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Abstract
Metformin (MF) is one of the most important medicaments in the market and has been extensively employed in treating 
type 2 diabetes. In this work, we have observed that, because of its positive charge, MF interacts with negatively charged 
gold nanoparticles, leading to agglomeration even at low concentrations (< 0.01 mmol L−1). This is accompanied by the 
rise of a plasmon coupling band at 645 nm, allowing its colorimetric monitoring with a limit of detection, LOD, of 1.9 
µmol L−1. However, above 0.01 mmol L−1, aggregation takes place, shifting the plasmonic band to 700 nm. Consequently, 
in this range of concentration, the optical correlation departs from that observed in the agglomeration regime. Therefore, 
for a critical evaluation, a systematic monitoring of the spectral changes is required to differentiate between the agglomera-
tion and aggregation regimes, as reported in this work. The interaction of metformin with gold nanoparticles has also been 
monitored by Raman spectroscopy, through the SERS effect. The large enhancement of the Raman signals promoted by the 
plasmonic nanoparticles improved the detection limit to 0.093 µmol L−1. While monitoring the plasmonic band has inher-
ently a low specificity, the Raman technique provides an unequivocal detection of metformin, based on its characteristic 
vibrational profiles.
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Introduction

Metformin (MF) is one of the most important drugs in 
the market for the treatment of type 2 diabetes melli-
tus [1–4] being consumed daily by 200 million patients 
[3]. This anti-hypoglycemic medicament is capable of 
increasing the peripheral uptake of glucose, improving 
the biological efficiency of the available exogenous/
endogenous insulin. Metformin has also been tested in 
other medical applications, such as in weight loss treat-
ment [5]. However, because of its increasing consump-
tion, it is being considered a threat as a contaminant in 
domestic effluents and aquatic systems [6]. Its concentra-
tion in several aquatic species can vary from 1 to 80,000 
µmol L-1 [6].

The biguanide structure of metformin (Fig. 1) encom-
passes five coordinating nitrogen atoms and has attracted 

the attention of bioinorganic chemists as a metal-chelating 
agent displaying biological activity [7, 8]. The molecule 
exhibits a strong basic character, with pKa = 13.25 and 
3.07. Its planar configuration leads to tautomeric struc-
tures admitting a single protonation between the central 
imino groups, stabilized by intramolecular hydrogen 
bonds. For this reason, metformin is normally found in 
the cationic form. Its analytical detection has been inves-
tigated by several techniques [9, 10], including electro-
chemical, high-performance liquid chromatography, thin-
layer chromatography, and liquid chromatography-mass 
spectrometry methods [2].

In this work, we have explored the cationic behavior 
of metformin to interact with negatively charged citrate-
gold nanoparticles. We have observed that the electrostatic 
interaction is strong enough to induce agglomeration and 
aggregation. This process can be monitored from the char-
acteristic color changes, with the rise of a plasmon cou-
pling band above 600 nm. Such chromatic changes can be 
employed as a simple and sensitive colorimetric method 
for metformin.
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Materials and Methods

Metformin was obtained from Sigma-Aldrich with high 
purity and employed as supplied.

The gold nanoparticles (AuNPs) used in the experi-
ments were synthesized by adapting the classical Turkevich 
method [11, 12]. Initially, 1.7 mL of a 10 mM HAuCl4 
solution was injected into a boiling 2.2 mM sodium citrate 
solution, with stirring. A pink-to-red solution was formed 
after 10 min containing the seeds of gold nanoparticles. 
Then, it was cooled to 90 °C, and an additional portion 
of 1.7 mL of 10 mM HAuCl4 was added and stirred for 
30 min. This step is intended to promote the nanoparticles 
growing in a regular form. Finally, a second portion of 1.7 
mL of 10 mM HAuCl4 was added, and the reaction solution 
was stirred at 90 °C for more than 30 min to accomplish 
the synthesis. This procedure aims to obtain monodisperse 
gold nanoparticles, above 30 nm, for improving the detec-
tion of the SERS signals using Raman spectroscopy. The 
solutions were monitored by their extinction spectra, DLS, 
and zeta size measurements, and used at room temperature, 
for no longer than a week.

The electronic spectra were recorded on a Hewlett-
Packard model 8453-A diode array spectrophotometer, 
with deuterium and tungsten lamps using rectangular 
cuvettes with a 1-cm optical path.

Raman measurements were carried out with a Wasatch 
(WP-785-C-ER-IL-IC f/1.3) high-throughput semi-
integrated extended range spectrometer. The equipment is 
configured for 785-nm Raman measurements (maximum 
laser output = 450 mW) and 105-μm fiber optics, with 
a cooled detector (15 °C), for working on the extended 
range (2000–3350 cm−1) at a focal distance of 11 mm. The 
spectrum was acquired using typically 100 mW of power 
and 1 s integration time, with the sample placed in a 10.0-
mm rectangular quartz cuvette.

Darkfield optical and hyperspectral images were 
obtained with a CytoViva ultra-resolution imaging system, 
mounted on an Olympus BX51 microscope, providing a 
suitable detection for recording single-nanoparticle scat-
tering spectra [13]. The sample was prepared by drop-
casting the suspension on a Nexterion ultraclean glass 
(Schott). The CytoViva system uses an cardioid annular 
condenser with a high annular aperture that enables the 

collection of higher-order diffracted light by the objec-
tive, increasing the resolution power up to the diffraction 
limit, reaching λ/5. With this configuration it is possible 
to record a dark-field optical image of a single nanoparti-
cle, where each pixel has 64 nm and carries a full visible 
spectral information.

A Zetasizer Nano S (Malvern, UK) instrument was 
employed for measuring dynamic light scattering and zeta 
potential. The samples were placed in special 10.0-mm 
cuvettes and illuminated with a He-Ne laser at λ = 633 nm, 
collecting the scattered light at 173°.

For the colorimetric assays involving gold nanoparti-
cles (AuNPs), a stock solution of metformin 1.25 mM was 
initially prepared. Aliquots of 5 µL of this solution were 
added to 5 mL of AuNP suspension, and UV-Vis spectra 
were recorded after 5 min of agitation. The same procedure 
was employed for the measurements of the Raman spectra 
of the aqueous solutions.

Calculation of the limits of detection, LODs, was carried 
out employing the expression LOD = 3.3 x σ / S, where S 
is the slope of the calibration curve and σ is the standard 
deviation of the response [14]. Analogously, the limits of 
quantification, LOQs, were calculated using the expression 
LOQ = 10 x σ / S, or simply LOQ = 3.3 LOD. In all the cases, 
the spectral data were carefully collected and processed, 
keeping the same experimental conditions for the experi-
ments, using a blank for baseline subtraction, and measuring 
directly the absorbance or intensities of the optical signals.

Results and Discussion

Nanoparticle Characterization

The citrate-stabilized gold nanoparticles [15] (AuNPs) 
exhibited a monomodal distribution in the DLS analyses 
(Fig. 2) consistent with an average size of 27.13 nm (by 
number and intensity) and polydispersivity PDI| = 0.09.

The typical red colors of the gold nanoparticles are asso-
ciated with the resonance of the loosely bound electrons, or 
plasmons, with the exciting radiation, as reported by Mie 
[16] in 1908. Accordingly, the plasmon excitation at a fre-
quency ω can occur in a radiating or radiationless mode, 
generating scattering and absorption profiles that are nor-
mally embedded in their overall extinction spectra.

The measured absorbance (A), is given by

where σext is the extinction cross-section encompassing scat-
tering and absorption, d is the sample path length, and N is 
the nanoparticle concentration. Mie has shown that when 

A =
N�

ext
d

2.303

Fig. 1   Molecular structure of metformin
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the dimensions (r) are much smaller than the light wave-
length λ (2r < λ/10) only the dipolar oscillations contribute 
significantly to the extinction cross-section. In this case, the 
scattering and absorption cross-sections become

where V is the nanoparticle volume, (4/3)πr3, ε is the metal 
dielectric function involving a real ( ε1, scattering) and imag-
inary part (ε2, absorption), given by

and εm is the dielectric of the surrounding medium. The 
wavelength dependence of the plasmon resonance is associ-
ated with the dielectric functions ε1(ω) and ε2(ω), where ω 
is the frequency of the exciting light.

The extinction cross-sections enclose a resonance con-
dition, leading to a maximum intensity when the denomi-
nator approaches zero, i.e., when ε = −2εm. The coherent 
oscillation of the electrons under the influence of elec-
tromagnetic radiation generates an oscillating dipole and 
an enhanced electric near-field (Es) at the nanoparticle 
surface, also known as a “hot spot.” Hot spots are also gen-
erated when the plasmonic nanoparticles become close, 
as in the case of agglomeration and aggregation. Under 
such circumstances, the exciting electromagnetic radiation 
can induce a plasmon coupling between the neighboring 
nanoparticles, generating an enhanced electric field in the 
region between two interacting dipoles. This fact is sup-
ported by theoretical studies [17–19] showing that in the 
interparticle region, the electric field is greatly intensi-
fied. In addition to the transversal plasmon resonance, the 
induced longitudinal resonance is responsible for a second 
peak, leading to a new plasmon coupling band that appears 
red-shifted in the extinction spectra [20–23].

Metformin exhibits a positive charge under normal con-
ditions and is a good ligand for soft metals [7, 8]. Here, 
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we have observed that it interacts with gold nanoparticles, 
leading to the rise of a plasmon coupling band in the vis-
ible/near-infrared region (Fig. 3). The interaction is favored 
electrostatically, due to the negative charges of the citrate-
stabilized gold nanoparticles.

The spectral changes observed during the titration of the 
gold nanoparticles with metformin have been monitored 
carefully, as shown in Fig. 3. Initially, there is a decay of the 
plasmon resonance band at 520 nm, and the rise of a new 
plasmon coupling band at 645 nm, according to a uniform 
profile, up to a metformin concentration of 0.011 mol L-1. 
Above this concentration, the plasmon coupling band starts 
to move to the red (700 nm) with a small increase in inten-
sity. Therefore, as shown in Fig. 3, there are two distinct 
spectral reactions, limited by the metformin concentration.

In the first region, corresponding to highly diluted solu-
tions, the gold nanoparticles start agglomerating. Agglom-
eration refers to a mild, quasi-reversible association of the 
nanoparticles in solution.  Under this condition, the nanopar-
ticles can interact through plasmonic effects, as reflected by 
the rise of the plasmon coupling band at 645 nm. For analyti-
cal purposes, the calibration curve obtained in this region led 
to a limit of detection (LOD) of  1.99 µmol L-1 and a limit of 
quantification (LOQ) of 6.58 µmol L-1, as shown in Fig. 4.

The second region starts at a concentration of met-
formin around 0.1 mmol L-1. Above this limit,  the plas-
monic band gradually shifts from 645 to 700 nm, indi-
cating the occurrence of aggregation. Aggregation refers 
to a strong, irreversible association of the nanoparticles.  
Although the spectral slope is reduced in this region, the 
noise becomes smaller due to the greatest signal stabil-
ity accompanying the aggregation kinetics. For this rea-
son, the calibration curve results are quite linear with a 
small standard error and can be applied for monitoring 
metformin at more concentrated solutions.  However, in 
this regime, the calculated LOD is meaningless because 
the extrapolation falls in the first agglomeration region, 
as shown in Fig. 4.  For the sake of completeness, there is 
also a third region, not shown in Fig. 4, corresponding to 

Fig. 2   DLS histograms, moni-
toring number and intensity, of 
the citrate-stabilized gold nano-
particles in aqueous solution
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the decay of the plasmonic bands due to the precipitation 
of the aggregated species.

Dynamic Light Scattering and Zeta Potentials

The occurrence of agglomeration and aggregation of the 
gold nanoparticles has also been monitored by dynamic 

light scattering (DLS) and zeta potential measurements 
(Fig. 5) and can be compared with the spectrophotomet-
ric titration shown in Fig. 3. In the range of concentration 
of MF from 0 to 1 10−2 mmol L-1, corresponding to the 
first agglomeration region in Fig. 3, the size of the nano-
particles increases slightly from 33 to 40 nm, while the 
zeta potentials remain nearly constant, around − 30 mV 

Fig. 3   Spectroscopic changes 
of the plasmonic spectra of 
citrate-stabilized gold nanopar-
ticles with the stepwise addition 
of metformin, showing the 
decrease of intensity of the plas-
mon band at 520 and the rise of 
the plasmon coupling band at 
645 nm, followed by the gradual 
shift to 700 nm, indicating two 
association regimes, ascribed to 
agglomeration (a–h) and aggre-
gation (h, i), respectively

Fig. 4   Calibration plots for the plasmonic detection of metformin 
at 645 nm, showing the distinct behavior at low (agglomeration) 
and high (aggregation) concentrations; the experimental errors are 
embedded in the size of the square dots

Fig. 5   Dynamic light scattering (A) and zeta potential (B) measure-
ments for the interaction of citrate-gold nanoparticles and metformin, 
at several concentrations, in an aqueous solution at room temperature
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(Fig. 5a–c. This means that the agglomeration has only a 
minor influence on the nanoparticle diffusion rates meas-
ured by the dynamic light scattering technique. This obser-
vation corroborates the idea of agglomeration as a revers-
ible or weak physical association of the particles, despite 
the pronounced changes observed in the plasmonic bands. 
Therefore, it is remarkable that the plasmonic interaction 
can be effective even at the relatively long distances sepa-
rating the agglomerated nanoparticles.

Above 1 × 10−2 mmol L-1, the metformin association with 
the citrate-gold nanoparticles starts decreasing the electro-
static stability predicted by the DLVO theory, inducing their 
aggregation. As shown in Fig. 5d, e, in this range of concen-
tration, the measured sizes by DLS increased dramatically 
from 40 to 105 nm or more, while the zeta potentials became 

systematically less negative. The measurements were limited 
by the precipitation of the aggregated nanoparticles above 
4 × 10−2 mmol L-1.

CytoViva Darkfield Hyperspectral Images

The agglomeration and aggregation of the gold nanoparti-
cles have also been monitored by darkfield microscopy. This 
technique enables the visualization of single nanoparticles 
and their scattering spectra. To corroborate the colorimetric 
analysis, the images of the gold nanoparticles were obtained 
for very diluted and more concentrated solutions of met-
formin. The presence of isolated, agglomerated, and aggre-
gated nanoparticles can be seen in Fig. 6, accompanied by 
their typical scattering spectra.

Fig. 6   Darkfield hyperspectral 
images for the initial citrate 
stabilized nanoparticles (A) 
and after the addition of 0.01 
(B) and 0.03 mmol L−1 C of 
metformin, and D–F their 
corresponding light scattering 
spectra, in the agglomeration 
(B, E) and aggregation (C, F) 
regimes, respectively
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In Fig. 6A and D, the image and scattering spectra cor-
respond to isolated spherical gold nanoparticles, showing a 
single maximum of around 650 nm. In Fig. 6B, E, the nano-
particles are agglomerated, exhibiting an additional peak 
associated with the plasmonic coupling. In Fig. 6C, F, the 
nanoparticles are aggregated, exhibiting multiple quadrupole 
resonances in the scattering spectra.

SERS Detection of Metformin

Although the interaction with gold nanoparticles provides an 
interesting way of monitoring metformin with high sensitiv-
ity, its analytical detection can be rendered more specific by 
monitoring the Raman spectra.

Metformin exhibits a characteristic Raman scattering 
profile, as shown in Fig. 7. The NH2 vibrational peaks are 
observed at 601 and 732 cm−1 (ωNH2), followed by the com-
posed C‒N + δNH2 peaks at 942, 1047, and 1089 cm−1 and 
the composed C = N + δNH2 peaks at 1283, 1425, 1486, 1598, 
and 1645 cm−1. The C-H and N-H stretching vibrational 
peaks are observed at 2945 and 3197 cm−1, respectively.

Although Raman spectroscopy allows monitoring of the 
molecules in aqueous solution, the signals are usually rather 
weak because of the small scattering factors involved. For 
this reason, normal Raman measurements require concen-
trated solutions, e.g., > 0.1 mol L−1, which are not suit-
able for analytical purposes. However, when the molecules 
are adsorbed onto plasmonic nanoparticles (Ag, Au), the 
observed Raman spectra can exhibit huge enhancements due 
to the SERS effect, or surface-enhanced Raman scattering 
[24–28]. The effect is observed when the exciting radiation 

coincides with the plasmon resonance band and is regulated 
by electromagnetic and chemical mechanisms [15, 29, 30].

The SERS electromagnetic mechanism is viewed as a clas-
sical resonance of the nanoparticle electrons with the incident 
light and leads to Raman enhancement factors from 104 to 
108 times for the molecules close to the surface, which are 
under the influence of the surface plasmon electric field. This 
effect is particularly strong in the conjunction of two nano-
particles, a region called “hot spot,” where the plasmonic 
coupling enhances the electric field by several orders of mag-
nitude. Therefore, the Raman spectra can become very strong 
when the plasmonic nanoparticles are in the associated form. 
On the other hand, the SERS chemical mechanisms require 
the direct interaction of the molecules with the surface plas-
mons, giving rise to charge transfer from the ligand HOMO 
levels to the nanoparticles’ Fermi level, or the inverse. This 
mechanism can be relevant even for isolated nanoparticles, 
in the absence of hot spots [31, 32].

The Raman spectra of metformin in the presence of gold 
nanoparticles can be seen in Fig. 8, and the large enhance-
ment observed is consistent with the SERS effect. The 
spectra exhibit typical NH2 vibrational peaks at 645 and 
744 cm−1 (ωNH2) and composed C = N + δNH2 major peaks at 
1311, 1448, and 93 cm−1, as well as the composed N = C-N 
vibration at 2120 cm−1. The C-C and C-N stretching vibra-
tions are observed at 945 and 1036 cm−1. The observed 
spectral pattern at several concentrations is rather similar, 
being compatible with an electromagnetic mechanism, since 
there is no evidence of coordination effects on the vibra-
tional peaks, as normally observed in the case of the chemi-
cal mechanism [15, 31–35].

Fig. 7   Normal Raman spec-
trum of MF (0.5 mol L−1) in 
aqueous solution, recorded at 
λexc = 785 nm, showing the typi-
cal ranges of the characteristic 
vibrational peaks
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The enhancement factor, EF [36–38], can be estimated 
from the intensities of the SERS (ISERS) and normal Raman 
spectra (IRaman) normalized by the relative concentrations 
of the species under observation (CRaman and CSERS), as 
expressed by the following equation:

By monitoring the vibrational peak observed around 
1448 cm−1, obtained under similar experimental conditions, 
in the normal Raman and SERS spectra shown in Figs. 7 and 
8, respectively, the enhancement factor has been estimated 
as 1.3 (±0.1) ×104. This result is compatible with the elec-
tromagnetic enhancement mechanism.

For analytical purposes, a calibration curve has been 
elaborated, as shown in Fig. 8  inset, by monitoring the 
strong peak at 1448  cm−1. From the standard deviation 
σ = 6.0 × 10−4 and slope = 0.0212, the limit of detection 
has been calculated as LOD = 3.3 x σ/slope = 0.093 µmol 
L−1, leading to the limit of quantification LOQ = 3.3 and 
LOD = 0.30 µmol L−1. In addition to the improved sensibil-
ity, the vibrational profiles provide a fingerprint of the mol-
ecule, allowing the unequivocal identification of metformin 
in aqueous solution.

EF =
I
SERS

I
Raman

C
Raman

C
SERS

Conclusions

The interaction of metformin with citrate-stabilized gold 
nanoparticles is favored by its positive charge and leads to 
pronounced changes in the plasmon resonance spectra. At 
very small metformin concentrations, the rise of the plasmon 
coupling band at 645 nm reflects the plasmonic coupling 
resulting from the nanoparticle’s agglomeration. However, 
at metformin concentrations of 0.01 mmol L−1 and above, a 
gradual shift of the plasmonic band to 700 nm is observed, 
corresponding to nanoparticle aggregation.

In the agglomeration regime, a good linearity has been 
obtained for the optical spectra versus the metformin con-
centration, yielding LOD = 1.9 µmol L−1. Although the plas-
monic method can be considered very sensitive, it should be 
noted that it lacks specificity, since it only reports the nano-
particle’s association phenomena. In this work, by monitor-
ing the plasmonic bands systematically, the agglomeration 
and aggregation regimes could be discriminated. However, 
because of their direct influence on the analytical calibra-
tion curves, the occurrence of the two regimes cannot be 
neglected, thus deserving critical consideration.

We have also shown that the interaction of metformin 
with gold nanoparticles leads to a strong enhancement of the 

Fig. 8   Raman (SERS) profiles 
for the titration of citrate AuNPs 
with metformin in an aqueous 
solution, at several concentra-
tions of MF, and a typical 
calibration curve for the peak at 
1448 cm-1 (inset), using a laser 
excitation of 785 nm; the errors 
are embedded in the size of the 
square dots
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Raman spectra through the SERS effect. According to the 
similar SERS spectral profiles obtained as a function of the 
concentration of metformin, the results are compatible with 
an electromagnetic mechanism. No additional evidence of 
metal-substrate coordination, typical of the chemical mecha-
nisms, has been observed. The good linearity of the Raman 
intensities allowed the construction of a calibration curve, 
leading to a limit of detection (LOD) of 0.093 µmol L−1 and 
a limit of quantification of 0.30 µmol L−1. These results are 
significant, competing with the existing analytical methods 
in the literature [2, 6, 9, 10]. For instance, the typical LOD 
values obtained with HPLC methods were in the range of 
0.2 to 1.218 µmol L−1 [6]. In addition, the fingerprint iden-
tification provided by the Raman spectroscopy is another 
important aspect of the method.
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