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Abstract. Time Series Classification (TSC) and Time Series Extrinsic Re-
gression (TSER) are critical tasks across diverse fields. While Fully Con-
volutional Networks (FCNs) effectively capture temporal dependencies, Kol-
mogorov–Arnold Networks (KANs) offer greater flexibility and interpretability.
However, integrating KANs with temporal encoders and their application to re-
gression tasks remain largely unexplored. This paper introduces FCKAN and
Hybrid FCN-KAN, two novel architectures that combine FCNs and KANs for
TSC and TSER. The first is an end-to-end model, while the second is a hybrid
approach that leverages a pre-trained FCN as a feature extractor followed by
a KAN. We conduct experiments on 147 benchmark datasets. For TSC, both
architectures outperform non-temporal baselines and achieve competitive per-
formance with FCNs. In TSER, although all models are statistically equivalent,
temporal models consistently outperform non-temporal baselines.

1. Introduction

Time Series Classification (TSC) and Time Series Extrinsic Regression (TSER)
are essential tasks in various domains, including healthcare, finance, and engineer-
ing [Ismail Fawaz et al. 2019, Tan et al. 2021a]. Recent advances in deep learning strate-
gies, particularly convolutional architectures such as Fully Convolutional Networks
(FCNs), have shown strong performance by extracting temporal features directly from raw
input. Kolmogorov–Arnold Networks (KANs) is a newly proposed model class that re-
places scalar weights with learnable spline functions, offering improved flexibility and in-
terpretability over traditional Multilayer Perceptron (MLP). While promising results have
been demonstrated on classification benchmarks, KANs remain relatively unexplored in
conjunction with robust temporal encoders for TSC and TSER tasks, which is particularly
interesting, given that KANs do not possess intrinsic spatial or temporal awareness.

This paper proposes FCKAN1, a novel architecture that integrates FCNs and
KANs in a unified end-to-end framework for both TSC and TSER. We also introduce
Hybrid FCN-KAN, a hybrid two-stage variant in which a pre-trained FCN serves as a
temporal feature extractor for a downstream KAN. Our experiments on diverse bench-
mark datasets aim to evaluate the robustness and overall effectiveness of combining con-
volutional encoders with spline-based function approximators, thereby bridging the gap
between high-capacity feature extraction and interpretable modeling.

1https://github.com/gabrielcmerlin/FCKAN



Our extensive experiments on TSC datasets revealed that the Hybrid FCN-KAN
significantly outperformed non-temporal baselines (MLP and KAN) and achieved com-
petitive performance against standalone FCNs. While the end-to-end FCKAN model
also showed strong, statistically equivalent results, the hybrid approach often presented
marginal gains, suggesting benefits from its independent feature extraction process. Our
comprehensive evaluation of TSER datasets reinforces these findings regarding the su-
periority of temporal models. In TSER, while all models proved statistically equivalent,
the FCN generally achieved the best average rank, and a clear advantage was consistently
observed for all models designed with temporal recognition capabilities (FCN, Hybrid
FCN-KAN, and FCKAN) compared to non-temporal baselines (MLP and KAN). It con-
sistently highlights that effectively capturing temporal characteristics is crucial for supe-
rior performance in TSC and TSER tasks.

2. Related Work
Deep learning models have been instrumental in advancing time series analysis. For
TSC, FCNs [Wang et al. 2016] and ResNets [Ismail Fawaz et al. 2019] have demon-
strated strong performance by learning hierarchical representations from raw data. In-
ceptionTime [Ismail Fawaz et al. 2020] further improved results through multi-scale con-
volutional blocks, while LITETime [Ismail-Fawaz et al. 2022] focused on improving ef-
ficiency with minimal performance degradation. TSER models typically adapt classifica-
tion architectures by replacing the output layer with regression heads [Tan et al. 2021a].
However, regression tasks remain more challenging and less studied than classification.

KANs [Liu et al. 2024] is a recent architecture inspired by the Kol-
mogorov–Arnold representation theorem. Unlike conventional MLPs, KANs employ
learnable univariate spline functions, offering more flexible and interpretable modeling. A
recent study [Dong et al. 2024] showed that KANs can match MLP performance on TSC
tasks, but their integration with temporal feature extractors such as CNNs has not been ex-
plored. Likewise, their potential for TSER tasks remains unknown. These gaps motivate
our work, which investigates how KANs perform when combined with a convolution-
based encoder in classification and regression experimental settings.

3. Background
The rapid advancement of sensor technologies has led to the generation of vast amounts of
time series data across various important fields, including healthcare, finance, energy, and
environmental monitoring [El Maachi et al. 2020, Ang and Seng 2016]. An effective and
efficient analysis of these sequential data is crucial for accurate prediction and informed
decision-making. This section provides a clear and concise definition of time series and
presents key machine learning tasks related to this type of data.

Definition 1 A time series is formally defined as an ordered sequence of n observations
representing measurements taken over successive points in time. This sequence can be
expressed as: S = (s1, s2, ..., sn), where each observation st ∈ Rd for all t ∈ [1, n].
When d = 1, the series is referred to as univariate, indicating a single measurement at
each time point. Conversely, if d > 1, the series is multivariate, signifying multiple con-
current and possibly correlated measurements at each time point. It is typically assumed
that consecutive observations in a time series are equally spaced in time, reflecting data
collection often systematically performed at a constant frequency.



Definition 2 TSC is the task of assigning a given time series to one of several pre-
defined discrete categories or classes [Bagnall et al. 2016, Ismail Fawaz et al. 2019].
Given a dataset of m time series X = {S1, S2, ..., Sm}, where each Si adheres to the
structure defined above, each series Si is associated with a corresponding class label
yi ∈ {c1, c2, ..., ck}. Here, {c1, c2, ..., ck} denotes the set of k possible classes. The pri-
mary objective of a TSC algorithm is to learn a mapping function f : S → Y that can
accurately predict the class label y for any previously unseen time series S.

Definition 3 TSER aims to predict a continuous, real-valued target variable from an en-
tire time series [Tan et al. 2021b]. This type of problem arises when the desired output is a
measurable physical or abstract quantity, typically derived from complex patterns rather
than a discrete category. It is crucial to distinguish TSER from time series forecasting:
TSER predicts a single, continuous value for an entire time series, whereas time series
forecasting predicts future values within a given time series [Lim and Zohren 2021]. For-
mally, for a dataset of m time series X = {S1, S2, ..., Sm}, each Si is associated with a
continuous target value ri ∈ R. A TSER algorithm aims to learn a function g : S → R
that accurately predicts the real-valued target r for any input time series S.

4. Experimental Methodology
This section is divided into four parts to ensure a clear and pedagogically structured pre-
sentation: Datasets, Data Preprocessing, Machine Learning Models, and Experimental
Setup. This separation enables a clearer exposition, facilitates reproducibility, and guides
the reader through a coherent narrative from raw data to final evaluation.

4.1. Datasets
For TSC tasks, model evaluation was conducted using the UCR TSC Archive
[Dau et al. 2018]. This comprehensive repository comprises 128 univariate datasets, each
split into default training and testing sets. The diversity of these datasets, spanning do-
mains such as healthcare and environmental monitoring, renders them highly suitable for
robust model assessment. Furthermore, the archive presents notable challenges, including
missing values, variable sample lengths, and datasets of limited size.

We evaluated TSER problems using the Monash, UEA & UCR TSER Repository
[Tan et al. 2021a]. This comprehensive collection comprises 19 univariate and multivari-
ate datasets from diverse domains, such as sentiment analysis, climate science, and energy
monitoring. These datasets present similar complexities to those in the widely used TSC
archive, including missing data and heterogeneous sample lengths.

4.2. Data Preprocessing
The dataset presents several challenges common to real-world data, including missing
values and variable-length time series. Missing values can introduce bias or reduce sta-
tistical power, so we impute them with zero. Although a simple strategy, this approach is
effective when absence implies null or negligible information. It assumes zero does not
significantly distort the data distribution for the target task.

Additionally, many samples have variable lengths, complicating model input re-
quirements. To standardize, we apply zero-padding by appending zeros to shorter se-
quences until all reach the same length. It ensures uniform input dimensions compatible
with downstream models and prevents errors due to inconsistent data shapes.



4.3. Machine Learning Models

We compare several competitive models in the TSC task. MLP and FCN are well-
established baselines in the literature, while KAN is a recently proposed model that we
adopt as a novel baseline for fair comparison. Additionally, we introduce two new strate-
gies: Hybrid FCN-KAN and FCKAN, which are our proposed novel architectures. For
the TSER task, all architectures remain the same, except for the final fully connected
layer, which uses n = number of classes neurons in TSC and a single neuron in TSER.

4.3.1. Multilayer Perceptron (MLP)

The MLP is a classical deep learning baseline for time series tasks. It consists of fully
connected layers that learn non-linear transformations of the input data through com-
positions of affine operations and element-wise activation functions. While MLPs lack
explicit mechanisms for capturing sequential or local temporal structures, they can still
approximate complex input-output mappings given sufficiently expressive architectures.

In time series applications, the input sequence is flattened into a one-dimensional
vector, discarding temporal ordering and making the model permutation-invariant. As
such, MLPs cannot exploit temporal inductive biases, unlike convolutional or recurrent
architectures. Nevertheless, their simplicity and generality make them a valuable refer-
ence point for evaluating models incorporating temporal structure.

The MLP implemented in this study follows the architecture used in prior bench-
marks [Wang et al. 2016]. As illustrated in Figure 1, it comprises three fully connected
layers with 500 neurons each and ReLU activations. Dropout is applied after each layer
with rates of 0.1, 0.2, and 0.2, respectively, followed by a final dropout layer with a rate
of 0.3 before the output. The final layer uses a softmax activation for classification or a
linear unit for regression. This deep and regularized design ensures that the MLP remains
a robust baseline for non-sequential modeling in TSC and TSER tasks.

Figure 1. Architecture of the MLP model. Adapted from [Wang et al. 2016].

4.3.2. Fully Convolutional Networks (FCN)

FCNs are a class of neural architectures originally developed for image processing tasks,
where spatial locality and translational invariance are critical. These models consist ex-
clusively of convolutional layers and are capable of processing inputs of arbitrary size
by producing dense, structured outputs. In the time series domain, the core architectural
principles of FCNs have been successfully adapted to model temporal dependencies by
treating time as the analog of spatial position [Wang et al. 2016]. The key insight lies in
the interpretation of temporal signals as one-dimensional spatial data. In this formulation,



each point in time is treated as a spatial position, and the convolutional filters—originally
designed to detect local spatial features—are carefully repurposed to extract local tempo-
ral patterns. This transfer of spatial inductive bias into the temporal domain enables FCNs
to effectively capture local trends, motifs, and important dependencies in time series data,
much like how they capture edges or textures in images.

Moreover, the hierarchical nature of FCNs allows for multi-scale temporal fea-
ture extraction: shallow layers capture short-term dependencies, while deeper layers inte-
grate longer-term patterns. This makes FCNs particularly well-suited for TSC and TSER
tasks, where both local and global temporal structures are informative. Additionally, due
to their convolutional nature, FCNs are inherently more efficient than recurrent models,
as they enable parallel processing and exhibit fewer constraints on temporal dependen-
cies. Overall, the adaptation of FCNs to the time series setting leverages their spatial
design principles to effectively model temporal structures, offering both interpretability
and computational advantages in high-dimensional sequential data contexts.

4.3.3. Kolmogorov–Arnold Networks (KAN)

KANs are inspired by the fundamental Kolmogorov-Arnold representation theorem, a
foundational result in function approximation. This theorem states that any continuous
multivariate function can be expressed as a finite composition of univariate continuous
functions and an addition operation [Liu et al. 2024]. Specifically, for a continuous func-
tion f : [0, 1]n → R, it can be decomposed into Equation (1):

f(x1, x2, ..., xn) =
2n∑
q=0

ϕq

(
n∑

p=1

ψp,q(xp)

)
(1)

where ϕq and ψp,q are continuous univariate functions. This decomposition is highly
significant because it clearly demonstrates that even very high-dimensional functions can
be precisely represented using only simple operations on single variables and summations,
thereby significantly simplifying their approximation.

In the context of KANs, this robust theoretical foundation is leveraged to design
neural networks with architectures that explicitly mirror this decomposition. KANs aim to
achieve efficient and interpretable representations while learning from high-dimensional
data by structuring networks as nested univariate transformations combined with addition
operations. This approach is advantageous for problems where the inherent dimensional-
ity of the input space poses difficult challenges for conventional neural network designs.

4.3.4. Hybrid FCN-KAN Approach

KANs inherently lack temporal or spatial inductive biases, as they operate in a
permutation-invariant manner and process inputs without considering sequential or spatial
order. This limitation hinders their ability to model the temporal dependencies essential
in time series data directly. To address this, the hybrid FCN-KAN approach employs a
pre-trained FCN as a fixed feature extractor to provide temporally-aware representations



to the KAN. Specifically, the best-performing FCN model for each dataset is selected
by assessing the loss in the training phase, its final fully connected classification layer is
removed, and the remaining convolutional layers are frozen. Raw time series inputs are
passed through this frozen FCN to produce latent features encoding temporal structure.
The KAN is subsequently trained from scratch on these extracted features, allowing it to
focus on modeling complex nonlinear relationships without the burden of learning tem-
poral patterns from raw data. This strategy effectively separates temporal feature extrac-
tion from functional approximation, enabling a modular evaluation of KAN’s expressive
power when the temporal context is externally supplied.

4.3.5. FCKAN: Joint Training of FCN and KAN

The FCKAN approach integrates the FCN and KAN into a unified architecture trained
end-to-end from scratch. Rather than using a pre-trained FCN or freezing any layers,
the FCN’s final fully connected layer is removed to enable a direct connection with the
KAN, as shown in Figure 2. Both networks’ parameters are jointly optimized, allowing
them to co-adapt during training. The FCN dynamically learns to extract temporal fea-
tures. Simultaneously, the KAN models nonlinear relationships on the evolving latent
representations. The absence of frozen layers permits full backpropagation through the
entire network, potentially resulting in a more expressive and flexible model that cap-
tures temporal dynamics and functional complexity synergistically. This fully integrated,
joint learning strategy contrasts with the hybrid FCN-KAN, which treats temporal feature
extraction and functional approximation as sequential, decoupled stages.

FCKAN

FCN

... ...

Figure 2. Comparison between FCN and FCKAN architectures: FCKAN replaces
the MLP decision layer found in FCN with a KAN module.



4.4. Experimental Setup
We implemented all experiments for TSC and TSER tasks in Py-
Torch [Paszke et al. 2019]. The MLP was trained for 100 epochs using the Adam
optimizer with a learning rate of 1 × 10−3 and the FCN for 2000 epochs under the same
optimization settings. The KAN model was implemented using the CPU-based PyKAN
library, available at GitHub 2, with the following configuration: L-BFGS optimizer, 100
optimization steps, two hidden layers with 40 units each ([40, 40]), grid size of 5,
and polynomial order (korder) of 3. These hyperparameters were selected based on
preliminary experiments and provided the best performance during early research.

For both the Hybrid FCN-KAN and FCKAN architectures, the same hyperpa-
rameters as their base counterparts were maintained, except for the number of training
epochs. The Hybrid FCN-KAN was trained for 100 epochs for efficiency, while the
FCKAN model was trained for up to 2000 epochs with early stopping based on train-
ing loss since the benchmark datasets do not have validation split. Since only train-test
splits were available (i.e., no separate validation set), early stopping was implemented
by carefully monitoring the training loss. Training was automatically stopped if the loss
did not improve by at least 10% over the previous best value within the last 50 epochs.
This strategy primarily aimed to mitigate the increased computational cost and slower
convergence of the FCKAN architecture while slightly reducing overfitting.

5. Results and Discussion
Although both tasks addressed in this work, TSC and TSER, share the same data structure,
they differ substantially in their objectives, evaluation metrics, and modeling challenges.
To facilitate a more focused and pedagogically sound discussion, we structure this section
into two separate parts. The first covers TSC, while the second focuses on TSER.

5.1. Time Series Classification (TSC)
Table 1 presents the overall performance of each model averaged across all 128 datasets.
For each architecture, we report the mean and standard deviation of four key metrics:
Accuracy, Weighted F1-score, Recall, and Precision. This global summary offers a con-
cise and comprehensive view of each model’s general behavior across the full benchmark,
avoiding the impracticality of visualizing metrics for every individual dataset.

Table 1. Mean ± standard deviation of performance metrics across all 128 UCR
datasets. Rows are ordered by descending accuracy (higher is better).
Boldface highlights the best-performing model for each metric.

Model Accuracy Weighted F1-score Recall Precision

Hybrid FCN-KAN 0.802 ± 0.183 0.800 ± 0.185 0.802 ± 0.183 0.810 ± 0.177
FCKAN 0.774± 0.190 0.764± 0.208 0.774± 0.190 0.781± 0.202
FCN 0.772± 0.219 0.760± 0.235 0.772± 0.219 0.770± 0.230
KAN 0.666± 0.259 0.663± 0.263 0.666± 0.259 0.656± 0.664
MLP 0.628± 0.232 0.594± 0.258 0.628± 0.232 0.602± 0.267

To statistically compare model performance across the benchmark, we applied the
Nemenyi post-hoc test and summarized results using a Critical Difference (CD) diagram

2https://github.com/KindXiaoming/pykan



(Figure 3), created with Aeon Toolkit [Middlehurst et al. 2024]. The diagram ranks mod-
els based on average performance and identifies groups with no significant difference. Re-
sults indicate that the non-temporal models, MLP and KAN, perform statistically worse
than temporal models across all datasets, although KAN outperforms MLP on average.
Among the temporal models, Hybrid FCN-KAN achieved the best overall average rank
but is statistically tied with both FCN and FCKAN in performance.

Pairwise Win/Tie/Loss counts across all datasets further clarify comparative re-
sults (Table 2). The Hybrid FCN-KAN model dominates most pairwise comparisons,
particularly against MLP, with 99 wins and only 24 losses recorded. Focusing on non-
temporal models, KAN consistently outperforms MLP, confirming the advantages of its
architecture despite lacking explicit temporal modeling. Among the proposed hybrid
models, Hybrid FCN-KAN and FCKAN perform comparably, with Hybrid FCN-KAN
showing a slight edge in several comparisons. This difference may arise from the chal-
lenges of end-to-end training in FCKAN, where gradient propagation from the KAN com-
ponent back to the convolutional feature extractor can be less effective compared to the
pre-trained, frozen feature extractor approach used in Hybrid FCN-KAN. Overall, these
results highlight that integrating KAN modules into FCN architectures significantly im-
proves classification performance, while end-to-end joint training requires careful consid-
eration to avoid potential optimization difficulties.

Table 2. Pairwise Win/Tie/Loss counts between all model pairs across 128 TSC
datasets. Each cell reports results for the model in the row compared
against the model in the column.

MLP KAN FCN Hybrid FCN-KAN FCKAN

MLP - 49/2/77 28/2/98 24/5/99 38/1/89
KAN - - 46/4/78 42/4/82 51/2/75
FCN - - - 56/10/62 70/4/54
Hybrid FCN-KAN - - - - 70/4/54
FCKAN - - - - -

Figure 3. Critical Difference for TSC. Horizontal black bar indicates groups of
models with no statistically significant difference (closer to 1, the better).

5.2. Time Series Extrinsic Regression
For the TSER task, we evaluated model performance across all 19 univariate and multi-
variate datasets from the Monash, UEA & UCR TSER Repository. Table 3 presents the



mean and standard deviation of our metrics through the datasets: RMSE, MSE, MAE and
R2. Meanwhile, Table 4 shows the RMSE for each model on these datasets.

Table 3. Mean ± standard deviation of performance metrics across all 19 datasets.
Rows are ordered by increasing RMSE (lower is better). Boldface high-
lights the best-performing model for each metric.

Model RMSE MSE MAE R2

FCN (1.9 ± 2.6) × 101 (1.0 ± 2.1) × 103 (1.3 ± 1.7) × 101 −5.4± 23.3
Hybrid FCN-KAN (2.6± 4.0)× 101 (2.2± 5.7)× 103 (1.4± 1.8)× 101 0.1± 0.8
FCKAN (2.7± 4.2)× 101 (2.4± 5.3)× 103 (1.9± 2.9)× 101 0.2 ± 0.3
MLP (4.0± 7.4)× 101 (6.8± 21.9)× 103 (2.9± 5.6)× 101 −1.2± 4.6
KAN (5.7± 13.8)× 101 (2.1± 8.4)× 104 (4.2± 10.3)× 101 (−1.6± 6.9)× 104

Table 4. RMSE regression results across all 19 datasets. Boldface highlights the
best-performing model for each dataset.

Dataset MLP KAN FCN Hybrid FCN-KAN FCKAN

AppliancesEnergy 3.31 4.57 3.27 3.16 2.87
AustraliaRainfall 8.31 6.88 9.00 16.43 8.49

BIDMC32HR 21.35 12.83 11.32 11.27 7.66
BIDMC32RR 4.87 2.76 6.20 4.90 3.35

BIDMC32SpO2 21.41 2.46 5.77 5.82 5.07
BeijingPM10Quality 119.04 121.76 93.83 93.75 114.43
BeijingPM25Quality 93.57 102.99 61.72 60.18 88.46

BenzeneConcentration 3.94 6.47 4.86 5.12 6.95
Covid3Month 0.05 24.06 0.07 0.05 0.04

FloodModeling1 0.02 0.03 0.01 0.01 0.02
FloodModeling2 0.02 0.01 0.01 0.01 0.02
FloodModeling3 0.03 0.02 0.01 0.01 0.02

HouseholdPowerConsumption1 309.98 605.16 45.73 154.64 139.93
HouseholdPowerConsumption2 68.80 47.01 34.24 45.65 40.75

IEEEPPG 49.29 76.94 34.01 35.27 38.64
LiveFuelMoistureContent 39.76 55.23 33.65 44.22 35.32
NewsHeadlineSentiment 0.14 0.14 0.35 0.14 0.14

NewsTitleSentiment 0.14 0.14 1.40 0.14 0.14
PPGDalia 18.67 23.02 14.10 18.43 13.71

To assess the statistical significance of performance differences across the TSER
datasets, we performed a Nemenyi post-hoc test. This test for TSER (Figure 4) indicates
that FCN achieved the best average rank (2.5263) among the evaluated models. It forms
a statistically indistinguishable group with the all other models (MLP, KAN, FCKAN,
Hybrid FCN-KAN), but it is clear that MLP and KAN occupy worse average ranks.

To further compare performance, we computed pairwise Win/Tie/Loss counts for
each model across the 19 TSER datasets, as presented in Table 5. Each entry quantifies
how many datasets a model won, tied, or lost against another. An examination of these
counts reveals distinct behavioral patterns. Models without explicit temporal recognition,
namely MLP and KAN, demonstrate a relatively balanced win/loss dynamic when com-
pared against each other. However, a clear disadvantage emerges for these non-temporal



Figure 4. Critical Difference for TSER. Horizontal black bar indicates groups of
models with no statistically significant difference (closer to 1, the better).

models when they are pitted against architectures designed specifically with temporal
feature extraction capabilities. In such comparisons, MLP and KAN consistently incur a
higher number of losses.

Conversely, models incorporating temporal recognition (FCN, FCKAN, Hybrid
FCN-KAN) exhibit a similar competitive balance among themselves. More significantly,
these temporal models achieve a substantial majority of wins when compared directly to
their non-temporal counterparts. This difference in performance between models with
and without temporal feature handling decisively testifies to the importance of effectively
capturing temporal characteristics for achieving better results in time series analysis tasks.

Table 5. Pairwise Win/Tie/Loss counts between all model pairs across 19 TSER
datasets. Each cell reports results for the model in the row compared
against the model in the column.

MLP KAN FCN Hybrid FCN-KAN FCKAN

MLP - 10/0/9 6/0/13 7/0/12 4/0/15
KAN - - 5/0/14 5/0/14 8/0/11
FCN - - - 10/0/9 10/0/9
Hybrid FCN-KAN - - - - 9/0/10
FCKAN - - - - -

6. Concluding Remarks and Future Work
This paper introduced FCKAN, a novel architecture combining FCNs with KANs for
TSC and TSER tasks. Motivated by FCNs’ strength in temporal feature extraction and
KANs’ high interpretability via learnable spline functions, we proposed two integration
strategies: a hybrid two-stage model using a pre-trained FCN as a robust feature extractor
followed by a KAN, and an end-to-end FCKAN trained jointly.

Experiments on the UCR TSC Archive and the Monash, UEA & UCR TSER
Repository revealed that for TSC, Hybrid FCN-KAN outperformed standalone FCNs and
other baselines, suggesting that pre-training FCNs for temporal features before applying
KAN yields significant benefits. The end-to-end FCKAN was statistically comparable
but did not consistently exceed the hybrid model, likely due to joint training complexities



and optimization challenges. Both novel models outperformed non-temporal baselines,
highlighting the importance of temporal inductive biases.

For TSER, temporal feature extraction remained crucial. Although FCN achieved
the best average rank, statistical tests found no significant difference among models.
Nonetheless, temporal models (FCN, Hybrid FCN-KAN, FCKAN) consistently outper-
formed non-temporal baselines, confirming the value of capturing temporal dynamics.
While KAN integrations did not surpass FCN statistically in TSER, their competitive
performance indicates promise, especially with further regression fine-tuning.

Future work will focus on investigating the gradient flow issues observed dur-
ing end-to-end FCKAN training, aiming to identify and resolve problems in joint opti-
mization. Additionally, we plan to integrate KAN with other temporal encoders, such as
Transformers and recurrent networks, to improve performance and extend applicability.
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