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Abstract We study a class of four-fermion Gross–Neveu
like models in four dimensions with critical exponents z = 2
and z = 3. The models with z = 2 are in general perturba-
tively nonrenormalizable but we show that there are in special
cases renormalizable in the context of the 1/N expansion. We
calculate explicitly the effective potential for these models.

1 Introduction

Horava–Lifshitz like field theories are distinguished for the
presence of higher spatial derivative terms in the Lagrangian
density, while the terms involving temporal derivatives have
the same form as in the usual relativistic theories [1–5]. In
this way the canonical structure is preserved avoiding a possi-
ble unitarity breakdown. Asymptotically, when terms involv-
ing dimensional parameters may be neglected, these theories
possess an anisotropic scale invariance with t → λ−z t and
x → λ−1x where z, the so called dynamical critical expo-
nent, measures the highest degree of the spatial derivatives.
Because of the higher derivatives, the ultraviolet behavior of
the Green functions is improved allowing the completion of
theories that otherwise would be nonrenormalizable. Indeed,
it has been argued that gravitation would be power count-
ing renormalizable for z = 3 [2]. However, because of the
intrinsic Lorentz symmetry breakdown which accompanies
these theories, one has to demonstrate that Lorentz invari-
ance emerges at low energies, since, as it is well known,
the Lorentz symmetry is tested experimentally with a high
degree of precision for the usual energy scale, see f.e. [6].
Nevertheless, there are different gravity models which do not
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display Lorentz invariance even in the low-energy limit, see
f.e. [7–10], therefore, the problem of recovering the Lorentz
symmetry at the low-energy limit requires special analysis.
Renormalization group methods are in general employed in
such endeavors [11–13].

In this work we will study in 3 + 1 dimensions a class
of models with quartic self-interactions of spinor fields. In
the development of field theory this class occupies a promi-
nent position both in its conceptual aspects as well as in its
applications. Thus, the Thirring or the Gross–Neveu model
in two space-time dimensions introduced new concepts as
anomalous dimension, fermion-antifermion bound states and
Wilson short distance expansions. Above two dimensions
these models are not renormalizable in the usual sense (in
2+1 dimensions they are renormalizable only in the con-
text of the 1/N expansion). In spite of that, Nambu–Jona–
Lasinio like models [14,15] have been used in four dimen-
sions as effective theories to investigate the chiral symme-
try breakdown, with cutoffs to control the ultraviolet diver-
gences. Horava–Lifshitz like four fermion models in 2+1
dimensions were analyzed in [16,17]. Some studies in four
dimensions with z = 3 have also been realized [18]. Here we
extend the three-dimensional studies performed in [16] to the
four-dimensional case by considering a class of models with
dynamical critical exponents z = 2 and z = 3. From another
side, our results generalize studies performed in [18,19] due
to consideration of an additional coupling.

The structure of this paper looks like follows. In the sec-
tion 2, we present the Horava–Lifshitz like Gross–Neveu
model that we are going to study, discuss some of its sym-
metries and introduce auxiliary fields adequate to develop
the 1/N expansion; there we also perform quantum calcu-
lations to fix the effective potential for the z = 3 case. In
Sect. 3 we consider the model with z = 2, examine the pos-
sibility of the chiral symmetry breaking and show that this
is most easily accomplished by adding a term linear in the
spatial derivatives to the Lagrangian density. Section 4 con-
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tains some observations on the model at finite temperature
and, finally, Sect. 5 contains a Summary where our results
are discussed.

2 Horava–Lifshitz like Gross–Neveu model

In this paper, we study the model described by the Lagrangian
density

L = ψ̄a

[
iγ 0∂0 + bz(iγ

i∂i )
z − mz

]
ψa

+ gσ

2N
(ψ̄aψa)

2 − gσ5

2N
(ψ̄aγ5ψa)

2 (1)

where ψa denotes a N -tuple, a = 1, 2, . . . N , of four-
component fermion fields. As the field ψa has mass dimen-
sion 3/2, the self-interactions above are perturbatively non-
renormalizable if z < 3. However, as we will shortly show,
with some caveats, they are renormalizable for z = 2 in the
context of the 1/N expansion and dimensional regularization
in the spatial part of the integration in the internal momenta.

For gσ5 = 0, m = 0 and z = 1 or 3, Eq. (1) describes
the usual Gross–Neveu model and one of its higher spatial
derivative extensions. They are invariant under the discrete
transformation ψa → γ5ψa . This symmetry is explicitly bro-
ken by the mass term mzψ̄aψa and also by the kinetic part of
the Lagrangian if z = 2. For gσ = gσ5 , m = 0 and z = 1 we
have the chiral Gross–Neveu model which is invariant under
the chiral transformation ψa → eiαγ5ψa . This symmetry is
also shared by the model with z = 3 but it is broken if m �= 0
or if z = 2. Actually, the model with z = 2 is invariant only
on the anisotropic scaling.

The essence of the 1/N expansion methodology [20,21]
that we will employ can be explained as follows. Within
this approach, one adjust the couplings of the theory so that,
taking into account the dependence on N of the amplitudes,
one constructs a systematic 1/N expansion. This is most
easily accomplished by introducing auxiliary fields (scalar
and pseudo-scalar, in our case) coupled to the fermions so
that the quartic fermionic coupling is rewritten as a cubic
coupling between the fermions and the auxiliary fields as
follows

L = ψ̄a

[
iγ 0∂0 + bz(iγ

i∂i )
z
]
ψa − σψ̄aψa

− N

2gσ

σ 2 − σ5ψ̄aiγ5ψa − N

2gσ5

σ 2
5 , (2)

By the use of the equations of motion for the auxiliary fields
σ and σ5 or by functionally integrating on them, we may
reobtain Eq. (1) with m = 0 [22]. In the 1/N expansion, the
propagator for the σ field, �σσ , receives in the tree approxi-
mation the contribution igσ /N . Besides that, in the same 1/N
order there is also the contribution coming from the one-loop
graph, so that the complete propagator in 1/N order is given

by the inverse of

	σσ (p) = − i N

gσ

+ N
∫

dk0d3k

(2π)4 Tr[S(k)S(k + p)], (3)

where S(k) denotes the propagator for one of the fermion
fields. Note that the factor N in the second term comes from
the fact that there are N fermion flavors. In the computation of
the Green functions, one uses the above propagator but one-
loop graphs with two internal fermion must be discarded as
they already have been incorporated into the propagator of
the field σ . Similar analysis can be extended to the propagator
for the σ5 field.

As the propagators for the auxiliary fields carry the 1/N
factor and any closed fermionic loop carries the factor N , a
contribution from an arbitrary Feynman diagram is propor-
tional to NL f −nσ , where L f is the number of fermionic loops,
and nσ is the number of propagators of the auxiliary fields.
Typically, one has L f − nσ ≤ −1, except for the one-loop
diagrams contributing to the fermionic determinant when the
fermions are integrated out. As a result, an arbitrary Feyn-
man diagram is proportional to 1/Na where a is some integer
≥ −1. This 1/N expansion can be treated as an alternative
to the usual loop expansion. As we will see within our calcu-
lations, the contributions to the effective potential we study
are the dominant ones, proportional to N .

In the new form of the Lagrangian, the chiral symmetry,
which holds for gσ = gσ5 , corresponds to the transformation
ψ → eiγ5θψ and
(

σ

σ5

)
→

(
cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

)(
σ

σ5

)
. (4)

Let σ0 and σ50 be the vacuum expectation values (v.e.v.)
of σ and σ5, respectively. If any of them is nonvanishing,
the discrete symmetry ψa → γ5ψa is explicitly broken. By
shifting the fields σ and σ5 so that σ → σ + σ0 and σ5 →
σ5 + σ50, the Lagrangian density becomes

L = ψ̄a

[
iγ 0∂0 + bz(iγ

i∂i )
z

−σ0 − iσ50γ5
]
ψa − σψ̄aψa − N

2gσ

(σ + σ0)
2

−σ5ψ̄aiγ5ψa − N

2gσ5

(σ5 + σ50)
2, (5)

furnishing the free propagator ( � k ≡ kiγi )

< ψa(k)ψ̄b(−k) >= S[k]δab
= i

γ0k0 − iσ50γ5 + bz( � k)z + σ0

k2
0 − σ 2

50 − b2
z k

2z − σ 2
0 + iε

δab, (6)

for z = 1 or 3 and

< ψa(k)ψ̄b(−k) >= S[k]δab = i
γ0k0 − iσ50γ5 + w

k2
0 − σ 2

50 − w2 + iε
δab, (7)
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with w = b2k2 + σ0, for z = 2. Thus, for z = 1 or 3, the
condition that the new auxiliary fields have vanishing v.e.v.
gives the tadpole equations

−i N σ0
gσ

−4Nσ0 I [σ0, σ50; z] = 0,

−i N σ50
gσ5

−4Nσ50 I [σ0, σ50; z] = 0, (8)

where

I [σ0, σ50; z] =
∫

dk0d3k

(2π)4

1

k2
0 − σ 2

50 − b2
z k

2z − σ 2
0 + iε

. (9)

The integral above can be easily calculated. We first integrate
on k0 and afterwards promote the remaining 3-dimensional
integral to d dimensions. For z = 3 and z = 1, respectively,
employing dimensional regularization in the spatial part, we
have

I [σ0, σ50; 3] =
∫

dk0ddk

(2π)(d+1)

μ3−d

k2
0 − σ 2

50 − b2
3k

6 − σ 2
0 + iε

=

− iπ

2bd/3
3

∫
ddk

(2π)d

μ3−d

√
k6 + σ 2

0 + σ 2
50

= i

4π2b3

1

d − 3
+ i

24π2b3
ln

(
σ 2

0 + σ 2
50

μ6

)

(10)

and

I [σ0, σ50; 1] =
∫

dk0d
dk

(2π)(d+1)

μ3−d

k2
0 − σ 2

50 − b2
1k

2 − σ 2
0 + iε

= − iπ

2bd1

∫
ddk

(2π)d

μ3−d
√
k2 + σ 2

0 + σ 2
50

= −i(σ 2
0 + σ 2

50)

8π2b3
1(d − 3)

− i(σ 2
0 + σ 2

50)

16π2b3
1

ln

(
σ 2

0 + σ 2
50

μ2

)
,

(11)

where, to simplify the final results, we have redefined the
renormalization spot, above designated by μ, to absorb some
finite constants (terms that vanish when d = 3 have been
neglected). The divergences in the above expressions may
be eliminated by conveniently defining the renormalized cou-
pling constants. For the chiral model we adopt the same coun-
terterm so that

1

gσ R
= 1

gσ

+ 1

π2b3

1

d − 3
,

1

gσ5R

= 1

gσ5

+ 1

π2b3

1

d − 3
, (12)

and therefore we can choose

1

g
≡ 1

gσ R
= 1

gσ5R

= − 1

6π2b3
ln

(
σ 2

0 + σ 2
50

μ6

)
. (13)

Assuming that b3 does not depend on μ, the invariance of
this result under the renormalization group,
(

μ
∂

∂μ
+ β

∂

∂g

)
ρ = 0, (14)

where ρ ≡
√

σ 2
0 + σ 2

50, fixes β = − g2

π2b3
, so that the model is

asymptotically free, which agrees with [18] (for study of the
renormalization group in Horava-Lifshitz theories see also
[23]).

One important consequence of Eq. (8) is the cancellation
of divergences in the two point vertex functions of the aux-
iliary fields. Indeed, up to one loop,

	σσ (p) = − i N

gσ

+ N
∫

dk0d3k

(2π)4 Tr[S(k)S(k + p)],

	σ5σ5(p) = − i N

gσ5

− N
∫

dk0d3k

(2π)4 Tr[S(k)γ5S(k + p)γ5]
(15)

and

	σ5σ (p) = i N
∫

dk0d3k

(2π)4 Tr[S(k)γ5S(k + p)]. (16)

For z = 3 the would be (logarithmic) divergences of these
expressions are in fact absent and we obtain

	σσ (0) = −8N
∫

dk0d3k

(2π)4

σ 2
0

(k2
0 − b2

3k
6 − σ 2

50 − σ 2
0 )2

= − Ni

3π2b3

σ 2
0

σ 2
0 + σ 2

50

,

	σ5σ5(0) = −8N
∫

dk0d3k

(2π)4

σ 2
50

(k2
0 − b2

3k
6 − σ 2

50 − σ 2
0 )2

= − Ni

3π2b3

σ 2
50

σ 2
0 + σ 2

50

,

	σ5σ (0) = −8N
∫

dk0d3k

(2π)4

σ0σ50

(k2
0 − b2

3k
6 − σ 2

50 − σ 2
0 )2

= − Ni

3π2b3

σ0σ50

σ 2
0 + σ 2

50

. (17)

Similarly, for z = 1 the highest (quadratic) divergence is
cancelled but a logarithmic divergence still persists. To elim-
inate this remaining divergence, the bare Lagrangian should
contain kinetic terms for the auxiliary fields but this can not
sustain since it would turn the model indistinguishable from
the Yukawa model. For this reason, in this case the model is
no longer renormalizable.

The effective potential for the z = 3 model may be
obtained by integrating the one-point function for the auxil-
iary field σ which gives (for the calculation of the effective
potential in Horava–Lifshitz models see [24–26])
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V [σ, σ5]/N = σ 2

2gσ

− 4i
∫

(dσ)σ I [σ, σ5; 3] + f [σ5]

= σ 2

2gσ

+ 1

2π2b3

σ 2

d − 3

+ (σ 2 + σ 2
5 )

12π2b3
ln

(σ 2 + σ 2
5 )

μ6

− σ 2

12π2b3
+ f [σ5], (18)

where the function f [σ5] is fixed by imposing that the deriva-
tive of V with respect to σ5 coincides with the one point
function of σ5. Proceeding in this way we find

f [σ5] = σ 2
5

2gσ5
+ 1

2π2b3

σ 2
5

d − 3
− σ 2

5

12π2b3
, (19)

resulting that

V [σ, σ5]/N = σ 2

2gσ
+ σ 2

5
2gσ5

+ 1

2π2b3

σ 2 + σ 2
5

d − 3

+ 1

12π2b3

[
(σ 2 + σ 2

5 ) ln
(σ 2 + σ 2

5 )

μ6 − σ 2 − σ 2
5

]
.

(20)

Thus, if one adopts the renormalizations (12) and (13) it
follows that for z = 3

V [σ, σ5]/N = (σ 2 + σ 2
5 )

12π2b3
ln

(
σ 2 + σ 2

5

σ 2
0 + σ 2

50

)

− 1

12π2b3
(σ 2 + σ 2

5 ). (21)

By computing the second order derivatives, we may check
that the system (17) is obtained. The above potential is rota-
tionally symmetric with an infinite number of vacua cor-

responding to the generated mass
√

σ 2
0 + σ 2

50, as discussed
after Eq. (13).

3 The model with z = 2

Let us now consider the case z = 2. Here, the term with
higher spatial derivatives, ψ̄a(iγ i∂i )

2ψa , breaks chiral sym-
metry and only the anisotropic scale invariance remains. This
last symmetry is also broken if either σ or σ5 or both acquires
a nonvanishing v.e.v..

Proceeding as before, let again σ0 and σ50 be the v.e.v. of
σ and σ5, respectively. The free fermion propagator is given

by Eq. (7) and the analogues of Eq. (8) are

−i
σ0

gσ

+ i
∫

dk0d3k
(2π)4 TrS(k) = −i

σ0

gσ

−4
∫

dk0d3k
(2π)4

w

k2
0 − σ 2

05 − w2 + iε
= 0,

−i
σ50

gσ5
+ i

∫
dk0d3k
(2π)4 Tr[iγ5S(k)]

= −i
σ50

gσ5
− 4σ50

∫
dk0d3k
(2π)4

1

k2
0 − σ 2

05 − w2 + iε
= 0.

(22)

By integrating on k0 we obtain

− σ0

gσ

+ 1

4π3

∫
d3k

w

(σ 2
05 + w2)1/2

= 0,

− σ50

gσ5
+ σ50

4π3

∫
d3k

1

(σ 2
05 + w2)1/2

= 0. (23)

We may now envisage various possibilities. Firstly, if
σ50 = 0 then σ0 = 0 and reciprocally. In fact, if σ50 = 0
the second equation in Eq. (23) is automatically satisfied
whereas the integral in the first equation vanishes in the con-
text of dimensional regularization implying that σ0 = 0.
Reciprocally, if σ0 = 0 the first equation dimensionally reg-
ularized also implies that σ50 = 0. One should emphasize
that these results are strictly dependent on the absence of a
term, b1ψ̄aiγ i∂iψa , linear in the spatial derivatives (we shall
return to this point shortly).

For general nonvanishing σ0 and σ05, the elliptic integrals
in the system of equations (23) may not be expressed in terms
of simple functions. However, by assuming that σ50 is small,
we may go on with our analysis by developing the integrals
in (23) up to second order in σ50. We have, employing dimen-
sional regularization,

∫
d3k

w

(σ 2
50 + w2)1/2

≈ lim
d→3

∫
ddk

(
1 − σ 2

50

2w2

)
= − π2σ 2

50

2σ
1/2
0 b3/2

2

(24)

and
∫

d3k
1

(σ 2
50 + w2)1/2

≈ lim
d→3

∫
ddk

(
1

w
− σ 2

50

2w3

)

= −2π2σ
1/2
0

b3/2
2

− π2σ 2
50

8σ
3/2
0 b3/2

2

, (25)

Using these results we may obtain the effective potential,
which is given by

Vef f /N = σ 2

2gσ

+ σ 2
5

2gσ5

+ σ 1/2σ 2
5

4πb3/2
2

+ σ 4
5 σ−3/2

128πb3/2
2

· (26)
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Instead of expanding in σ50, another procedure consists in
introducing the term �L = b1ψ̄aiγ i∂iψa in the Lagrangian,
with b1 small so that it could be treated perturbatively as we
will discuss. Assuming that σ50 = 0, a great simplification
is achieved. In zeroth order in b1, the fermion propagator,
given in Eq. (7), is

< ψa(k)ψ̄b(−k) > = i
γ 0k0 + ω

k2
0 − ω2 + iε

δab

=
(

i P+
k0 − ω + iε

− i P−
k0 + ω − iε

)
δab,

(27)

where ω = b2k2 + σ0 and P± = 1±γ0
2 are orthogonal pro-

jectors. Because of this form of the propagator, the analytic
expression for the integrand associated to a closed fermionic
loop, having at its vertices just matrices which commute with
γ0, may be expressed as a sum of terms which have poles
either in the upper or in the lower part of the complex plane
of the integration variable k0. Of course, such expression
vanishes upon integration over k0 [23]. Thus, for example,
the two point vertex functions of the auxiliary fields, adopt-
ing dimensional regularization on the spatial part of the loop
integration variable, are (	σσ5 = 0 due to the just mentioned
property of the fermion propagator)

	σσ = −i
N

gσ
+ NTr

∫
dk0d

dk

(2π)d+1
[S(k)S(k − p)] = −i

N

gσ
,

	σ5σ5 = −i
N

gσ5
− NTr

∫
dk0d

dk

(2π)d+1
[S(k)γ5S(k − p)γ5]

= −i
N

gσ5
+ N I [p0, p] (28)

where

I [p0, p] = −2
∫

dk0d
dk

(2π)d+1

×
[

1

(k0 − w(k) + iε)(k0 − p0 + w(k − p) − iε)

+ 1

(k0 + w(k) − iε)(k0 − p0 − w(k − p) + iε)

]

= 2i
∫

ddk

(2π)d

[
1

p0 + w(k) + w(k − p)
+ (p0 ↔ −p0)

]
.

(29)

We find that the propagator of the σ field is trivial constant
since the one-loop correction to it is zero, similarly to [23].
Notice that since we have taken σ50 = 0 then σ0 is also zero;
in such situation, it may be convenient to introduce a mass
parameter for the propagator of the ψ field. We do it through
a formal replacement w(k) → b2k2 + m in (29), where m
is the just mentioned parameter. By performing the above

straightforward integration, we get

I [p0, p] = i

b2

	[1 − d/2]
(4π)d/2

[(
p2

4
+ p0

2b2
+ m

b2

)d/2−1

+
(
p2

4
− p0

2b2
+ m

b2

)d/2−1
]

, (30)

which for d = 3 gives

I [p0, p] = − i

4πb2

⎡
⎣

√
p2

4
+ p0

2b2
+ m

b2
+

√
p2

4
− p0

2b2
+ m

b2

⎤
⎦ .

(31)

Thus, whereas the effective propagator for the σ is a con-
stant independent of momentum, the corresponding effective
propagator for the σ5 field for large momentum decreases
as p−1 or 1/

√
p0. This improvement that happens in the

1/N expansion is crucial to construct a renormalizable the-
ory (it does not occur in the loop expansion). Taking into
account this behavior, the degree of superficial divergence for
a generic graph γ in the models with nontrivial one-loop two
point vertex functions [this includes the model with gσ = 0
but not the one with nonvanishing gσ in (1)] of the auxiliary
field σ5 whose propagator linearly decreases as the momen-
tum grows can be calculated as follows

δ(γ ) = 5L − 2nF − nA, (32)

where L is the number of loops and nF and nA are the num-
bers of internal fermion and auxiliary lines. Using now the
topological identities

L = nF + nA − V + 1, 2nF + NF = 2V, 2nA + NA = V,

(33)

where NF and NA are the number of external lines associated
to the fermion and auxiliary fields and V is the number of
vertices in γ , we obtain

δ(γ ) = 5 − 3

2
NF − 2NA. (34)

Thus, all the divergences may be eliminated by a wave func-
tion renormalization of the ψ field and renormalizations of
the couplings constants and of the parameters m and b2.

Similarly, for generic z = 2, 3, . . ., using (6), we found

δ(γ ) = 3 + z − 3

2
NF − zNA. (35)

As the above results are valid to arbitrary 1/N order, we note
that all the divergences are located in the two point func-
tions (NF = 2 or NA = 2) and in the three point functions
(NF = 2 and NA = 1, i.e. Nσ = 1 or Nσ5 = 1). As before,
they may be eliminated by a renormalization of the parame-
ters of the theory and of the wave function of ψ . Therefore
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Fig. 1 Tadpole graph with two
insertions of the vertex
b1ψ̄iγ i∂iψ . The continuous and
dashed lines stand for the
propagators for the fermion and
sigma fields

this class of theories, involving σ5 field but not the σ field
is renormalizable in the 1/N expansion while the theories
involving the σ field whose propagator is trivial are evidently
non-renormalizable.

We still have to discuss the nonvanishing of the σ field
tadpole due to the introduction of the term linear in the spatial
derivatives. In this new condition, up to second order in b1,
the tadpole equation becomes (see Fig. 1)

− iσ0

gσ

+ 2b2
1

∫
dk0d3k
(2π)4 k2

[
1

(k0 − w + iε)2(k0 + w − iε)

− 1

(k0 + w − iε)2(k0 − w + iε)

]
= 0 (36)

so that

− iσ0

gσ

+ ib2
1

b2
2

∫
d3k

(2π)3

k2

(k2 + σ0
b2

)2 = 0. (37)

By using dimensional regularization, we obtain the finite
result

0 = σ0

gR
− 3b2

1

8πb2
2

√
σ0

b2
. (38)

This equation allows for σ0 �= 0. We may also calculate the
effective potential by integrating the last result. However,
here we obtain it from the effective action given by

	e f f = −
∫

d4x
Nσ 2

2gσ

− Nb2
1

2

∫
d4x

∫
d4k

(2π)4 Tr[S(k) � kS(k) � k]

= −
∫

d4x
Nσ 2

2gσ

− 2N
b2

1

b5/2
2

∫
d4x

∫
dk0d3k

(2π)4

k2

k2
0 + (k2 + σ)2

,

(39)

where S[k] denotes the fermion propagator given in Eq. (27).
Assuming σ to be constant, disregarding a factor of volume
and changing the overall sign, we obtain

Vef f = N
σ 2

2gσ

− N
b2

1σ
3/2

4πb5/2
2

. (40)

One may then verify that its minimum is reached at σ = σ0

satisfying Eq. (37). For positive gσ , the general behavior of
this effective potential is shown in Fig. 2.

Fig. 2 General aspect of the effective potential for the one-loop effec-
tive potential in Gross–Neveu model with z = 2

4 Finite temperature considerations

One can generalize the calculation of this effective poten-
tial for finite temperature. The importance of this study is
motivated by the fact that finite temperature effects allow
to describe phase transitions making our study more inter-
esting from the phenomenological viewpoint. To proceed in
this case, we follow the Matsubara methodology, that is, we
require, in the Eq. (39), that the zeroth component of the
momentum be discrete, k0 → 2πT (n + 1

2 ), with n inte-
ger, and T is the temperature, and the integral over k0 been
replaced by the sum over n. After calculating the trace, one
arrives at

Vef f [T ] = Nσ 2

2gσ
+ 2N

b2
1

b5/2
2

T

∞∑
n=−∞

∫
d3k

(2π)3
k2

4π2T 2
(
n + 1

2

)2 + (k2 + σ)2
· (41)

To develop this expression, it is convenient to do first the
sum and afterwards the integral, as it has been done in [26].
We use the formula

∞∑
n=−∞

1

a2 + (
n + 1

2

)2 = π
tanh πa

a
, (42)

with a2 = (k2+σ)2

4π2T 2 , a dimensionless parameter. Therefore we
have

Vef f [T ] = Nσ 2

2gσ

+ 2N
b2

1

2b5/2
2

∫
d3k

(2π)3

k2

k2 + σ
tanh

k2 + σ

2T
.

(43)

We note that in the limit of zero temperature this result repro-
duces (39) after integration over k0. Here we assume that the
dimensional regularization is used.

It remains now to calculate the above integral. To do it,
one can introduce dimensionless variables: first of all, we
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replace the integration variable k = |k| as k = √
T t , with t

being a dimensionless integration variable (remind that the
mass dimension of the temperature is 2 due to the anisotropic
scaling), then, introduce the dimensionless parameter α2 =
σ
T . We have

Vef f [T ] = Vef f (0) + T 3/2

2π2

Nb2
1

b5/2
2

I (44)

where Vef f (0) is the effective potential at zero temperature
given by (40) and

I =
∫ ∞

0
dt

t4

t2 + α2

(
tanh

t2 + α2

2
− 1

)
. (45)

However, the integral I can be calculated only numerically,
and it tends to zero at the low temperature limit α → ∞, as
it must be, and to the constantC0 � −0.678904 at the higher
temperature limit α → 0.

5 Summary

Let us discuss our results. We have formulated a set of
four-fermion Lifshitz-like models and showed, with use of
the dimensional regularization, that they are power-counting
renormalizable within 1

N expansion and dimensional regu-
larization. For z = 2, we obtained explicitly the two-point
functions of the auxiliary fields, and for z = 3, we verified
that the renormalization of the coupling constant removes
also the divergence appearing in the two-point function of the
auxiliary field. We discussed two possible ways to avoid van-
ishing of the tadpole for the model which occurs for z = 2:
firstly, we make a series expansion in the v.e.v. of the pseu-
doscalar auxiliary field, and secondly, we introduced a term
linear in the derivatives of the fermion field but with the v.e.v.
of the pseudoscalar field equal to zero (σ50 = 0). In all these
cases we calculated the effective potential, and for z = 2 we
included the finite temperature counterpart. It is natural to
expect that these results can be generalized for other values
of the critical exponent, and that for all even z the situations
will be rather similar. Also, we note that the results for other
spinor-scalar couplings, or, as is the same, for other four-
fermion interactions, do not essentially differ. The study of
the low energy limit and possible Lorentz symmetry restora-
tion is presently in progress.
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