observed in the
comparisons of the distributions (Figs. 5 and 6). The highest RMSEs and
nRMSEs returned by the KSS are consistent with the poorest representa-
tive results returned by this algorithm. However, this is not the case for
the prediction RMSE where our results were not conclusive. Overall, we
consider that the comparison between the sample distribution and the
original distribution of a given training population at different calibration
set sizes can be very useful for identifying an adequate calibration set size
when there is no prior knowledge about the response variable.

5. Conclusions

We investigated the effect of the calibration set size and three differ-
ent calibration sampling strategies (Kennard–Stone, KSS; fuzzy c-means,
FCMS; and conditioned Latin hypercube, cLHS) on the error of vis–NIR
models calibrated for clay content and Ca++. We also analyzed the
sample representativeness on the basis of the sampling strategies, and



Fig. 5. Calibration set size against the absolute difference between the sample variance (s2) and the training population variance (σ 2); absolute difference between the sample mean (x)
and the training populationmean (μ); andmean squared Euclidean distance (msd) between theprobability density functions of the calibration sets and the probability density functions of
the training population.
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we proposed a method for identifying the optimal calibration set size
based on the analysis of the vis–NIR data (i.e. without prior knowledge
of the soil attributes to be predicted).

The highest training errors were returned by the KSS. However, this
algorithm tends to select samples with a wider range of soil attribute
values in comparison to the cLHS and the FCMS algorithms. This is due
to the fact the KSS selects extreme samples. In this sense, we believe
that the inclusion of extreme samples (in the spectral space) in the
calibration set may be beneficial when the dataset does not contain
outlier samples due to spectral measurement errors. However, for
datasets containing outliers, the KSS should be avoided or at least a
careful outlier removal procedure should be performed prior selecting
the samples with the KSS algorithm.

In terms of the prediction errors, the three sampling algorithms
returned comparable results. Further research is necessary in this area
before a firm conclusion can be reached in this respect.

As expected, we found that the error of the soil vis–NIR models
depends on the calibration set size. Particularly for small calibration
set sizes, the errors are higher probably due to insufficient coverage of
the predictor space and/or a poor representation of the population in
which the models are supposed to be applied. Although our results are
not entirely conclusive in this respect, we consider that when the num-
ber of calibration samples is relatively small the sampling algorithmmay
play an important role on the accuracy of the vis–NIR models. On the
other hand, if the calibration set size is ‘large enough’, the sampling
method is not a critical issue. In this respect, it is particularly relevant
to define how large is large enough in terms of the number of samples
required to calibrate reliable soil vis–NIR models.

Concerning the sample representativeness in the principal compo-
nent (PC) space, for all the algorithms we found (as expected) that the
original distribution of the vis–NIR data in the PC space can be better
replicated by increasing the calibration set size. Our results showed
that the samples selected by the cLHS and the FCMS algorithms better
replicate the original distribution of the PCs in comparison to those
selected by the KSS algorithm. For small calibration set sizes the cLHS
better replicated the original distribution of the PCs in comparison to
the FCMS. However, at calibration set sizes ≥ 130 the cLHS and the
FCMS produced comparable results.

In our study, when the number of samples was large enough, the
FCMS algorithm guaranteed both a good coverage of the PC space and
a good replication of the original distribution of the predictor variables.

We consider that the comparison between the distribution of the
calibration set and the original distribution of the training population
offers a solution for solving the question of how large is large enough.
This method provides a reasonable strategy for identifying an optimal
calibration set size without any explicit knowledge of the soil attributes
to be predicted. Furthermore, at least for the estimation of the uncertain-
ty of the vis–NIR models, it can be beneficial to select a calibration
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Fig. 6.Distribution of the first PC of the vis–NIR data in the training population and its correspondent distribution in a small calibration set (n=30) as well in a large calibration set (n=380)
selected with each sampling algorithm.
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sample set whose distribution is close or equal to the distribution of a
given population.
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