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aDepartamento de Estatśstica, CCEN - UFPE, Universidade Federal de Pernambuco, Recife, PE, Brazil;
bDepartamento de Matemática Aplicada e Estatística, ICMC - USP, Universidade de São Paulo, São Carlos, SP,
Brazil; cDepartamento de Ciências Exatas, ESALQ - USP, Universidade de São Paulo, Piracicaba, SP, Brazil;
dDepartamento de Engenharia de Pr odução, FEB - UNESP, Universidade Estadual Paulista Júlio de Mesquita
Filho, Bauru, SP, Brazil

ARTICLE HISTORY
Received  February 
Accepted  October 

KEYWORDS
Birnbaum-Saunders
distribution; Cure fraction
model; Lifetime data;
Negative binomial
distribution; Sensitivity
analysis.

MATHEMATICS SUBJECT
CLASSIFICATIONS
N, N, N

ABSTRACT
We propose a cure rate survival model by assuming that the number
of competing causes of the event of interest follows the negative bino-
mial distribution and the time to the event of interest has the Birnbaum-
Saunders distribution. Further, the new model includes as special cases
some well-known cure rate models published recently. We consider a
frequentist analysis for parameter estimation of the negative binomial
Birnbaum-Saunders model with cure rate. Then, we derive the appro-
priate matrices for assessing local influence on the parameter estimates
underdifferentperturbation schemes.We illustrate theusefulness of the
proposed model in the analysis of a real data set from the medical area.

1. Introduction

The Birnbaum-Saunders’s (1969) (BS) distribution is a positively skewedmodel with nonneg-
ative support that has received considerable attention in the last two decades. This is primarily
due to its derivation that is based on physical consideration, its attractive properties, its close
relationship with the normal distribution and its applicability in a wide variety of fields. For
details about various applications of the BS distribution, including in the medical area, see
Johnson et al. (1995), Balakrishnan et al. (2007), Leiva et al. (2008a), and Cancho et al. (2010).
The BS survival function (for t > 0) is given by

SBS(t ) = �

[
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α

(√
t
λ

−
√

λ

t

)]
, (1)

where �(·) is the standard normal cumulative function and α > 0 and λ > 0 are shape and
scale parameters, respectively. The cumulative distribution function (cdf) and probability
density function (pdf) of the BS distribution are easily obtained from (1) as

FBS(t ) = 1 − SBS(t ) = �
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(2)
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and

fBS(t ) = t−3/2 (t + λ)
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respectively. The parameter λ is the median of the distribution: FBS(λ) = �(0) = 1/2. The
mean and the variance of the BS distribution are

E(T ) = λ
(
1 + α2

2

)
and Var(T ) = α2 λ2

(5
4
α2 + 1

)
.

Some proposals have been made recently in the literature by replacing the relationship
between the BS and normal distributions by more general classes of distributions. For exam-
ple, Dáaz-Garcáa and Leiva-Sánchez (2005) pioneered the generalized Birnbaum-Saunders
(GBS) distribution by considering the elliptical family of distributions. The main motiva-
tion for using the GBS distribution is to make the kurtosis flexible compared to the BS
model. Sanhueza et al. (2008) presented a complete compilation of the results related to the
GBS distribution, Gómez et al. (2009) introduced an extension of the GBS model based on
the slash-elliptical distributions and Cancho et al. (2010) proposed a Bayesian approach for
log-Birnbaum-Saunders Student-t regression model under right-censored survival data. Fur-
ther, Cordeiro and Lemonte (2011) defined the β-Birnbaum-Saunders distribution for fatigue
life modeling, Cancho et al. (2011) introduced the geometric cure rate model for analyzing
survival data with cure fraction and Ortega et al. (2012) proposed a new log-β-Birnbaum-
Saunders regression model that can be applied to censored data and be used more effectively
in survival analysis.

Cure rate models for survival data (also called “lifetime models with a surviving fraction”
or “long-term survival models”) are often used to model cure proportions of subjects who
may not remain susceptible to the event of interest. These models have become very popular
due to significant progress and advancements in treatment therapies leading to enhanced cure
rates. The proportion of these “cured” units is termed the cure fraction. In clinical studies, the
event of interest can be the death of a patient (which can happen due to different competing
causes) or a tumor recurrence (which can be attributed to metastasis-component tumor cells
left active after an initial treatment).

Models to accommodate a cure fraction have been widely developed. Perhaps the most
popular type of cure rate model is the mixture distribution introduced by Boag (1949) and
Berkson and Gage (1952). Further, mixture models are based on the assumption that only a
cause is responsible for the occurrence of the event of interest. However, in clinical studies,
the patient’s death, which is the event of interest, may happen due to different latent compet-
ing causes, in the sense that there is no information about which cause was responsible for
the individual death. A tumor recurrence can be attributed to metastasis-component tumor
cells left active after initial treatment. A metastasis-component tumor cell is a tumor cell
with potential to metastasize (Yakovlev and Tsodikov, 1996). The literature on distributions
which accommodates different latent competing causes is rich and growing rapidly. The book
by Ibrahim et al. (2001) and the works by Cooner et al. (2007), Ortega et al. (2008, 2009),
and Cancho et al. (2009) can be mentioned as key references. Recently, Louzada-Neto et al.
(2013) proposed the FGM long-term bivariate survival copula model, Cancho et al. (2013a)
studied the power series cure rate model with an application to a cutaneous melanoma data,
Cancho et al. (2013b) presented the destructive negative binomial cure ratemodelwith a latent
activation scheme and Fachini et al. (2014) introduced a location-scale model for bivariate
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survival times based on the copula to model the dependence of bivariate survival data with
cure fraction.

In this context, we propose a new model called the negative binomial Birnbaum-Saunders
(NBBS) cure rate model, conceived inside a latent competing causes scenario with cure frac-
tion, where there is no information aboutwhich causewas responsible for the individual death
or tumor recurrence, but only the minimum lifetime value among all risks is observed and
a part of the population is not susceptible to the event of interest. As point out by Cancho
et al. (2012), in many medical problems, such as chronic cardiac diseases and various dif-
ferent types of cancer, accumulative individual damage may be caused by various unknown
causes or risk factors. This degradation leads to a fatigue process, whose propagation life-
times can be suitably modeled by the BS distribution. For the assessment of model adequacy,
we develop diagnostic studies to detect possible influential or extreme observations that can
cause distortions on the results of the analysis through the local influence approach, where
we investigate how the results of the estimation are changed under small perturbations in the
model or data.

Cook (1986) proposed a general framework to detect the influence of the observations to
indicate how sensitive the analysis is when small perturbations in the data or model occur.
Several authors have applied the local influence methodology in regression analysis with cen-
soring. Silva et al. (2008) investigated local influence in log-Burr XII regression models with
censored data and Fachini et al. (2008) adapted local influencemethods to polyhazardmodels
under the presence of covariates. Cancho et al. (2009) derived curvature calculations under
various perturbation schemes in log-exponentiatedWeibull regression models with cure rate
andHashimoto et al. (2010) determined the appropriatematrices for assessing local influences
on the parameter estimates under different perturbation schemes in the log-exponentiated
Weibull regression model for interval-censored data. Here, we propose a similar methodol-
ogy to detect influential subjects on the NBBS cure rate model.

The plan of this article is as follows. In Sec. 2, we address the model formulation. The
inference on the parameters is discussed in Sec. 3. In Sec. 4, we obtain the normal curvatures
of local influence under some usual perturbations. In Sec. 5, we evaluate the performance of
the parameter estimation procedure for the proposed model using Monte Carlo simulation.
An applications to a real data set is performed in Sec. 6. Section 7 provides some conclusions.

2. Model formulation

LetM be the unobservable number of causes of the event of interest for an individual in the
population.We assume thatM follows a negative binomial (NB) distribution with parameters
θ and η (Piegorsch, 1990; de Castro et al., 2010) and probability mass function

P[M = m; θ, η] = 	(η−1 + m)

	(η−1)m!

(
ηθ

1 + ηθ

)m

(1 + ηθ )−1/η, m = 0, 1, 2, . . . , (4)

where θ > 0, η ≥ −1 and ηθ + 1 > 0. Negative values of −1 ≤ η < 0 lead to a range for m
from 0 to the largest integer less than η−1 (Ross and Preece, 1985). Since

E(M) = θ and var(M) = θ + η θ 2, (5)

the values of η > 0 (< 0) correspond to over (under)-dispersion relative to the Poisson dis-
tribution. The time for the jth cause to produce the event of interest is denoted by Zj,
j = 1, . . . ,M.
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Accordingly, conditional on M, we assume that the Zj’s are i.i.d. random variables hav-
ing the BS distribution (2) which can represent the times for the occurrence of the event of
interest due to some causes or risk factors. Further, these events happen due to the cumu-
lative individual damage caused by various unknown causes or risk factors leading to the
main motivation for adopting the BS model. Further, we consider that Z1,Z2, . . . are inde-
pendent ofM. The observable time to the event of interest is defined by the random variable
T = min{Z1, . . . ,ZM}, and T = ∞ ifM = 0 with P(T = ∞|M = 0) = 1. Under this setup,
the survival function (which is not a proper survival function) for the entire population is

Spop(t ) = P(M = 0) + P(Z1 > t, . . . ,ZM > t|M ≥ 1)

=
∞∑

m=1

[SBS(t )]m P[M = m; θ, η]

= [1 + η θ FBS(t )]−1/η. (6)

The last step comes from the definition of the probability generating function (Tsodikov
et al., 2003). The cured fraction is p0 = (1 + ηθ )−1/η and the corresponding density func-
tion becomes

fpop(t ) = θ fBS(t ) [1 + η θ FBS(t )]−1/η−1, (7)

whereas the hazard function for the population reduces to

hpop(t ) = θ fBS(t ) [1 + η θ FBS(t )]−1. (8)

We note that fpop(t ) and hpop(t ) are improper functions, since Spop(t ) is not a proper sur-
vival function. When η → 0, the NBBS cure rate (NBBScr) model approaches the Poisson
Birnbaum-Saunders (PBS) cure rate model, whereas for η = −1, it is a mixture BS cure rate
model. For η = 1, the NBBScr reduces to the GBS cure rate model (Cancho et al., 2011).

The (proper) surviving function for the non-cured population (or NBBS survival func-
tion), say SNBBS, is given by

SNBBS(t ) = [1 + θηFBS(t )]−1/η − (1 + θη)−1/η

1 − (1 + θη)−1/η , t > 0. (9)

We note that SNBBS(0) = 1 and SNBBS(∞) = 0, so that it is a proper survival function. The pdf
for the non-cured population (or the NBBS density function) is given by

fNBBS(t ) = θ fBS(t ) [1 + θηFBS(t )]−(1/η+1)

1 − (1 + θη)−1/η , t > 0 (10)

From Eq. (10), we note that the parameter λ controls the scale of the distribution, whereas
the parameters α, η, and θ control its shape. As η = −1, the NBBS distribution reduces to the
BS distribution. Figure 1 displays the plots of the NBBS density functions for selected values
of η and θ . These plots indicate that the NBBS distribution is very flexible and that the values
of these parameters have a substantial effect on its skewness and kurtosis.

From Eqs. (9) and (10), the hazard rate function (hrf) for the non-cured population
becomes

hNBBS(t ) = θ fBS(t ) [1 + θηFBS(t )]−(1/η+1)

[1 + θηFBS(t )]−1/η − (1 + θη)−1/η , t > 0. (11)

For η → 0, the NBBS hrf approaches the PBS hrf and, for η = 1, it reduces to the GBS hrf.
Figure 2 displays plots of the NBBS hrf for selected parameter values.
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Figure . The NBBS density function for some parameters.

There is a mathematical relationship between the model (6) and the mixture cure rate
model (Boag, 1949; Berkson and Gage, 1952). We can write

Spop(t ) = (1 + ηθ )−1/η + [1 − (1 + ηθ )−1/η] SNBBS(t ),

where SNBBS(t ) is given by (9). Thus, Spop(t ) is a mixture cure rate model with cure frac-
tion equal to p0 = (1 + ηθ )−1/η and survival function SNBBS(t ) for the non-cured population.
These facts imply that every mixture cure rate model corresponds to some model of the form
(6) for any η, θ , and FBS(·) (this result holds for any distribution function).

3. Inference

Hereafter, we suppose that the time to the event of interest is not completely observed andmay
be subject to right censoring. Let Ci denote the censoring time. We observe Yi = min{Ti,Ci}
and δi = I(Ti ≤ Ci) is such that δi = 1 if Ti is the recurrence time to the event of interest
and δi = 0 if it is right censored, i = 1, . . . , n. Let γ denote the parameter vector of the
BS distribution of the time to event Z in (6). From n pairs of times and censoring indica-
tors (y1, δ1), . . . , (yn, δn), the corresponding likelihood function (Cancho et al., 2011) under
uninformative censoring can be expressed as

L(γ , η, θ ) ∝
n∏

i=1

[ fpop(yi; γ , η, θ )]δi [Spop(yi; γ , η, θ )]1−δi, (12)
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Figure . The NBBS hrf. The parameters are fixed at θ = 0, 0.1, 0.2, 0.4, 0.6, 0.8 and λ = 5, α = 0.2 (left
panel), α = 2 (right panel).

where Spop(yi; γ , η, θ ) and fpop(yi; γ , η, θ ) are given in Eqs. (6) and (7), respectively, and
γ = (α, λ)� is the vector of BS parameters.

Following de Castro et al. (2009) we considered the Fisher’s parametrization of the NB
distribution (Ross and Preece, 1985), and for η ≥ −1, we define θ = (p−η

0 − 1)/η, if η 	= 0,
and θ = − log(p0), if η = 0.We incorporate covariates for the parametric cure rate model (6)
through the cure parameter p0. When covariates are included, we have a different cure rate
parameter p0i for each subject, i = 1, . . . , n. The cure fraction to covariates xi is modeled by
the logistic link, i.e.,

log
(

p0i
1 − p0i

)
= x�

i β or p0i = exp(x�
i β)

1 + exp(x�
i β)

, (13)

i = 1, . . . , n, where β stands for the vector of regression coefficients.
From Eq. (5), var(Mi) = E(Mi) p−η

0i . Thus, extra variability in the number of competing
causes due to omitted covariates is governed by the dispersion parameter η. Under this rela-
tion, the improper functions in (6) and (7) can be expressed as

Spop(yi; γ , β, η) =
{
[1 + (p−η

0i − 1) FBS(yi; γ )]−1/η, if η 	= 0;
pFBS(yi;γ )

0i , if η = 0, (14)
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and

fpop(yi; γ , β, η) =
⎧⎨⎩[1 + (p−η

0i − 1)FBS(yi; γ )]−1/η−1
(

p−η
0i −1

η

)
fBS(yi; γ ), if η 	= 0;

− log(p0i) pFBS(yi;γ )

0i fBS(yi; γ ), if η = 0.
(15)

Based on the NB distribution with η ≥ −1, and using (13), (14) and (15), the likelihood func-
tion (12) becomes

L(ϑ;D) ∝

⎧⎨⎩
∏n

i=1

[(
p−η
0i −1

η

)
fBS(yi; γ )

]δi [
1 + (p−η

0i − 1)FBS(yi; γ )
]−δi−1/η

, if η 	= 0;∏n
i=1

[− log(p0i) fBS(yi; γ )
]δi pFBS(yi;γ )

0i , if η = 0,
(16)

where ϑ = (γ�, β�, η)�,D = (n, y, δ,X ) and X = (x�
1 , . . . , x�

n ).
The parameter ϑ is estimated by numerical maximization of the log-likelihood function

�(ϑ;D) = log[L(ϑ;D)] obtained from (16) using the R software (de Castro et al., 2010).
The computational program is available from the authors upon request. Under suitable reg-
ularity conditions, the maximum likelihood estimator (MLE) ϑ̂ can be approximated by the
multivariate normal distribution with mean vector ϑ and covariance matrix �(ϑ̂) estimated
at ϑ = ϑ̂, namely

�(ϑ) =
[
−∂2�(ϑ;D)

∂ϑ∂ϑ�

]−1

.

The required second derivatives can be computed numerically.
Besides estimation, hypothesis tests are another important topic to be addressed. Let ϑ1

and ϑ2 be proper disjoint subsets of ϑ. We aim to testH0 : ϑ1 = ϑ01 againstH1 : ϑ1 	= ϑ01, ϑ2

unspecified. Let ϑ̂0 maximize L(ϑ;D) constrained toH0 and define the likelihood ratio (LR)
statistic

w = 2 log

[
L(ϑ̂;D)

L(ϑ̂0;D)

]
.

Under H0 and some regularity conditions, w converges in distribution to the chi-square dis-
tribution with dim(ϑ1) degrees of freedom.

4. Diagnostic analysis

In order to assess the sensitivity of the MLEs, the local influence under three perturbation
schemes are carried out. Another approach is suggested by Cook (1986), where instead of
removing observations, weights are given to them. Local influence calculation can be car-
ried out for model (9) and (10). If likelihood displacement LD(ω) = 2{l(ϑ̂) − l(ϑ̂ω)} is
used, where ϑ̂ω denotes the MLE under the perturbed model, the normal curvature for
ϑ at the direction d, ‖ d ‖= 1, is given by Cd(ϑ) = 2|d���[L̈(ϑ)

]−1
�d|, where � is a

(p+ 3) × n matrix that depends on the perturbation scheme, whose elements are given by
�v i = ∂2l(ϑ|ω)/∂φv∂ωi, i = 1, . . . , n and v = 1, . . . , p+ 3, evaluated at ϑ̂ and ω0, where
ω0 is the no perturbation vector. The elements of the matrix � are derived in the Appendix
for some common perturbation schemes. For the NBBS regression model with long term
survivors, the elements of L̈(ϑ) are calculated numerically. We can also determine the nor-
mal curvatures Cd(γ ), Cd(β), and Cd(η) to perform various index plots, for instance, the
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Table . Averages of the MLEs, SEs, SRMSEs and CP of the cure fractions p(0)
0 and p(1)

0 for simulated data
from the BS cure rate model.

n Average of the MLEs SE of the MLEs SRMSE CP

50 . . . . . . .
100 . . . . . . .
200 . . . . . . .
400 . . . . . . .
800 . . . . . . .

index plot of dmax, the eigenvector corresponding toCdmax , the largest eigenvalue of thematrix
B = −��[L̈(ϑ)

]−1
�, and the index plots of Cdi (γ ), Cdi (β) and Cdi (η), called the total local

influence, where di denotes an n × 1 vector of zeros with one at the ith position. Thus, the cur-
vature at direction di takes the form Ci = 2|��

i

[
L̈(ϑ)

]−1
�i|, where ��

i denotes the ith row
of �. It is usual to point out those cases such that Ci ≥ 2C̄, where C̄ = 1

n

∑n
i=1Ci. Another

influence measure for the ith observation is Ui = ∑n1
k=1 κke2ki, where {(κk, ek)|k = 1, . . . , n}

are the eigenvalue-eigenvector pairs of B with κ1 ≥ · · · ≥ κn1 ≥ κn1+1 = · · · = κn = 0 and
{ek = (ek1, . . . , ekn)�} is the associated orthonormal basis. Zhu and Zhang (2004) studied the
influencemeasure ui systematically under a case weighted perturbation. Hence, this influence
measure expresses local sensitivity to the log-likelihood of the perturbations.

5. Simulation study

To evaluate the performance of the parameter estimation procedure for the proposed mod-
els, we conduct a simulation study. Here, we consider the proposed model, where the event
times (Z) have the BS distribution with parameters α = 2 and λ = 2. The number of causes
for the event of interest for the ith individual (Ni, i = 1, . . . , n) is generated from the NB
distribution with parameters η = 2 and θi = (p−η

0i − 1)/η, where p0i = exp(β0 + β1xi)/[1 +
exp(β0 + β1xi)]. For the simulations, we consider a binary covariate xwith values drawn from
a Bernoulli distribution with parameter 0.5.We take β0 = 0.5 and β1 = −1 such that the cure
fraction for the two levels of x are p(0)

0 = 0.62 and p(1)
0 = 0.38, respectively. For each simula-

tion, we obtain the MLEs of the model parameters.
The censoring times are sampled from the uniform distribution on the interval (0, τ ),

where τ was set in order to control the proportion of censored observations. In this study,
the proportion of censored observations was on average, approximately, equal to 50%.

The sample sizes are n = 50, 100, 200, 400 and n = 800. For each set up, we conduct 1,000
simulations and then calculate the averages of the MLEs of the cure fractions (p(0)

0 and p(1)
0 ),

standard errors (SEs) of the MLEs, the square root of the mean square errors (SRMSEs) of
these estimates and coverage probability (CP) of the 95% confidence intervals. The simulation
results are displayed in Table 1 from the fits of the NBBScr model. We can observe that the
average of theMLEs are closer to the true parameter values of themodel, and that the SDs and
SRMSEs decrease as the sample size increases. Also, the CP becomes closer to the nominal
value as the sample size increases. Further, we examine the distribution of the MLEs of p(0)

0
and p(1)

0 and plot the empirical distributions of the MLEs of p(0)
0 and p(1)

0 for sample size 100
(top panel) and 200 (bottom panel). They are displayed in Fig. 3. These plots indicate that
the normal distribution provides reasonable approximation to the distribution of the MLEs
of p(0)

0 and p(1)
0 .



1378 G. M. CORDEIRO ET AL.

Figure . Q-Q plot of the empirical distribution of the MLEs of p(0)
0 and p(1)

0 against the normal distribution.

6. Application

In this section, we work out an example employing the models presented in Sec. 2. The data
set includes 205 patients observed after operation for removal of malignant melanoma in
the period 1962–1977. The patients were followed until 1977. These data are available in the
timereg package in R (Scheike, 2009). The observed time (T ) ranges from10–5565 days (from
0.0274–15.25 years, withmean= 5.9 and standard deviation= 3.1 years) and refers to the time
until the patient’s death or the censoring time. Patients dead fromother causes and the patients
that are still alive at the end of the study are censored observations (72%). The covariates are
as follows: ulceration: xi1 (absent, n = 115; present, n = 90), xi2: sex (female, n = 126; male,
n = 79) and tumor thickness (xi3) (in mm, mean = 2.92 and standard deviation=2.96) as
covariates. We are interested in the effect of these explanatory variables on the cure fraction.
The Kaplan–Meier curves stratified by ulceration status in Fig. 4 (left panel) can not decay
below 0.4. This behavior indicates that models that ignore the possibility of cure will not be
suitable for these data.

First, we fit the model described in Sec. 2. For comparison of nested models, which is the
case when comparing the NBBScr model with the mixture BS cure rate model, we can com-
pute the maximum values of the unrestricted and restricted log-likelihoods to obtain the LR
statistics given in (3). For testingH0 : η = −1 vs.H1 : η 	= −1, we use the LR statisticw tak-
ing into account that the test is performed in the boundary of the parameter space (Self and
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Figure . Left panel: The Kaplan-Meier estimate of the survival function stratified by ulceration (upper:
present, lower: absent). Right panel: QQ plot of the normalized randomized quantile residuals with iden-
tity line for the NBBScr model (each point corresponds to the median of five sets of ordered residuals).

Liang, 1987). The statistic w is assumed to be asymptotically distributed as a symmetric mix-
ture of a chi-squared distribution with one degree of freedom and a point-mass at zero. Then,
limn→∞ P(w ≤ c) = 1/2 + 1/2 P(χ 2

1 ≤ c), where P(χ 2
1 ≤ c) denotes a random variable hav-

ing a chi-square distribution with one degree of freedom. Large positive values of w gives
favorable evidence to the full model. Thus, w is equal to 4.008 leading to a p-value < 0.02,
which provides evidence in favor of the NBBScr model.

Further, we compare the NBBScr and PBS cure rate models based on the Akaike informa-
tion criterion (AIC) and Schwartz Bayesian criterion (SBC) given by AIC = −2�(ϑ̂;D) +
2#(ϑ) and SBC = −2�(ϑ̂;D) + #(ϑ) log(n), respectively, where #(ϑ) denotes the number of
model parameters. The model with the smallest value of any of these criteria (among all com-
peting models) is commonly taken as the preferred model for describing these data. Table 2
gives these statistics in increasing order of AIC. The NBBScr model stands out as the best
model and then it is chosen to be our working model.

6.1. Local influence analysis

Here, we analyze the local influence for the cutaneous melanoma dataset.

Case-weight perturbation
By applying the local influence methodology described in Sec. 4, where case-weight pertur-
bation is used, the value Cdmax (ϑ) = 2.51 was found as a maximum curvature. In Fig. 5, we
display the index plots of dmax(ϑ) and Ci for all points. Clearly, the cases �5, �8, and �43 are
the most influential observations on ϑ̂ (see Figs. 5a and 5b).

Table . Some statistics from the fitted models.

Statistic

Model −2max �(ϑ) AIC SBC

colrule Negative binomial BS . . .
Poisson BS . . .
Mixture BS . . .
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Figure . Index plot of the case-weight perturbation for ϑ on the myeloma data. (a). dmax . (b)Ci.

Influence using response variable perturbation
Next, we examine the influence of perturbations on the observed survival times. The value
for the maximum curvature is Cdmax (ϑ) = 196.14. Figure 6 displays plots for dmax(ϑ) and
Ci for all points. The plots in Figs. 6a and 6b suggest that the case �5 is the most influential
observation on ϑ̂.

Influence using explanatory variable perturbation
The perturbation of the explanatory variable age (x3) is investigated here. After the perturba-
tion of this explanatory variable, the value Cdmax (ϑ) = 1.04 was obtained as the maximum
curvature. The corresponding index plots of dmax(ϑ) and Ci are displayed in Fig. 7. The
results in Figs. 7a and 7b suggest that the observations �5 and �43 are the most influential
on ϑ̂.

The observation �5 refers to the shorter survival time and the observations �8 and �43 have
the highest value of the covariate tumor thickness.

6.2. Impact of the detected influential observations

The diagnostic analysis detected, as potentially influential, the following three cases: �5, �8,
and �43. The observation �5 refers to shorter survival time and the observations �8 and �43
have the highest value of the covariate tumor thickness. In order to reveal the impact of these

Figure . Index plot of the response perturbation scheme for ϑ on the myeloma data. (a). dmax . (b)Ci.
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Figure . Index plot of the perturbation of the explanatory variable tumor thickness for ϑ on the myeloma
data. (a) dmax . (b)Ci.

three observations on the parameter estimates, we refitted the model under some situations.
First, we individually eliminate each one of these three cases. Next, we remove the totality of
potentially influential observations from set “A′′ (original data set).

In Table 4, we have the relative changes (in percentage) of the parameter estimates, defined
by RCϑ j = [(ϑ̂ j − ϑ̂ j(I))/ϑ̂ j] × 100, parameter estimates and the corresponding p-values,
where ϑ̂ j(I) denotes the MLE of ϑ j after the set “I′′ of observations has been removed.
Note that I1 = {�5}, I2 = {�8}, I3 = {�43}, I4 = {�5, �8}, I5 = {�5, �43}, I6 = {�8, �43}, and
I7 = {�5, �8, �43}.

FromTable 4, we note that theMLEs are not highly sensitive under deletion of the outstand-
ing observations. In general, the significance of the parameter estimates does not change (at
the level of 5%) after removing the set I. Therefore, we do not have inferential changes after
removing the observations handed out in the diagnostic plots.

The QQ plot of the normalized randomized quantile residuals (Dunn and Smyth, 1996;
Rigby and Stasinopoulos, 2005) in Fig. 4 (right panel) suggests that the NBBScr model is
acceptable. Each point in Fig. 4 (right panel) corresponds to the median of five sets of ordered
residuals. Taking into account the criteria in Table 2, the LR statistic and the QQ plot in Fig. 4
(right panel), reveal that the NBBScr model is the best model. TheMLEs of the parameters in
Table 3 are significant at a 10% level.

Table 5 displays the survival function stratified by ulceration status and sex (A: absent and
female, B: present and female, C: absent and male, D: present and male) for patients with
tumor thickness equal to 0.64, 1.94, and 6.63 mm, which correspond to the 10, 50, and 90
percentiles. These plots highlight the combined impact of the covariates on the cure frac-
tion. Finally, approximate 95% confidence intervals are obtained after application of the delta
method.

Table . The MLEs of the parameters for the NBBScr model.

Parameter Estimate (est) Standard error (se) |est| / se
α . . —
λ . . —
η . . —
βintercept . . .
βulceration − . . .
βsex − . . .
βthickness − . . .
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Table . Relative changes [RC-in %], estimates and the corresponding p-values in parentheses for the
regression coefficients to explain the survival times.

Drooping α λ η βintercept βulceration βsex βthickness

A — — — — — — —
. . . . − . − . − .
(-) (-) (-) (.) (.) (.) (.)

A-I1 [] [] [] [] [−] [−] [−]
. . . . − . − . − .
(-) (-) (-) (.) (.) (.) (.)

A-I2 [] [] [] [] [−] [−] []
. . . . − . − . − .
(-) (-) (-) (.) (.) (.) (.)

A-I3 [] [−] [−] [−] [] [] [−]
. . . . − . − . − .
(-) (-) (-) (.) (.) (.) (.)

A-I4 [] [−] [] [] [−] [] []
. . . . − . − . − .
(-) (-) (-) (.) (.) (.) (.)

A-I5 [] [−] [−] [] [] [] []
. . . . − . − . − .
(-) (-) (-) (.) (.) (.) (.)

A-I6 [] [−] [] [] [] [] []
. . . . − . − . − .
(-) (-) (-) (.) (.) (.) (.)

A-I7 [] [−] [] [] [−] [] []
. . . . − . − . − .
(-) (-) (-) (.) (.) (.) (.)

We end up our application dealing with the estimation of the proportion of non-cured
patients, who survived beyond a certain fixed time. For sake of illustration, we choose a period
of five years. This proportion is estimated from (9) as ŜNBBS(5). The estimates ŜGBS(5) stratified
by ulceration status and sex (A: absent and female, B: present and female, C: absent and male,
D: present and male) for non-cured patients with tumor thickness equal to 0.32, 1.94 and
6.32 mm are given by (A : 0.662,B : 0.532,C : 0.619,D : 0.431), (A : 0.650,B : 0.502,C :
0.600,D : 0.394) and (A : 0.588,B : 0.373,C : 0.506,D : 0.259), respectively. In Fig. 8 (right
panel), we display the surviving function stratified by ulceration status for the non-cured
patients with selected tumor thickness.

Table . The MLEs of the cured fraction stratified by ulceration status, sex, and selected tumor thickness
under the NBBScr model.

Tumor Standard % confidence
thickness Ulceration Sex Estimate error interval

. Absent Female . . (., .)
Male . . (., .)

Present Female . . (., .)
Male . . (., .)

. Absent Female . . (., .)
Male . . (., .)

Present Female . . (., .)
Male . . (., .)

. Absent Female . . (., .)
Male . . (., .)

Present Female . . (., .)
Male . . (., .)
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Figure . Left panel: The survival function for the NBBRcr model stratified by ulceration status and sex (A:
absent and female, B: present and female, C: absent andmale, D: present andmale) for patients with tumor
thickness equals to . (top), . (middle), and .mm (bottom). Right panel: Estimated survival function
for the non-cured NBBS population.

7. Concluding remarks

The Birnbaum-Saunders (BS) distribution has been extensively used formodeling fatigue life-
times in several fields such asmedical sciences, biological studies, engineering, economics and
insurance. For modeling fatigue lifetimes in several medical problems, there is a clear need
for using the BS distribution, such as chronic cardiac diseases and various different types of
cancer. The cumulative individual damage may be caused by various unknown causes or risk
factors leading to a fatigue process, whose propagation lifetimes can be suitably modeled by
the BS distribution (Cancho et al. 2012; Leiva et al., 2008). The fatigue or cumulative damage
justifies the use of the BS distribution. In this article, we propose a model for lifetime data
conceived inside a latent competing causes scenario with cure fraction called the negative
binomial Birnbaum-Saunders Regression (NBBScr for short) distribution. There is a mathe-
matical relationship among the BS cure rate model, the mixture cure rate model (Boag, 1949;
Berkson and Gage, 1952) and the NBBS distribution. Hence, the proposed cure rate model
has the structure of the mixture cure rate model and the NBBS distribution represents the
distribution associated with the individuals at risk.

Some structural properties of the NBBS distribution for the non-cured population are
investigated. Maximum likelihood inference is implemented straightforwardly and asymp-
totic theory may be considered for generating confidence intervals for the parameters and
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hypothesis tests. The practical importance of the newmodel was demonstrated in an applica-
tion to a real data set, where it provides a better fit in comparison with themixture Birnbaum-
Saunders cure rate model. The interpretation of the role of the covariates is easy due to the
considered parametrization in the cure fraction. We observe that the surviving probability
decreases more rapidly for patients with thicker tumors and that the cure fraction is lower for
patients with ulceration.
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Appendix: Matrix� calculations

Next, we calculate for three perturbation schemes, the matrix

� = (�v i)
[
(p+3)×n

] =
(

∂2l(ϑ;D|ω)

∂ϑv∂ωi

)[
(p+3)×n

],
where v = 1, . . . , p+ 3 and i = 1, . . . , n. We shall consider the model defined in (9), (10),
and its likelihood function given by (16).

A.1. Case-weight perturbation

First, we consider a case weight perturbation which modifies the weight given to each subject
in the log-likelihood. Consider the vector of weights ω = (ω1, . . . , ωn)

�.
In this case, the log-likelihood function takes the form

l(ϑ;D|ω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

ωiδi log
[

p−η
0i −1

η
fBS(yi; γ )

]
−

n∑
i=1

ωi(δi + 1/η) log
[
1 + (p−η

0i − 1)FBS(yi; γ )
]
, if η 	= 0;

n∑
i=1

ωiδi log
[− log(p0i) fBS(yi; γ )

]+
n∑

i=1
ωiFBS(yi; γ ) log(p0i), if η = 0,

where 0 ≤ ωi ≤ 1 andω0 = (1, . . . , 1)�. The matrix� = (��
γ , ��

β , ��
η )� has elements that

can be calculated numerically.

A.2. Response perturbation

Since yi values have different variances, they require a scaling of the perturbation vector ω by
an estimator of the standard deviation of yi. We will consider here that each yi is perturbed as
yiw = yi + ωiSy, where Sy is a scale factor that may be estimated by the standard deviation of
y and ωi ∈ R.
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Here, the perturbed log-likelihood function can be expressed as

l(ϑ;D|ω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

δi log
[

p−η
0i −1

η
fBS(y∗

i ; γ )

]
−

n∑
i=1

(δi + 1/η) log
[
1 + (p−η

0i − 1)FBS(y∗
i ; γ )

]
, if η 	= 0;

n∑
i=1

δi log
[− log(p0i) fBS(y∗

i ; γ )
]+

n∑
i=1

FBS(y∗
i ; γ ) log(p0i), if η = 0,

where y∗
i = (yi + ωi St ) and ω0 = (0, . . . , 0)�. The elements of the matrix � =

(��
γ , ��

β , ��
η )� can be calculated numerically.

A.3. Explanatory variable perturbation

Cook (1986) described a general scheme for perturbing the whole design matrix X in lin-
ear regression models. Some authors have studied the perturbation of explanatory variables.
This perturbation has a more complicated impact on the estimates. The errors-in-variable
model considers the errors of the explanatory variables so that the local influence under the
perturbation of the explanatory variables may be in connection with the model. We take an
additive perturbation on a particular continuous explanatory variable, namely xt , by setting
xitω = xit + ωiSx, where Sx is a scaled factor, ωi ∈ R. This perturbation scheme leads to the
perturbed log-likelihood function

l(ϑ;D|ω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

δi log
[

p∗∗−η
0i −1

η
fBS(yi; γ )

]
−

n∑
i=1

(δi + 1/η) log
[
1 + (p∗∗−η

0i − 1)FBS(yi; γ )
]
, if η 	= 0;

n∑
i=1

δi log
[− log(p∗∗

0i ) fBS(yi; γ )
]+

n∑
i=1

FBS(yi; γ ) log(p∗∗
0i ), if η = 0,

where p∗∗
0i = exp(x∗∗�

i β)

1+exp(x∗∗�
i β)

, (x∗∗�
i β) = β1xi1 + · · · + βt

(
xit + ωiSx

)+ · · · + βpxip and ω0 =
(0, . . . , 0)T . The elements of the matrix � = (��

γ , ��
β , ��

η )� are calculated numerically.
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