Eur. Phys. J. C (2020) 80:518
https://doi.org/10.1140/epjc/s10052-020-8100-x

THE EUROPEAN ()]
PHYSICAL JOURNAL C e

updates

Regular Article - Theoretical Physics

1/N expansion for Horava-Lifshitz like four-fermion models

M. Gomes'?, T. Mariz>°, J. R. Nascimento><, A. Yu. Petrov>-4, A. J. da Silval®

! Instituto de Fisica, Universidade de Sdo Paulo, Caixa Postal 66318, Sdo Paulo, SP 05315-970, Brazil
2 Instituto de Fisica, Universidade Federal de Alagoas, Maceid, Alagoas 57072-270, Brazil
3 Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, Jodo Pessoa, Paraiba 58051-970, Brazil

Received: 2 April 2020 / Accepted: 29 May 2020 / Published online: 10 June 2020

© The Author(s) 2020

Abstract We study a class of four-fermion Gross—Neveu
like models in four dimensions with critical exponents z = 2
and z = 3. The models with z = 2 are in general perturba-
tively nonrenormalizable but we show that there are in special
cases renormalizable in the context of the 1 /N expansion. We
calculate explicitly the effective potential for these models.

1 Introduction

Horava—Lifshitz like field theories are distinguished for the
presence of higher spatial derivative terms in the Lagrangian
density, while the terms involving temporal derivatives have
the same form as in the usual relativistic theories [1-5]. In
this way the canonical structure is preserved avoiding a possi-
ble unitarity breakdown. Asymptotically, when terms involv-
ing dimensional parameters may be neglected, these theories
possess an anisotropic scale invariance with ¢+ — A 7%t and
X — A~!'x where z, the so called dynamical critical expo-
nent, measures the highest degree of the spatial derivatives.
Because of the higher derivatives, the ultraviolet behavior of
the Green functions is improved allowing the completion of
theories that otherwise would be nonrenormalizable. Indeed,
it has been argued that gravitation would be power count-
ing renormalizable for z = 3 [2]. However, because of the
intrinsic Lorentz symmetry breakdown which accompanies
these theories, one has to demonstrate that Lorentz invari-
ance emerges at low energies, since, as it is well known,
the Lorentz symmetry is tested experimentally with a high
degree of precision for the usual energy scale, see f.e. [6].
Nevertheless, there are different gravity models which do not
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display Lorentz invariance even in the low-energy limit, see
f.e. [7-10], therefore, the problem of recovering the Lorentz
symmetry at the low-energy limit requires special analysis.
Renormalization group methods are in general employed in
such endeavors [11-13].

In this work we will study in 3 4+ 1 dimensions a class
of models with quartic self-interactions of spinor fields. In
the development of field theory this class occupies a promi-
nent position both in its conceptual aspects as well as in its
applications. Thus, the Thirring or the Gross—Neveu model
in two space-time dimensions introduced new concepts as
anomalous dimension, fermion-antifermion bound states and
Wilson short distance expansions. Above two dimensions
these models are not renormalizable in the usual sense (in
2+1 dimensions they are renormalizable only in the con-
text of the 1/N expansion). In spite of that, Nambu—Jona—
Lasinio like models [14,15] have been used in four dimen-
sions as effective theories to investigate the chiral symme-
try breakdown, with cutoffs to control the ultraviolet diver-
gences. Horava—Lifshitz like four fermion models in 2+1
dimensions were analyzed in [16,17]. Some studies in four
dimensions with z = 3 have also been realized [18]. Here we
extend the three-dimensional studies performed in [16] to the
four-dimensional case by considering a class of models with
dynamical critical exponents z = 2 and z = 3. From another
side, our results generalize studies performed in [18,19] due
to consideration of an additional coupling.

The structure of this paper looks like follows. In the sec-
tion 2, we present the Horava—Lifshitz like Gross—Neveu
model that we are going to study, discuss some of its sym-
metries and introduce auxiliary fields adequate to develop
the 1/N expansion; there we also perform quantum calcu-
lations to fix the effective potential for the z = 3 case. In
Sect. 3 we consider the model with z = 2, examine the pos-
sibility of the chiral symmetry breaking and show that this
is most easily accomplished by adding a term linear in the
spatial derivatives to the Lagrangian density. Section 4 con-
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tains some observations on the model at finite temperature
and, finally, Sect. 5 contains a Summary where our results
are discussed.

2 Horava-Lifshitz like Gross—Neveu model

In this paper, we study the model described by the Lagrangian
density

£ = [iv°30 + btiy' 8 = m* | v

8o 7 2_ 8os 7 2
+2N(wa¢a) ZN(anSI/fa) ()

where ¥, denotes a N-tuple, a = 1,2,... N, of four-
component fermion fields. As the field ¥, has mass dimen-
sion 3/2, the self-interactions above are perturbatively non-
renormalizable if z < 3. However, as we will shortly show,
with some caveats, they are renormalizable for z = 2 in the
context of the 1 /N expansion and dimensional regularization
in the spatial part of the integration in the internal momenta.

For gos = 0,m = 0 and z = 1 or 3, Eq. (1) describes
the usual Gross—Neveu model and one of its higher spatial
derivative extensions. They are invariant under the discrete
transformation ¥, — ysv¥,. This symmetry is explicitly bro-
ken by the mass term m?/, 1/, and also by the kinetic part of
the Lagrangian if z = 2. For g5 = go5,m =0andz = 1 we
have the chiral Gross—Neveu model which is invariant under
the chiral transformation v, — €/*¥5v,. This symmetry is
also shared by the model with z = 3 butitis brokenif m # 0
or if z = 2. Actually, the model with z = 2 is invariant only
on the anisotropic scaling.

The essence of the 1/N expansion methodology [20,21]
that we will employ can be explained as follows. Within
this approach, one adjust the couplings of the theory so that,
taking into account the dependence on N of the amplitudes,
one constructs a systematic 1/N expansion. This is most
easily accomplished by introducing auxiliary fields (scalar
and pseudo-scalar, in our case) coupled to the fermions so
that the quartic fermionic coupling is rewritten as a cubic
coupling between the fermions and the auxiliary fields as
follows

£ =Fu [i7°00 + boliv 007 Yo — oVt

Y o7 — ostlivsv — o @
—=—0" —05Y4iysVYa — =03,
285 G g

By the use of the equations of motion for the auxiliary fields
o and os or by functionally integrating on them, we may
reobtain Eq. (1) with m = 0 [22]. In the 1/N expansion, the
propagator for the o field, A, 4, receives in the tree approxi-
mation the contributionig, /N. Besides that, in the same 1/N
order there is also the contribution coming from the one-loop
graph, so that the complete propagator in 1/N order is given
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by the inverse of

dkod3k
2n) Tr[S(k)S(k + p)], (3)

iN
loo(p)=——+N
8o

where S(k) denotes the propagator for one of the fermion
fields. Note that the factor N in the second term comes from
the fact that there are N fermion flavors. In the computation of
the Green functions, one uses the above propagator but one-
loop graphs with two internal fermion must be discarded as
they already have been incorporated into the propagator of
the field o. Similar analysis can be extended to the propagator
for the o5 field.

As the propagators for the auxiliary fields carry the 1/N
factor and any closed fermionic loop carries the factor N, a
contribution from an arbitrary Feynman diagram is propor-
tional to NLf s where L 7 is the number of fermionic loops,
and n, is the number of propagators of the auxiliary fields.
Typically, one has Ly — ns, < —1, except for the one-loop
diagrams contributing to the fermionic determinant when the
fermions are integrated out. As a result, an arbitrary Feyn-
man diagram is proportional to 1/N¢ where a is some integer
> —1. This 1/N expansion can be treated as an alternative
to the usual loop expansion. As we will see within our calcu-
lations, the contributions to the effective potential we study
are the dominant ones, proportional to N.

In the new form of the Lagrangian, the chiral symmetry,
which holds for go = g4, corresponds to the transformation
Y — e/"5%y and

o cos(20) sin(20) o
. . 4
<a5> - <—sm(29) cos(20) ) \ o5 @
Let 0g and osg be the vacuum expectation values (v.e.v.)
of o and o5, respectively. If any of them is nonvanishing,
the discrete symmetry ¥, — y5v¥, is explicitly broken. By

shifting the fields o and o5 so that 0 — ¢ + op and 05 —
05 + 050, the Lagrangian density becomes

£ = [iv 90 + be iy )?
. - N 2
—00 — i050¥5] Va — 0VaVa — 2—(0 + 00)
8o

N
S (o5 + 050)%, )
8os

—0osVaiysa —

furnishing the free propagator (K = k'y;)

< Ya (k)Y (—k) >= S[k]8ap
_; voko — iosoys + b (k) + oo

Sab- 6
k3 — 02y — b2k% — o +ie ab ©

forz =1or3and

< Valk) (k) 5= SIKIS,p = 1 OOV %

— Oab
k2 —o02) —w? +ie
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with w = byk? + 0y, for z = 2. Thus, for z = 1 or 3, the
condition that the new auxiliary fields have vanishing v.e.v.
gives the tadpole equations

—iN ;—2 —4Noyl[og, 050; 2] = 0,

—iN 2% —4NosoI oo, 050; 2] = 0, (®)
where

dkod’k 1
1oy, 050; 2] = .9

(2m)* ko — USO bzkZZ — o +ie

The integral above can be easily calculated. We first integrate
on ko and afterwards promote the remaining 3-dimensional
integral to d dimensions. For z = 3 and z = 1, respectively,
employing dimensional regularization in the spatial part, we
have

I 3 dkod%k w3
00, 050; = =
0730 Q) @D k2 Z 62— b2k6 — ol + ie€
i / dk w3
T 5.d/3 d
25 @) 6 + 62 +02,
A S S 95 + 95
4m2b3d —3  247m2bs ub
(10)
and

dkod?k wi—d
QM)+ 42 — 62 — b2k2 — o} + i€
im dk /L3_d
“opd d

27 ) COT 12 4 62 + 0,

_ —ilog +o3) ilog +0g) n og + 9%
872b3(d —3)  167x2b3 uro )

1[0’0,(750; 1] = /

(1)

where, to simplify the final results, we have redefined the
renormalization spot, above designated by p, to absorb some
finite constants (terms that vanish when d = 3 have been
neglected). The divergences in the above expressions may
be eliminated by conveniently defining the renormalized cou-
pling constants. For the chiral model we adopt the same coun-
terterm so that

1 Lot
g  mlbzd—3

8o R
S - (12)
Sosx 8o Twib3d —3’

and therefore we can choose

2., 2
1 — 1 - _ 1 20 + 959 .
8o R 8osg 67T2b3 '[,LG

(13)

oQ | =

Assuming that b3 does not depend on u, the invariance of
this result under the renormalization group,

a a
u—+pB—)p=0, (14)

ou ag
where p =, /og + aszo,ﬁxesﬂ = —%—2, so that the model is

asymptotically free, which agrees with [18] (for study of the
renormalization group in Horava-Lifshitz theories see also
[23]).

One important consequence of Eq. (8) is the cancellation
of divergences in the two point vertex functions of the aux-
iliary fields. Indeed, up to one loop,

iN dkod’k
on(p) = =22 + N / e TS WS+ )
N dkod’k
Fogos (1) = == = N [ LTS WyysSik -+ ]
035
(15)
and
dkod’k
Foso () = iN / ST TSWsSG P (16)

For z = 3 the would be (logarithmic) divergences of these
expressions are in fact absent and we obtain

L. () = —8N dkod’k oy
A Qm)* (k2 — b3k6 — 02 — o?)?
_ Ni o;
T 372hs 002 + 0’520 ’
dkod’k 03
Tos05(0) = —8N
0505( ) (27.[)4 (k2 b2k6 _ GSO _ UO )2
_ Ni oq
B 37‘[21?3 0'02 —+ 0'520 ’
dkod’k 00050
Tos0 (0) = —8N
a5 () Qm)* (k3 — b3k® — 02 — 0f)?
Ni 00050

~ 3a’by o+l (4
Similarly, for z = 1 the highest (quadratic) divergence is
cancelled but a logarithmic divergence still persists. To elim-
inate this remaining divergence, the bare Lagrangian should
contain kinetic terms for the auxiliary fields but this can not
sustain since it would turn the model indistinguishable from
the Yukawa model. For this reason, in this case the model is
no longer renormalizable.

The effective potential for the z = 3 model may be
obtained by integrating the one-point function for the auxil-
iary field o which gives (for the calculation of the effective
potential in Horava—Lifshitz models see [24—26])
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2
Vlo,05]/N = ;— —4 /(dU)UI[U, os; 3]+ flos]
8o

o2 1 o

200 T2 d—3
(02 +02) (6% +02)
1272b3 n u®
2
1272bs

2

+ flos], (18)

where the function f[os] is fixed by imposing that the deriva-
tive of V with respect to o5 coincides with the one point
function of o5. Proceeding in this way we find

flosl= B4 L% _ % (19)
o5] = — ,
T 2gos | 2nlbsd —3  1272bs
resulting that
Vio,osi/N = = GE B
0,0 = —
> 280 2805 @ 272by d—3
(02 +03)
2 2 5 2 2
+12n2b3 |:(o -|-0'5)IHT—U —05i|.
(20)

Thus, if one adopts the renormalizations (12) and (13) it
follows that for z = 3

2 2 2 2
Vo, 05]/N = @ +U5)ln<g +05>

2 2 2
1274b3 oy + o5
1
~ T30, (0% +02). Q1)

By computing the second order derivatives, we may check
that the system (17) is obtained. The above potential is rota-
tionally symmetric with an infinite number of vacua cor-

responding to the generated mass ,/ag + 0520, as discussed
after Eq. (13).

3 The model with z = 2

Let us now consider the case z = 2. Here, the term with
higher spatial derivatives, w_a (i yi Bi)zlpa, breaks chiral sym-
metry and only the anisotropic scale invariance remains. This
last symmetry is also broken if either o or o5 or both acquires
a nonvanishing v.e.v..

Proceeding as before, let again o and o5 be the v.e.v. of
o and o5, respectively. The free fermion propagator is given

@ Springer

by Eq. (7) and the analogues of Eq. (8) are

dkod’k

i) S s = —i 22

8o (27) 8o
dkod’k w

—4 ) 12 2 =0
Qm)* kg —ogs — w? +ie

) . dkod3kT[. SO
—l—+l/w r[iysS (k)

. 050 dkod’k 1
805 (2m)* kcz) — 0025 —w? +ie

.00 .

—]—

(22)
By integrating on ky we obtain
o 1 w
. T 13 ’ PN
8o 4 (0'05 + w*=) /
050 050 3 1
—+ = | dk————+=0
85 413 (035 + w2

(23)

We may now envisage various possibilities. Firstly, if
os0 = 0 then o9 = 0 and reciprocally. In fact, if o590 = 0
the second equation in Eq. (23) is automatically satisfied
whereas the integral in the first equation vanishes in the con-
text of dimensional regularization implying that o9 = 0.
Reciprocally, if op = 0 the first equation dimensionally reg-
ularized also implies that 059 = 0. One should emphasize
that these results are strictly dependent on the absence of a
term, b1,iy' 9;1,, linear in the spatial derivatives (we shall
return to this point shortly).

For general nonvanishing oy and ops, the elliptic integrals
in the system of equations (23) may not be expressed in terms
of simple functions. However, by assuming that o5 is small,
we may go on with our analysis by developing the integrals
in (23) up to second order in o59. We have, employing dimen-
sional regularization,

2 2 2
3 w . d 05 03,
— =1 1]— 20 ) =~ 50
fd k(ﬁszo w2 ‘ k( 2w2> 20063
(24)
and
1 1 2
(050 + w2)1/2 d—3 w 2w?3
2 172 )
2770 oy 25)
3/2 3/2,3/2°
by 80" b5

Using these results we may obtain the effective potential,
which is given by

2 2 1/2 .2 4 __—3/2
VN = Z 0o R 3//2~ (26)
280 2805  4mwby'"  1287b
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Instead of expanding in 50, another procedure consists in
introducing the term AL = by,iy’d;1, in the Lagrangian,
with b1 small so that it could be treated perturbatively as we
will discuss. Assuming that o590 = 0, a great simplification
is achieved. In zeroth order in bj, the fermion propagator,
given in Eq. (7), is

0
- . ko + w
< Yafp(—) > =i T2,
ky —w* +ie
iPy iP_
= — . Sabs
ko —w+ie ko+w—ie

27)

where w = byk? 4+ o and Py = are orthogonal pro-
jectors. Because of this form of the propagator, the analytic
expression for the integrand associated to a closed fermionic
loop, having at its vertices just matrices which commute with
Y0, may be expressed as a sum of terms which have poles
either in the upper or in the lower part of the complex plane
of the integration variable ko. Of course, such expression
vanishes upon integration over k¢ [23]. Thus, for example,
the two point vertex functions of the auxiliary fields, adopt-
ing dimensional regularization on the spatial part of the loop
integration variable, are (I';; = 0 due to the just mentioned
property of the fermion propagator)

[ESX)
2

N dkodk N
—i— + NTr [SK)Stk — p)l = —i—,

1" -
7 8o (Qm)d+! 8o

Tpere = —i - _ NT dkoddkSk S(k
o505 = —l—— — r W[ (K)ysSk — p)ys]

805
. N
= —i— + NIlpy, p] (28)
805
where

dkod?k
1 s =2 ——
[po. Pl (2m)d+1

1
* [(ko “wk) +ie)ko — po + w(k — p) — i)

1
* (ko + w(k) — i€)(ko — po — w(k — p) +ie)}
%k

i [
@0 Lpo +w® + wk— p)

+ (po < —PO)] .
(29)

We find that the propagator of the o field is trivial constant
since the one-loop correction to it is zero, similarly to [23].
Notice that since we have taken 059 = 0 then oy is also zero;
in such situation, it may be convenient to introduce a mass
parameter for the propagator of the v field. We do it through
a formal replacement w(k) — bok® 4+ m in (29), where m
is the just mentioned parameter. By performing the above

straightforward integration, we get

fipo pp = L TL= 202 o m
PO L= a2 4 "2 by

2 e m\
—_— - — 4 — , 30
+ ( 4 2b; + bz) i| (30)

which for d = 3 gives

; 2 2
i P2 po  m  [pE py  m
Hpopl= ——— | (P2 PO P2 PO ML
Lpo. P] 4nb2|:\/4+2b2+b2+ 4 2b2+b2:|
(3D

Thus, whereas the effective propagator for the o is a con-
stant independent of momentum, the corresponding effective
propagator for the o5 field for large momentum decreases
as p~or 1/ J/Po. This improvement that happens in the
1/N expansion is crucial to construct a renormalizable the-
ory (it does not occur in the loop expansion). Taking into
account this behavior, the degree of superficial divergence for
a generic graph y in the models with nontrivial one-loop two
point vertex functions [this includes the model with g, = 0
but not the one with nonvanishing g, in (1)] of the auxiliary
field o5 whose propagator linearly decreases as the momen-
tum grows can be calculated as follows

8(y) =5L —2np —na, (32)

where L is the number of loops and nr and n 4 are the num-
bers of internal fermion and auxiliary lines. Using now the
topological identities

L=ngp+nga—V+1, 2ng+Np=2V, 2npg+Ny=V,

(33)

where N and N 4 are the number of external lines associated
to the fermion and auxiliary fields and V is the number of
vertices in y, we obtain

3
8(y)=5—§NF—2NA. (34)

Thus, all the divergences may be eliminated by a wave func-

tion renormalization of the i field and renormalizations of

the couplings constants and of the parameters m and b;.
Similarly, for generic z = 2, 3, .. ., using (6), we found

3
5()/)=3+Z—§NF_ZNA. (35)

As the above results are valid to arbitrary 1/N order, we note
that all the divergences are located in the two point func-
tions (Nr = 2 or Ny = 2) and in the three point functions
(Np =2and Ny = 1,1.e. Ny = 1 or Nys5 = 1). As before,
they may be eliminated by a renormalization of the parame-
ters of the theory and of the wave function of . Therefore
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Fig. 1 Tadpole graph with two
insertions of the vertex
byyriy'd;y. The continuous and
dashed lines stand for the
propagators for the fermion and
sigma fields

T
I

this class of theories, involving o5 field but not the o field
is renormalizable in the 1/N expansion while the theories
involving the o field whose propagator is trivial are evidently
non-renormalizable.

We still have to discuss the nonvanishing of the o field
tadpole due to the introduction of the term linear in the spatial
derivatives. In this new condition, up to second order in by,
the tadpole equation becomes (see Fig. 1)

10

5 [ dkod’k 1
+ 2b7 n — .
8o (2m) (ko —w +ie)=(ko + w —ie€)

1
B (ko+w—ie)2(k0—w+ie)} - (36)
so that
_ oo lb PR -
27)® (K2 + T2

By using dimensional regularization, we obtain the finite
result

0= a0 3b% 00 .
gr  8wb3\ by
This equation allows for oy # 0. We may also calculate the

effective potential by integrating the last result. However,
here we obtain it from the effective action given by

(38)

r -——/d4N” Mﬁ/ / Te[S(k) KS(k)
eff = e 2n) r[Sk) K K1
4 No? / 4‘/de% K2
=— -2
/d X 285 N=p5 5/2 d Qn)* k(2)+(k2 +0)2’

(39)

where S[k] denotes the fermion propagator given in Eq. (27).
Assuming o to be constant, disregarding a factor of volume
and changing the overall sign, we obtain

o2 b2532

Verp = No—

22, — (40)

4r bs/ 2
One may then verify that its minimum is reached at o = oy
satisfying Eq. (37). For positive g, the general behavior of

this effective potential is shown in Fig. 2.

@ Springer
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Fig. 2 General aspect of the effective potential for the one-loop effec-
tive potential in Gross—Neveu model with z = 2

4 Finite temperature considerations

One can generalize the calculation of this effective poten-
tial for finite temperature. The importance of this study is
motivated by the fact that finite temperature effects allow
to describe phase transitions making our study more inter-
esting from the phenomenological viewpoint. To proceed in
this case, we follow the Matsubara methodology, that is, we
require, in the Eq. (39), that the zeroth component of the
momentum be discrete, kg — 2nT(n + %), with n inte-
ger, and 7T is the temperature, and the integral over ko been
replaced by the sum over n. After calculating the trace, one
arrives at
o2 b2

+2N yz

d3k k2
Z / ( 3

2
n==oo? P 4n272 (w4 1) 4 (k2 4+ 02

VerrlT] =

.(41)

To develop this expression, it is convenient to do first the
sum and afterwards the integral, as it has been done in [26].
We use the formula

> 1 tanh wa
=7 , (42)
n=—oo @® + (n + 3) “
witha? = (z J{;; , adimensionless parameter. Therefore we
have
Vosir1 = N Loy 2 f LS SR S
. = an .
e/t 240 27 ) 3K +o 2T

(43)

We note that in the limit of zero temperature this result repro-
duces (39) after integration over ko. Here we assume that the
dimensional regularization is used.

It remains now to calculate the above integral. To do it,
one can introduce dimensionless variables: first of all, we
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replace the integration variable k = |k| as k = +/T't, with ¢
being a dimensionless integration variable (remind that the
mass dimension of the temperature is 2 due to the anisotropic
scaling), then, introduce the dimensionless parameter o> =

%. We have

o) L Nbi 44
Voer[T] =V, — ]
errIT] err(0) + 702 bg/z (44)

where V.77 (0) is the effective potential at zero temperature
given by (40) and

e’} f4 f2 2
I= / dt tanh ——% 1) (45)
0 12+ o? 2

However, the integral / can be calculated only numerically,
and it tends to zero at the low temperature limit « — 00, as
it must be, and to the constant Coy ~ —0.678904 at the higher
temperature limit « — 0.

5 Summary

Let us discuss our results. We have formulated a set of
four-fermion Lifshitz-like models and showed, with use of
the dimensional regularization, that they are power-counting
renormalizable within % expansion and dimensional regu-
larization. For z = 2, we obtained explicitly the two-point
functions of the auxiliary fields, and for z = 3, we verified
that the renormalization of the coupling constant removes
also the divergence appearing in the two-point function of the
auxiliary field. We discussed two possible ways to avoid van-
ishing of the tadpole for the model which occurs for z = 2:
firstly, we make a series expansion in the v.e.v. of the pseu-
doscalar auxiliary field, and secondly, we introduced a term
linear in the derivatives of the fermion field but with the v.e.v.
of the pseudoscalar field equal to zero (050 = 0). In all these
cases we calculated the effective potential, and for z = 2 we
included the finite temperature counterpart. It is natural to
expect that these results can be generalized for other values
of the critical exponent, and that for all even z the situations
will be rather similar. Also, we note that the results for other
spinor-scalar couplings, or, as is the same, for other four-
fermion interactions, do not essentially differ. The study of
the low energy limit and possible Lorentz symmetry restora-
tion is presently in progress.
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