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Abstract
In this work, we present results of the long-range electromagnetic Casimir-Polder interactions between two neutrons, a
neutron and a conducting wall, and a neutron between two walls. As input, we use the dynamic dipole polarizabilities of the
neutron fitted to chiral EFT results up to the pion production threshold and at the onset of the Delta resonance. Our work
can be relevant to the physics of confined ultracold neutrons inside bottles.
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1 Introduction

The Casimir effect is a remarkable example of a phe-
nomenon under deep contemplative analysis permeating
through many different branches of physics [1–4]. It is
often cited to illustrate the non-trivial concept of zero-point
energy, or quantum fluctuations, giving rise to an observable
force between two neutral objects. In its simplest version,
the attractive force between two parallel, conducting plates
is often recalled to explain the consequences of quantiza-
tion of oscillating modes, at the heart of quantum physics,
and the puzzling appearances of infinities that plague quan-
tum field theories. Not only a necessity to explain certain
quantum phenomena such as the behavior of specific heat
of solids or the reduction of X-ray scattering from crystals
at ultra-low temperatures [5], vacuum quantum fluctuations
sustain the mystery of their contribution to the cosmo-
logical constant, which differs between predictions and
observations by many orders of magnitude [5].

The broader meaning of the Casimir effect has its
origins in experiments in the 1940s by Overbeek at Phillips
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Laboratory on quartz powder in colloid suspension (see [5]
and references therein). The observed asymptotic behavior
of the interactions disagreed with the van der Waals 1/r6

predictions and led Casimir and Polder to explain the
mismatch in terms of retardation effects due to the finite
speed of light. Backed by an insight from Niels Bohr,
Casimir rederived and reinterpreted the so-called Casimir-
Polder (1/r7) forces in terms of changes in the zero-
point energy [6]. It is this latter interpretation that excites
the curiosity and interest of scientists from many distinct
specializations in physics.

In atomic and molecular physics, specifically, a consider-
able amount of work has been dedicated to this subject [7].
Here, the so-called Casimir-Polder (CP) potential [8] for
the electromagnetic interactions at very large separations
describes the effects of the finite speed of light in mutual
virtual photon mediated interactions between polarizable
systems [1, 9]. Feinberg and Sucher [10] rederived the CP
force between two neutral spinless particles in terms of
the exchange of two virtual photons. The sum of all possi-
ble frequencies of the two virtual photons, obtainable from
quantum field theory, has the same zero-point energy inter-
pretation envisaged by Casimir. The Compton scattering of
(virtual) photons on the neutral particle constitutes the sub-
amplitude for the two-photon exchange process and carries
information on the particle substructure as discussed in the
following section.

In the present work, we use the terminology van der
Waals (vdW) potential and Casimir-Polder potential in the
following sense—both vdW and CP potentials are “long-
range” electromagnetic interactions. Conventionally, “vdW
interactions” refer to instantaneous Coulomb interactions.

/ Published online: 10 February 2021

Brazilian Journal of Physics (2021) 51:231–237

http://crossmark.crossref.org/dialog/?doi=10.1007/s13538-020-00849-5&domain=pdf
http://orcid.org/0000-0002-6298-8128
mailto: higa@if.usp.br
mailto: jbabb@cfa.harvard.edu


Moreover, the CP potential has as its “small separation
distance” limit the vdW potential, the CP potential is
valid for arbitrarily increasing separations (larger than some
minimum separation at which “short-range” interactions,
such as electron exchange in, for example, atomic physics,
become negligible).

At asymptotically large separations, the CP potentials
approach simple expressions involving only �, c, the
individual static polarizabilities α(0), and an inverse
power of the separation distance (e.g., the behavior
1/r7 mentioned above with all coefficients becomes
−23�cα2(0)/(4πr7)). Such asymptotic CP potentials are
known for two neutral polarizable systems [8, 10], a neutral
system and a charged system [9, 11, 12], for an atom and a
perfectly conducting wall [8], etc. Thus, as we set forth in
an earlier paper [13], it is reasonable, following an ansatz
similar to that used by Spruch and Kelsey [9] for atoms,
to write down the CP potential between two neutrons, a
neutron and a wall, or a neutron between two walls in terms
of the frequency-dependent polarizabilities α(ω), where ω

is the photon frequency.
Arnold [14] was the first to calculate effects of the CP

potential—using the asymptotic 1/r7 potential—between
two neutrons in nucleon-nucleon scattering; however, at
that time only the static, electric dipole polarizability data
were available with nowadays outdated values. We extended
Arnold’s idea [13, 15] to include dynamic electric and
magnetic dipole polarizabilities with updated information
from low-energy chiral effective field theory analysis. We
also performed calculations of the CP interaction between a
neutron and a wall, and one neutron between two walls. In
the following, we summarize our main results and present
an outlook for future studies.

2 Neutron Dynamic Dipole Polarizabilities

Electromagnetic probes have been one of the most
important tools to extract information about the structure
of hadrons. In the low (E � 200 MeV) and intermediate
(0.2 � E � 1 GeV) energy region, Compton scattering
made significant contributions to our understanding about
the structure of the nucleon [16]. The electromagnetic field
of the photon that hits the nucleon induces a response that
can be parametrized in terms of the generalized multipole

polarizabilities [16, 17], the leading dipole ones being inputs
to our neutron-neutron CP potential. While dynamic dipole
polarizabilities of the proton have been intensively studied
and obtained from experiments with satisfactory precision,
in the neutron case, one has to rely on strong isospin
symmetry and bound neutron effects for Compton scattering
on the deuteron [18, 19] and 3He [20], or on nuclear
structure uncertainties on neutron scattering of a large Z

nucleus such as Pb [21].
Chiral effective field theory (χEFT), the effective

theory rooted in the chiral symmetry of the underlying
quantum chromodynamics (QCD), has been established
as a rigorous and reliable theoretical framework to
extract information about nucleon polarizabilities in the
low-energy regime [16, 22]. The most updated χEFT
calculation of Lensky, McGovern, and Pascalutsa [23]
takes into account recoil corrections in a Lorentz-covariant
way, improves convergence close to the pion production
threshold, and includes the Delta (Δ) resonance explicitly.
Their predictions for the neutron dynamic electric (αn) and
magnetic (βn) dipole polarizabilities for photon energies up
to ωγ = 300 MeV are nearly the same (within theoretical
errorbars) to the proton case, as expected from isospin
symmetry. In the static limit, they have αn(0) = 13.7 ± 3.1
and βn(0) = 4.6 ± 2.7, in units of 10−4 fm3.

The relations between the dynamic dipole polarizabilities
and either Compton scattering observables or theory
predictions are quite involved [16]. Therefore, we provide a
parametrization of αn(ω) and βn(ω) that tries to incorporate
the relevant low-energy physics with simple formulas. They
take the form:

αn(ω) = αn(0)
√

(mπ +a1)(2Mn+a2)(0.2a2)
2

√
(
√

m2
π −ω2+a1)(

√
4M2

n −ω2+a2)
[|ω|2+(0.2a2)2

] , (1)

βn(ω) = βn(0)−b2
1ω

2+b3
2 Re(ω)

(ω2−ω2
Δ)2+|ω2Γ 2

Δ| , (2)

with Mn the neutron mass, mπ the pion mass, and a set
of adjustable parameters given in Table 1. The square roots
in (1) emulate the non-analytic threshold behavior related
to the photoproduction of a pion [22, 23] and (2) takes the
form of an energy-dependent Breit-Wigner that incorporates
the physics of the Δ resonance. Our parameters are fitted to
the theoretical curves of Lensky et al. [23] in three different
ways. In Set 1, we let αn(0) and βn(0) be free parameters,
in Set 2 we fix them to the PDG central value [24], and

Table 1 Parameters of (1), (2) fitted to the theoretical curves of Ref. [23]. αn(0) and βn(0) units are 10−4fm3, the remaining ones in MeV

αn(0) a1 a2 βn(0) b1 b2 ωΔ ΓΔ

Set 1 13.9968 12.2648 1621.63 4.2612 8.33572 22.85 241.484 66.92 65

Set 2 11.6 2.2707 2721.47 3.7 8.67962 24.2003 241.593 68.3009

Set 3 12.5 5.91153 2118.79 2.7 9.27719 26.328 241.821 70.8674
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in Set 3 we fix them to the central value of Kossert et
al. [25]. The quality of the parametrization can be seen
in Fig. 1 and is satisfactory for our purposes, falling well
within the theoretical error bars [23]. In particular, on the
left panel one sees the cusp behavior associated to the pion
photoproduction, and on the right panel, the increase of βn

near the delta-neutron mass difference ∼ 230 MeV [13].
As shown in the following, the basic inputs to our

CP interactions are the dynamic dipole polarizabilities αn

and βn evaluated at imaginary frequencies. To make sure
our (1) and (2) are reasonable in the complex domain,
we make a numeric comparison of these parametrizations
with the heavy-baryon chiral perturbation theory (HB-χPT)
expressions of Hildebrandt et al., given in Appendices B and
C of Ref. [26]. The latter are given by the thin solid lines in
Fig. 1, for real photon energies. The same expressions were
extended to imaginary energies, and we checked that agree
with our parametrizations up to iω � i mπ (see [13] for a
detailed discussion).

3 Neutron Under Casimir-Polder Forces

In this section, we recollect the main formulas and results
from our previous works [13, 15, 27]. We consider only the
parameters from Set 1, which represents qualitatively the
other sets.

The CP interaction between two neutrons is given by [7,
9, 10, 13]:

VCP,nn(r) = − α0

πr6
Inn(r) ,

Inn(r) =
∫ ∞

0
dω e−2α0ωr

{[
αn(iω)2 + βn(iω)2

]
PE(α0ωr)

+ [αn(iω)βn(iω) + βn(iω)αn(iω)] PM(α0ωr)
}

,

PE(x) = x4 + 2x3 + 5x2 + 6x + 3 ,

PM(x) = −(x4 + 2x3 + x2) , (3)

where α0 ≈ 1/137 is the electromagnetic fine structure
constant. Due to the exponential factor exp(−2α0ωr)

in the above formula, it is straightforward to check
that the asymptotic region r → ∞ is dominated by
frequencies ω → 0. In the static limit, the integral
can be performed analytically and one arrives at the
original Casimir-Polder result, V 


CP,nn(r) = VCP,nn(r →
∞) = − [

23(α2
n(0) + β2

n(0)) − 14αn(0)βn(0)
]
/(4πr7).

The static limit serves as a numerical check, though it
happens at distances much larger than the hadronic/nuclear
scale of a few fm, as we discuss in the following. As
one moves inwards, the effects of frequency-dependent
polarizabilities become apparent from low to high values of
ω.

Figure 2 shows the behavior of the CP potential between
two neutrons (dashed line), compared to the static limit
(solid line). In the left panel, one sees a quenching in the
strength of the interaction due to the dependence on the
frequency of the polarizabilities. The right panel allows
one to quantify better the large distance behavior. The
short-dashed curve is the CP potential multiplied by s r6,
where s = 100 fm to fit in the figure. The long-dashed
and thick-solid curves stand for the dynamic (VCP,nn) and
static (V 


CP,nn) polarizabilities versions of the potential,

respectively, multiplied by r7. The thin solid curve is
the arctan parametrization [28] that connects the 1/r7

asymptotic CP and the mid-distance 1/r6 vdW behaviors.
One sees that at small distances r � 20 fm there is a
clear 1/r6 behavior, meaning that the integrand of (3) is
nearly constant. From the exponential factor, one concludes
that this region is probing neutron excitations larger than
(2α0 × 20 fm)−1 ∼ 670 MeV. The Δ resonance has its
biggest influence around (2α0ωΔ)−1 ∼ 50 fm, though it
contributes primarily to βn, which is much smaller than the
αn contribution. The energy related to the pion production
threshold affects distances around (2α0ωπ)−1 ∼ 100 fm.
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Fig. 1 Dynamic electric (left) and magnetic (right) polarizabilities,
as functions of the photon energy ωγ . The yellow squares are χEFT
results of Lensky et al. [23], while sets 1, 2, and 3 correspond to our

parametrizations using the numbers specified in Table 1. The thin solid
lines are HB-χEFT results from Ref. [26]. Adapted from [13]
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Fig. 2 Results for the CP interaction between two neutrons. Adapted from [13]

The asymptotic 1/r7 behavior is achieved only beyond
103 fm, due to dynamic polarizabilities with frequencies
ωγ � 10 MeV.

For the neutron-Wall (nW) CP potential one has [13, 29,
30]

VCP,nW (r) = − α0

4πr3
JnW (r) ,

JnW (r) =
∫ ∞

0
dω e−2α0ωrαn(iω)Q(α0ωr) ,

Q(x) = 2x2 + 2x + 1 , (4)

where for this pilot study, we consider only the electric
polarizability αn component. (The magnetic polarizability
term of the total nW CP potential enters with the opposite
sign [31], though for the neutron αn(0)/βn(0) ∼ 3, so
one might view (4) as the most optimistic estimate of the
effect.) The asymptotic limit of (4) gives V 


CP,nW (r) =
VCP,nW (r → ∞) = −3αn(0)/(8πr4).

Figure 3 shows the CP interaction between a neutron
and a wall, as a function of the separation r . On the right
panel, the short-dashed curve is multiplied by s r3 with
s = 100 fm. The long-dashed and thick-solid curves are
analogous to the VCP,nn case, multiplied by r4 instead.
The qualitative features of the mid-distance 1/r3 and the
asymptotic 1/r4 behaviors are practically the same as the
VCP,nn case.

For two walls separated by a distance L and one neutron
in between, at a distance z from the midpoint [13, 29, 30],
the CP potential reads:

VCP,WnW (z, L) =
− 1

α0πL4

∫ ∞

0
u3du αn

(
i

u

α0L

)∫ ∞

1

dv

sinh(uv)

[
v2cosh

(
2z

L
uv

)
−e−uv

]
.

(5)

In the static limit, the integral can be done analytically and
leads to:

V 

CP,WnW (z, L) = − αn(0)

α0πL4

{
3

8

[
ζ

(
4,

1 − f

2

)

+ζ

(
4,

1 − f

2

)]
− ζ(4, 1)

4

}

= −π3αn(0)

α0L4

[
3 − 2 cos2(πf/2)

8 cos4(πf/2)
− 1

360

]
, (6)

where f = 2z/L and

ζ(a, b) =
∞∑

k=0

1

(k + b)a
(7)

is the generalized Zeta function. Equation (6) explicitly
shows the asymptotic L−4 behavior of VCP,WnW .

Figure 4 shows the CP interaction of a neutron between
two walls. The right panel shows its dependence of
VCP,WnW on both L and z while on the left panel one has the
z dependence of both VCP,WnW (dashed line) and V 


CP,WnW

(solid line), for three selected values of L.
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Fig. 3 Results for the CP interaction between a neutron and a wall. Adapted from [13]
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Fig. 4 Results for the CP interaction of a neutron between two walls, as a function of the neutron distance from the midpoint z. Adapted from [13]

4 Discussions and Concluding Remarks

In this work, we extend to neutron physics the phenomenol-
ogy of the CP forces developed in atomic and molecular
physics. We present the CP interactions between two neu-
trons, a neutron and a wall, and a neutron between two walls.
This work goes beyond the static limit, taking into consider-
ation the frequency dependence of the electric and magnetic
dipole polarizabilities of the neutron. It embraces the same
spirit as the work by Spruch and Kelsey [9] regarding
dynamic polarizabilities.

One finds that the CP interactions between two neutrons
and between a neutron and a wall have their long-
distance behavior driven by the low-energy dynamics of the
Compton sub-amplitude. Chiral dynamics provides reliable
predictions for Compton scattering observables up to around
the excitation energy of the Δ resonance, ∼ 300 MeV.
Therefore, our results are not reliable for distances shorter
than ∼ 30 fm. The low-energy dynamics associated with the
Δ resonance and the one-pion photoproduction dictate the
behavior of the CP interactions around 50 fm and 100 fm,
respectively. One observes the smooth transition from the
vdW-like to the asymptotic CP-like behavior over a range as
large as r ∼ 103 fm, though only beyond such distances do
our CP interactions reach the expected static limit.

In the asymptotic 1/r7 regime, the value of the neutron-
neutron CP potential may be too small to be of any relevance
to hadronic/nuclear physics. However, in the physics of
ultracold neutrons, the slower 1/r4 tail of the neutron-
wall and the wall-neutron-wall CP potentials may compete
with other important effects. For instance, the repulsive
Fermi pseudo-potential energies close to the surface of
nickel and aluminium are about 252 neV and 54 neV,
respectively [13]. This is comparable to the value of the
neutron-wall CP interaction at r ∼ 1500 fm. Clearly, a more
quantitative estimate of these effects ought to be carried out
by experiments aiming at confinement of ultracold neutrons.

For instance, our (4) and (5) take into account only the
electric dynamic dipole polarizability. Contributions from
the magnetic polarizability were addressed in the static limit
in [31] and are expected to be non-negligible. Besides, at
this length scale, the perfect conducting wall approximation
used here as in atomic physics does not model effects due
to the spatial extension of atoms and their arrangement in a
real metal condition; these and other considerations might
be especially important for neutron distances very close to
the wall.

Other possible places where CP interactions may have
some relevance are in systems with three and four
neutrons [15]. The existence of bound, virtual, or resonant
states in these systems is an old and persistent question
in few-body nuclear physics. While bound states are quite
improbable due to constraints of the nuclear interactions
fitted to other nuclei, the existence of three or four
neutron resonances remains a controversial topic [32–
36], especially due to a recent observation of a signal
compatible with a four-neutron resonance [37]. Without
dealing with the nuclear interaction part which can be
quite involved, one asks if a long-range electromagnetic
interaction such as the CP force is able to change the
position or either the nature of the possible three- and four-
neutron states. The potential energy due to the CP force
was estimated in [15] for two different configurations of
three neutrons, and one for four neutrons. An equilateral
triangle arrangement of neutrons with sides of length r gives
a repulsion of ∼ 1.73 �cα3

n/(πr10) and a linear chain of
three neutrons equally separated by r/2 gives an attraction
of ∼ −186 �cα3

n/(πr10). Four neutrons in a tetrahedron
configuration with edge length r lead to an attraction of
∼ −633 �cα4

n/(πr13).
Mahir was a frequent visitor to The Institute for Theo-

retical Atomic, Molecular, and Optical Physics (ITAMP),
gave seminars in 1995, 1996, 2000, and 2011, and collab-
orated widely in active discussions with Institute staff and
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postdoctoral fellows resulting in publications with Vasili
Kharchenko, Robin Côté, Eddy Timmermans, Paolo Tom-
masini, and Jack Wells.

Our work on neutron and proton Casimir-Polder forces
originated during Mahir’s 2011 visit to ITAMP, during
which he became aware of available frequency-dependent
electric and magnetic dipole polarizabilities of n and p,
complementing the well-known static polarizabilities. JFB
learned of Mahir’s earlier work (from 1990) proposing [38]
a method to look for color (QCD) van der Waals forces [39,
40] that inspired an experiment [41] and Mahir believed
that the time had come to take a fresh look at QED van
der Waals forces among neutrons and protons. His intuition
was correct—we found only the previous related study
(discussed in Section 1) from 1973 [14].

Mahir’s imagination and expertise in the quantum
mechanics of atomic, nuclear, and molecular systems is
evident in his many works, collaborations, and services to
science. His respectability and leadership in the Brazilian
nuclear physics community are attested by the formation of
generations of nuclear scientists, his recognized scientific
production and vision, and his pivotal role in promoting the
construction of the rare isotope beam facility RIBRAS at the
University of São Paulo. Mahir was truly an “ambassador of
physics” and he will be greatly missed.
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