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O objetivo deste trabalho é apresentar uma formulação para 
a análise e síntese de estruturas em regime elastoplástico sob 
carregamentos fixos, variáveis e mistos. Um dos principais 
problemas e a determinação das relações independentes de 
equilíbrio envolvendo os momentos fletores, residuais ou não, nas 
seções transversais críticas. A solução dada visou a geração 
automática dessas relações independentes de equilíbrio para casos_ 
absolutamente gerais, utilizando convenientemente o Princípio dos 
Trabalhos Virtuais. É apresentada também a formulação essencial 
para a solução dos di versos problemas propostos, detalhando os 
processos de programação matemática utilizados. 

• 1- INTRODUÇÃO 

O software ora apresentado pretende ser uma ferramenta de 
utilização extremamente simples para aplicação no projeto de 
pórticos planos de baixa altura, nas cohdições em que forem 
válidas as hipóteses do método das rótulas plásticas. o programa 
desenvolvido cobre qualquer problema que relacione cargas 
externas aos diversos tipos de colapso plástico, seja o simples, 
o incremental ou o de plastificação alternada, prevendo o cálculo 
de parâmetros associados não só à análise mas também a problemas 
de síntese da estrutura. As hipóteses básicas constam de Neal 
(1] ou Heyman [2], por exemplo; aí também estão discutidas as 
hipóteses adicionais visando problemas de síntese e que 
implicariam no relacionamento linear do peso da estrutura aos 
momentos de plastificação total. 

Os problemas propostos são todos formulados para solução 
direta ou iterativa como problema de programação matemática, 
resolvidos pelo algorítmo simplex, conforme Bazaraa [3] . 
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2-POSSIBILIDADES PREVISTAS

Todos os problemas previstos foram enfrentados do ponto de
vista dos teoremas^ estáticos tanto do colapso simples "como do
colapso incrementai; esses problemas poderiam ser formulados
todos como um problema de programação linear e são os seguintes:

a) Analise sob carregamento fixo

É determinado um único parâmetro T de proporcionalidade
define todos os momentos de plastificação total, isto é:

{Mp} = T{Kp}

onde {K^J é um vetor constante.

A modelagem do problema seria:

(l)

Minimize T
Sujeito a:

-{M,} {M} s (Mp)

[C] {M} = {B} (2)
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para osTa e ^
definiria um limite de

b) Análise sob carregamento variável

Seriam determinados dois parâmetros, T.

momentos de plastificação total; T^

plastificação alternada e T^ um limite de colapBo incrementai.

Sendo .«màx e Mn os limites algébricos para os momentos
fletores, correspondentes à situação de serem computados
elasticamente, e sendo {M,,} = T{K,,}, o problema de determinar T

pode ser posto como:
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O limite de acomodação estrutural T seria o menor dói

valores T^ e T,.

c) Síntese sob carregamento fixo

Assumindo como objetivo minimizar o peso da estrutura, cnml
as hipóteses discutidas em [l], é possível representar a função~x|
cuja minimização equivale a esse objetivo como;

X = (M }fc{L} (5);

onde L^ é a soma dos comprimentos das barras com cada um dos M
1 ' -"~ ~" "~~ "'" "'" "PÍ";

Supondo que os momentos de plastificação sejam definidos
agora por diversos parâmetros:

{Mp} = [K] {T} (6),

com [K] tendo um único elemento, constante, por linha, o problema;
pode ser posto como:

Minimize

{Mp}t{L}

Sujeito a:

-{M }^ (M}s (M }

[C] {M}={B}
(7)

d) Síntese sob carregamento variável

Com a indefinição das seções transversais das barras, não
se tem a priori possibilidade de calcuíar a enyqltõria elástica
de momentos expressa pêlos vetares {A"lax} e {^'°1"}V-e possível;
evitar recair num caso extremamente complexo de programação não.

linear com a mera introdução de um processo iterativo
rudimentar, sugerido ,por Domaszewski [4]; parte-se de uma
distribuição inicial {Í} de momentos de inércia, resolvendo j

todo um problema de análise sob carregamento variável para]
determinar um primeiro conjunto de momentos de plastificação
total {M]^ e. com isso redefinir {l}; essa redefinição é feita

com uma expressão do tipo:

I = c(Mp)'y (8)

com_c-e 7 col"lstantes, associáveis a cada forma possível de seção

ou para "famílias" usuais de perfis. Com isso é
possível montar um processo de convergência testando ou"o -p~eso X
ou cada um dos M .

p,'
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O problema pode ser modelado em cada passo como:

Sotar (Do e ^p^o = [K] {T)o

Ínimize x = (Mp}t{L)

ijeito a:

{M,} + {Mn^} {M,

,m i n
(M } + [M"

[C] {M^} = {0}

p'

a - {M,
(9)

scalcular:

I = c (Mp)7

|&' Repetir o processo até haver convergência de X, {T} ou

J. '

Na modelagem proposta são necessárias adaptações^no_ sentido
Ltrabalhar"co1n variáveis não negativas, o que é um pi

Lamentar aqui omitido.

VIAÇÕES INDEPENDENTES DE EQUILÍBRIO

{0} ou [C] (M) = {B}, que aparecemAs expressões [C] (M }

modelagens dos problemas propostos, constituem^-sejm^jLaçõ^
'de~eç^Ylíbrio envolvendo esforços selecionados, ^no

Í80''apenas" os-momentos fletores, e as cargas previstas. _Um^

ÍtoiTmaïs complicados da solução desses Problemas__é,_a 9eraç
:omátï"ca-dessas" relações, para casos absolutamente ^g^rais^
rolvendo técnicas matriciais típicas tanto da

|^ce8so~dos"esforços quanto da do'processo dos desloca,mentos^e
listas '"por"'Przemieniecki [5] ou [6] para uma análise por

ïStruturação com o processo de esforços.
|~"Um"p?ímeiro "passo'nessa geração'é criar as relações ^gera.
ÏiequilÍbno," envolvendo reações de apoio, es£or(;os_^axl;al;s'

g?or^'o7^orta'ntes,' '"momentos" 'fïetores e carregamentos^ ex^rnos^
»Bas~" relações~' são"" selecionadas as indePen_dentes, ^

S8teriormente"com um algoritmo típico de uma eliminação
ïílBs-,-~s-áo~'selecïonados as que podem ser expressas apenas em

Srmos dos momentos fletores e do carregamento externo.
'De~uma~"maneira "geral as relações de equilíbrio podem ser

>resentadas matricialmente por:

O tM] (P) + [N] {F,} (F) (10)

lê:

[N] são matrizes retangulares envolvendo cossenos diretores
das direções das barras em relação ao sistema giooa-L;

vetar dos esforços de extremidade de barra;
vetar das ações nadais aplicadas;
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{F ) vetar das reações complementares só nas coordenadas onde

existem vínculos.

A equação pode ser escrita na forma:

[E] {P*} = {F}

onde:

[E] = t [M] [N] ]

{px} =
{p}

{F,}

(11)

(12)

(13)

Pensando na geração dessas matrizes, sejam supostas, para

uma barra, três sistemas de coordenadas locais:

a) Típico do processo dos esforços, em relação ao qual os
esforços seriam independentes, e com direções associadas à barra;
o vetar de esforços seria {P};

b) Típico do processo dos deslocamentos, em relação ao qual os
deslocamentos seriam independentes, e com direções associadas à
barra; o vetor de esforços seria {P^,} e o de deslocamentos (ô }.

c) Típico do processo dos deslocamentos, em relação ao qual os
deslocamentos seriam também independentes, e com direções
associados ao sistema global, da estrutura; o vetar de esforços
seria {P } e o de deslocamentos (6 ).

Sendo {u} o vetar de deslocamento no sistema global, é
extremamente simples gerar [/3^] ^ e [/3^] ^ , para a barra i, tais

que:

(õe}i - CW^i

<y i = c^ií")

(14)

(15)

Com as relações de equilíbrio da barra é também imediato
gerar [-y ] ^tal que:

{peíi = [-^e]i{p}i

No outro sistema é fácil obter também:

{pg}i - [^]i{p}i

(16)

(17)

ou diretamente, ou usando o P.T.V. para relacionar [7^], a [-y,J ^ .

Assim, estando {Pg}^ e {P }^ em equilíbrio, supondo

deslocamentos virtuais {5g}^ e (õ }^ compatíveis, portanto

relacionáveis por:

{^}.- ^i<ôg)i (18>

tem-se, do P.T.V.:

^ (p^i = <ô9)Ï<pg}i

donde:

{^}Ï ^Ï ^eh - ^Ï^h

portanto:

(pg)i = ^e]t^eh

e com isto:

^-«^e'l
Com {Pj e {P} incluindo em sequência todos os {Pg}^ e

{p} é fácil fazer:

(Pg) = tYg] {P}
(20)

com:

t-rj °

[Tg], ... [0] ... CO]

[0] ... b^i ••• w

[0] ... [0] ... [7<,ln J

(21)

e:

{p} =

{p)l

{p}i

{p}n

{^} -

tpg^

{pq)i

{pg}"j

(22)

Sendo {F*} o vetor {F } de reações complementares só que

agora expandido para todas'as coordenada^ notais ^erijias^a^
BÏBtema""'gÏobal de referência, as forças {F}, [f^] e i^gj
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constituem uin^ estado de forças em equilíbrio, ao qual se
impor um^ estado ^de deslocamentos virtuais, compatíve:Ts,~~com' (Sï"e

relacionados por:

{5g} = ^ (U}

Com isso, do P.T.V.;

{6g}t{Pgl = {")t{{F} - {F;}}

Com a (23) :

{u}tt^]t{Pg} = {u}t{{F} - {F;}}

donde:

[^{Pg} + {F;} = {F}

É fácil criar [N] para fazer a expansão:

{F^} ° [N] {F^.}

e como [P^] = ÍYg]{P}, tem-se:

t/3g]t tYg]{P} + [N] {F^} = {F}

Com isso então tem-se:

fM] = [^Jfc [^J

ou, particionando:

[M] =? [^g]Ï ^g]i

Com isso tem-se as relações gerais de equilíbrio:

(23)

onde:

[E] {P*} = {p}

[E] = [[M] [N]]

{^} -
{p}

{F,}

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

de eli£^ÊSdls^s,,Ï%ï^g^ai-8_.é..fãcn' ,por um Procedimento
ró de Gauss selecionar aquelas independentes ^^"sï

envolvam só momentos e forças externas; as restantes não

estariam em princípio envolvidos no processo de cálculo e só
serviriam para uma determinação final de esforços internos e
reações.

4-APRESENTAÇÃO DO PROGRAMA

O programa desenvolvido, apresentado em [7], utiliza a
linguagem FORTRAN-77. Quanto ao espaço de memória necessário para
executá-lo, vai depender não só do espaço gasto para a
codificação do programa mas também das dimensões das matrizes e
vetares necessários para o cálculo do pórfcico. Convém lembrar que
esse espaço é limitado em 640 Kbytes de acordo com o equipamento
que está sendo utilizado, do tipo PS 386.

Para dimensionar as matrizes e os vetares, foi utilizado o
comando PARAMETER em que há necessidade de especificar somente as
seguintes variáveis auxiliares:

Ml: número de barras (NBAR) /
M2: número de nós (NNOS)
M3: número de parâmetros referentes aos momentos de plastificação

total das barras (MP)
M4: número de nós vinculados (NNV)
M5: número de coordenadas globais carregadas (NNC)

O programa-fonte, identificado pelo nome PASMRP.FOR, é
composto de um programa principal e mais 8 sub-rotinas, descritas
na Tabela l.

O programa trabalha com 3 arquivos. O primeiro é o de entrada
de dados que deverá ser criado pelo usuário utilizando-se um
editor qualquer. Os dois arquivos restantes são criados pelo
programa; será utilizado para armazenar os coeficientes das
relações independentes de equilíbrio e o outro para guardar os
dados de entrada e saída dos resultados da estrutura.

Quanto à unidade a ser utilizada para a entrada de dados e
saída dos resultados, fica á critério do usuário.

Sendo:

COD1 = l;2 -> análise sob carregamento fixo;
COD1 =3 -* síntese sob carregamento fixo;
COD1 =4 -> análise sob carregamento variável;
COD1 =5 -> síntese sob carregamento variável,

é possível compor o diagrama de estrutura da Figura l .
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constituem uin^ estado de forças em equilíbrio, ao qual se
impor um^ estado ^de deslocamentos virtuais, compatíve:Ts,~~com' (Sï"e
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{5g} = ^ (U}
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{6g}t{Pgl = {")t{{F} - {F;}}
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{u}tt^]t{Pg} = {u}t{{F} - {F;}}
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[^{Pg} + {F;} = {F}
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{F^} ° [N] {F^.}
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t/3g]t tYg]{P} + [N] {F^} = {F}
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fM] = [^Jfc [^J
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[M] =? [^g]Ï ^g]i

Com isso tem-se as relações gerais de equilíbrio:

(23)

onde:

[E] {P*} = {p}

[E] = [[M] [N]]

{^} -
{p}

{F,}

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

de eli£^ÊSdls^s,,Ï%ï^g^ai-8_.é..fãcn' ,por um Procedimento
ró de Gauss selecionar aquelas independentes ^^"sï
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na Tabela l.
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Quanto à unidade a ser utilizada para a entrada de dados e
saída dos resultados, fica á critério do usuário.

Sendo:

COD1 = l;2 -> análise sob carregamento fixo;
COD1 =3 -* síntese sob carregamento fixo;
COD1 =4 -> análise sob carregamento variável;
COD1 =5 -> síntese sob carregamento variável,

é possível compor o diagrama de estrutura da Figura l .
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SUB- DESCRIÇÃO 
ROTINA 

CIMP Determina o expoente ")'" e a cons tante ucu referentes à 
relação entre o momento ·de inércia e o momento de plas-
tificação total para os diversos tipos de seções trans-
ver sais usuais. 

DADRES Impressão dos dados do pórtico e dos resultados do pro-
grama . 

ENVOLT Cálculo da envoltória elástica dos momentos fletores. 

EQUIL Determina as relações independentes de equilíbrio de 
pórticos planos. 

GAUSS1 Resolução de sistemas de equaçõe s pelo método de Gauss 
para matrizes não simétricas. 

GAUSS2 Resolução d e s istemas de equações pelo método de Gauss 
para o caso de matriz simétrica armazenada na forma com 
pleta e com vários termos independentes. 

PERFIL I Determina o expoente ")'" e a constante ucu referentes à 
relação entre o momento de inércia e o momento de plas-
tificação total dos perfis I. 

SIMPLEX Otimização de problemas sujeitos a restrições lineares . 

4-REFERÊNCIAS BIBLIOGRÁFICAS 

[1] NEAL, B . G. The plastic methods o f structural analysis. 
3rd . ed . London, Chapman and Hall, 1977 . 218p. 
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(3] BAZARAA, M. S . & JARVIS, J . J. Linear programming and network 
flows. New York, John Wiley & Sons, 1977. 578p. 

[4] DOMASZEWSKI, M. & SAMP-STANISLAWSKA, E.M. Optimal shakedown 
design o f f r ames by linear programming . Compute~s &. 
Structures, 21 (3) o 379 - 385; 1985. 

[5] PRZEMIENIECKI, J.S. Theory o f matrix structural anal ysis. 
New York, McGraw-Hill, 1968. 474p. 

[6] PRZEMIENIECKI, J. S. & DENKE, P.H. Joining o f complex 
substructures by the matrix force method. Journal Aircraft, 3 
(3) : 236-243, 1966. 

[7] CAMILO, L.H., Problemas de análise e síntese no método das 
~ótulas plásticas . 280p . , 1991 . (Dissertação de Mestrado), 
Area de Engenharia de Estruturas, Escola de Engenharia de São 
Carlos da Universidade de São Paulo. 
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DESCRIÇÃO

CIMP Determina o expoente "y" e a constante "c" referentes à

relação entre o momento de inércia e o momento de plas-

tificação total para os diversos tipos de seções trans-
versais usuais.

DADRES Impressão dos dados do pórtico e dos resultados do pro-
grama.

ENVOLT Cálculo da envoltõria elástica dos momentos fletores.

EQUIL Determina as relações independentes de equilíbrio de
pórticos planos.

GAUSSl Resolução de sistemas de equações pelo método de Gauss
para matrizes não simétricas.

GAUSS2 Resolução de sistemas de equações pelo método de Gauss
para o caso de matriz simétrica armazenada na forma com
pleta e com vários termos independentes.

PERFILI Determina o expoente "•y" e a constante "c" referentes à

relação entre o momento de inércia e o momento de plas-
tificação total dos perfis I.

SIMPLEX Otimização de problemas sujeitos a restrições lineares.
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