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ABSTRACT

The use of magnetic nanoparticles for magnetic hyperthermia cancer treatment is a rapidly developing
field of multidisciplinary research. From the material’s standpoint, the main challenge is to optimize the
heating properties of the material while maintaining the frequency of the exciting field as low as
possible to avoid biological side effects. The figure of merit in this context is the specific absorption rate
(SAR), which is usually measured from calorimetric experiments. Such measurements, which we refer
to as heating curves, contain a substantial amount of information regarding the energy barrier
distribution of the sample. This follows because the SAR itself is a function of temperature, and reflect
the underlying magneto-thermal properties of the system. Unfortunately, however, this aspect of the
problem is seldom explored and, commonly, only the SAR at ambient temperature is extracted from the
heating curve. In this paper we introduce a simple model capable of describing the entire heating curve
via a single differential equation. The SAR enters as a forcing term, thus facilitating the use of different
models for it. We discuss in detail the heating in the context of Néel relaxation and show that high
anisotropy samples may present an inflection point related to the reduction of the energy barrier
caused by the increase in temperature. Mono-disperse and poli-disperse systems are discussed in detail
and a new alternative to compute the temperature dependence of the SAR from the heating curve is

presented.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The basic idea behind magnetic hyperthermia is to explore the
energy dissipated as heat when magnetic nanoparticles are
excited by an external high frequency magnetic field [1-8]. On
the one hand this process is of substantial academic interest in
light of the intricate relation between the heating power and the
magnetic properties of the material [9-14]. On the other hand,
several applications based on this technique have also been
proposed [15,16], the most notable of which is in oncology, where
the nanoparticles are used as local heating centers to eliminate
tumorous cells [8,17,18].

Magnetic hyperthermia experiments usually measure the
temperature variation of the sample under the application of a
time varying magnetic field, commonly approximated by a
harmonic wave of the form H(t) = Hy cos wt. The specific absorp-
tion rate (SAR) — a figure of merit of the experiment — is usually
the only extracted parameter, computed from the initial slope of
the measured data. Such procedure clearly squanders valuable
information. For, embedded in the heating curve are details
concerning the entire temperature dependence of the SAR.
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To illustrate the importance of such knowledge, note that in
practically all dynamical models describing the magnetic proper-
ties of nanoparticles [11], the temperature (T) always appears in
ratios of the form E/kT, where E is some effective barrier which,
more often than not, is the fundamental quantity dictating the
magnetic properties of the system. Whence, from knowledge of
the temperature dependence of the SAR, one may extract infor-
mation (qualitative at least) about the distribution of energy
barriers in the system.

Several authors have also reported the existence of heating
curves with an inflection point at small times (being initially
convex instead of concave) [2,7,19,20]. One may argue that these
initial points reflect an intrinsic response time of the experimen-
tal setup and should thence be discarded (e.g., transients in the
coil which produce the magnetic field). Even though this is in fact
true, it has also been reported that the response time may
actually vary from one sample to another, an effect whose
physical interpretation is not immediately obvious. Indeed, as
we show in this paper, samples with high magnetic anisotropy
may present an inflection point that is entirely unrelated to any
response times. As we discuss, this is a direct consequence of the
fact that the SAR is itself a function of temperature which, for
some systems, may vary significantly over the temperature
ranges involved in the experiment. Clearly, such property may
incite altercations as to what value best represents the SAR and,
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more importantly, what impact this may have on actual oncolo-
gical treatments.

In this paper we discuss a simple model to describe the
heating curve in magnetic hyperthermia experiments. Besides
its simplicity, this model also provides a direct link between the
calorimetric and magnetic properties of the nanoparticles. Albeit
not our primary goal, we also propose a new method of data
analysis that, with sufficient care, may be successfully employed
to extract information from real systems. More importantly,
however, it is our hope that the present discussion may provide
additional insight into the physical processes taking place in this
important experiment.

The vast range of experimental systems (including in vivo
experiments) clearly inhibits a general treatment of the problem.
Thus, our focus is on a framework that is simple enough to
represent at least a broad range of conditions. In this sense, it is
interesting to avoid model containing spatial variables, as e.g.,
temperature gradients. For these would result in partial differ-
ential equations that are strongly dependent on the boundary
conditions of the experiment. We thus approach the problem
from the viewpoint of lumped element models; that is, we replace
spatially distributed systems with discrete entities that approx-
imate the real system under certain conditions. This allows us to
describe the heating curve via a simple ordinary differential
equation (DE), which is not only more easily tractable, but also
more general: all properties of a given system are entirely
represented by parameters appearing in the DE and may, there-
fore, be fitted from experiment.

The starting point for our analysis is based on the following
very important argument. During the heating experiment the
particle ensemble continually undergoes dynamic hysteresis
loops with a period of ~ 107> s. Energy is thus being continually
dissipated, with a rate that depends not only on the external field
and the magnetic properties of the sample, but also on the
temperature, which itself changes during the experiment. In this
sense, the system should never reach a steady state. However, the
time scales of heat conduction are much larger than the average
hysteresis cycle (heating experiments extend well beyond
hundreds of seconds). Thus, at every instant, the average power
dissipated by the nanoparticles in the form of heat (S), may be
taken to a very good approximation as an average over a large
number of steady state hysteresis cycles; that is, we write S = S(T).

In Section 2 we define the proposed model and discuss some of
its basic properties. In order to provide a definite example to
illustrate its applicability, we briefly discuss the linear response
Néel relaxation in Section 3. Then, in Section 4, the heating curves
simulated using Néel relaxation within the developed model are
analyzed in detail for mono-disperse systems. The subject of poli-
dispersivity, of fundamental importance in real systems, is
discussed in Section 5. In Section 6 we present a method to
extract the temperature dependence of the SAR from the experi-
mental data. In Section 7 we briefly discuss a model of two
temperatures, whose intent is to describe the difference between
the temperature of the particles and that of the fluid. Finally,
Section 8 provides an additional discussion and summarizes the
most relevant conclusions.

2. Single temperature model

To study the heating curve, the simplest approach is to assume
that the temperature is homogenous throughout the sample,
being only a function time. This is motivated by the random
spatial arrangement of the nanoparticles within it, which entail a
somewhat uniform heating. Let us first consider the system in the
absence of an external field. Then, according to Le Chatelier’s

principle, any changes in the equilibrium between the sample and
the environment should prompt an opposing reaction to counter-
act this change. For the present case — where these arguments
are also sometimes referred to as Newton’s law of cooling — this
implies that the rate of heat loss (Q) is proportional to the
difference in temperature between the sample (T) and the
medium (T,), viz.,

Q =a1(Te—T), (1)
where a; is a constant whose order of magnitude is that of the
thermal conductivity of the magnetic fluid times the character-
istic length of the sample. If we assume a constant specific heat
(C), we may write Q =CT. Then, defining a=a,/C and changing
variables to I' =T—T, we arrive at

F = —GF, (2)

whose solution is I'(t) = I'(0) exp(—at). Whence, Eq. (1) states that
when the system is momentarily disturbed from equilibrium with
the thermal bath, its tendency will be to return exponentially to
the original state with characteristic time, a—!. We refer to this as
the cooling curve. It may be computed as an extension of the
heating curve, continuing the data acquisition after the external
field has been shut off. A graph of log(I") vs. t should yield a
straight line with slope —a, as illustrated by the solid curve in
Fig. 1(a). Henceforth, in numerical calculations, we shall usually
take a=1 to simplify the discussion, given that its effect is simply
to change the time scale. For reference, in real systems
a~10"2s1,

It is possible that the cooling curve takes the form shown in
dashed lines in Fig. 1(a), represented instead by a sum of decaying
exponentials. Quite likely, the main reason for this lies in the heat
dissipated by the coil itself. This can be unambiguously verified by
heating the sample with an external heat source and measuring
the corresponding cooling curve.

The heating curve is obtained from Eq. (2) by introducing the
dissipated power as a forcing term

I'=—al +S). 3)

The main goal of hyperthermia experiments is to extract S(I")
from I'(t). In our notation, S is given in units of degree per unit
time. The SAR, on the other hand, is usually expressed in units of
power per unit mass of magnetic material. Whence, it may be
computed from S by multiplying by C and dividing by the mass.

At ambient temperature, I'=0, and from the DE (2) we
immediately see that

ar=m=p%rm, 4)

which is the usual method of computing the SAR. Within the
scope of the current model, this procedure is quite satisfactory
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Fig. 1. (a) Example cooling curves. (solid) I' = e, corresponding to the model in
Eq. (2); (dashed) I'=0.3e"'+0.7e~%, illustrating the possibility of additional
sources of heat (e.g., from the coil). (b) Example heating curves [Eq. (3)] with
a=1. (solid) Eq. (5), with Sp =1. Others are for Eq. (10) with So =1: (dashed)
a=—1/2, (dotted) & =1/2 and (dot-dashed) o =3/2.
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since it has the advantage of being independent of the cooling
properties of the sample (viz., a).
If S(I') = Sp (a constant) then the solution of Eq. (3) is

I'(t) = (So/)[1—exp(—at)]. 6

This function, sometimes referred to as a Box-Lucas, has also been
used to fit the data [20] and thence extract So from I in the limit
I' - 0. This approach, however, is not adequate. For as we show
below, taking S(I') as a constant may be a quite poor approxima-
tion. Thus, since the fit minimizes the merit function for the entire
heating curve, it may sacrifice the accuracy at the region where
I' ~ 0. A typical heating curve for Eq. (5) is illustrated in Fig. 1(b)
(solid curve), for Sg=a=1. As can be seen, it agrees with the
more common result that I'(t) is a concave function (it gives
I" = —aSy exp—at, which is negative for all t).

3. Néel relaxation

We now deviate briefly from the analysis of the heating curve
with the purpose of introducing a definite model for S(I'). We
consider the situation where Hy is sufficiently small so that the
magnetic response may be taken as linear. This is perhaps the
only situation where analytical formulae for S(I") is readily
available. For definiteness, we also consider a system whose
dynamics is dictated only by Néel relaxation (precession of the
magnetic moment); for instance, a sample in the form of a
powder or gel, or one consisting of sufficiently small particles so
as to render Néel relaxation dominant over Brownian relaxation
(physical rotation of the particle). The latter is in fact our primary
motivation for focusing on Néel processes, given the increasing
attention that smaller clusters have received in recent years. The
reasons for this are mainly biological, concerning colloid stabili-
zation, inter-particle aggregation, embolization, etc.

The usual expression for S(I") is obtained as follows. Dissipation
directly implies hysteresis in a graph of M(t) vs. H(T) [where M(t) is
the sample magnetization; this refers to the high frequency dynamic
hysteresis loops taking place during the heating curve, not its quasi-
static counterpart]. In the linear response regime the magnetization
will follow the harmonic field, H(t) = Hy cos wt, albeit possibly with
a phase lag: M(t)=Ho()' cos wt—y” sin wt). Here, ¥’ and y” are
respectively the real and imaginary parts of the dynamic suscept-
ibility. Thus the hysteresis loops will always be ellipsis, the area (A)
of which is the average energy dissipated per cycle (this follows
from the first law of thermodynamics [21]). By direct integration we
may write A= an %". The susceptibility, in turn, may be related to
the relaxation properties of the system via the Kubo relation [22]. In
the event that the relaxation is well described by a single relaxation
time 7, this reduces to the famous Debye factor: y"(w)= y w1/
(1+w1), where y, is the static susceptibility. Finally, the dissipated
power is simply S=fA, where f=w/2n is the frequency of the
magnetic field. Whence
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The static susceptibility (),) and the relaxation time (7) may both be
written in terms of ¢ = Kv/kgT, where K is the anisotropy constant
and v is the volume of the particle. The susceptibility can be written
as [23]

o= ME11 Vo
%= 3K 2 |D(J/5)
where D(x) is Dawson’s integral [24] and M; is the saturation

magnetization. We note that, for ¢ > 2, the above approximation
is, in fact, quite accurate. The relaxation time, on the other hand,

2
1} o~ %(O‘—l),

is well represented by the Néel-Brown formula [11]

_% M.
=5/ 7

where 7o~ 107'%s. This expression is also valid for ¢ =2 and
provides a correction to the main exponential dependence. It is
worth pointing that o < 2 is usually of little interest to hyperther-
mia, since it gives a negligible dissipation unless high frequencies
are employed; this, in turn, is not recommend for it may excite eddy
currents inside the patient’s body [4]. Finally, it is worth emphasiz-
ing the importance of ¢, which is the fundamental parameter
determining the dynamics of the system in the context of Néel
relaxation (cf. the discussion in Section 1).

It is convenient to write Eq. (6) in the form S(o) = &s(o), where
& = wHAM? /6KC and

s(o) = (6—1)sech (o——am +log % \/§> , ®)

with 6, = —log wtg. The reason for this choice is as follows. The
function s(o) is illustrated in Fig. 2(a) for different values of wty.
As the hyperbolic secant, it has the form of a sharply peaked
distribution; however, it is slightly distorted due to the presence
of the terms y,oc(c—1) and g(o). If both were neglected, the
maxima would be precisely at ¢,,. Continuing to neglect the
influence of y,, a further iteration yields the following useful
expression for the maxima of s(o):

Om2=0m+1/210g 6m—logy7/2, 9)

accurate to ~5% of the exact value [cf. the dashed lines in
Fig. 2(a)]. The importance of g, is in the fact that it distinguishes
the regions where S(I') increases or decreases with increasing
temperature [illustrated by an arrow in Fig. 2(a)].

To clarify this further, let oy represent the value of ¢ at
ambient temperature, henceforth taken as To =300 K. To com-
pute the temperature dependence of the SAR we then write
0 =09/(1+1I'/Ty). The function s(I') is illustrated in Fig. 2(b) for
different values of gy and wto=10"* [i.e., w/@2m)~10° Hz].
In this case, the maxima takes place at ¢,;; ~ 10.5. Based on these
curves, it is possible to reach the following very important
conclusion. For systems with particles in the high barrier regime
(09 > 0mz) the SAR as a function of temperature will have a
positive initial slope [S'(I'=0)> 0], whereas those in the low
barrier regime (0g <on,2) will have a negative initial slope
[S'(I' =0) < 0]. It is important to emphasize that this distinction
between low and high barriers is relative to the frequency in
question; as seen in Fig. 2(a), such intervals change for different
w7 (since o,z changes). Finally, note that Fig. 2(b) also corrobo-
rates the assertion made after Eq. (5), that taking S(I') as a
constant is a quite poor approximation. As a final comment, we
note that during the heating process some particles eventually

b12

a 150
125
100

75

s(o)
s(I)

50

25

00

0 50 100 150 200
o I'(K)

Fig. 2. (a) Reduced SAR, s(0), for different values of wtg [Eq. (8)]. The dashed lines
were computed using Eq. (9). (b) Similar to image (a), but for the function s(I')
computed using ¢ = g /(1+1I'/Ty), for different values of ¢, with fixed To =300 K
and wto =104
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surpass their Curie temperature. As can be seen in Fig. 2, however,
at such stage (high I'; small o)their contribution to the overall
heating of the sample is already negligible, rendering this effect
likely to be unimportant.

4. Analysis of the heating curve for Néel relaxation

Let us now return to the analysis of the DE (3). As a first
approximation, we may expand S in powers of I" up to first order;
namely, S(I") ~ So+ol". The solution is then precisely the same as
that of Eq. (5), but with a replaced by a—a

I't)= aS——Ooc[] —e~ (@t (10)

If «<0 the system is in the low barrier regime and the SAR
decreases with T. This is illustrated in Fig. 1(b) in dashed lines,
where oo = —1/2. The final temperature, I'(t > co) = So/(a—) is thus
smaller than for constant S(I") = Sy. Conversely, in the high barrier
regime (o > 0), the larger the value of o the more will the system
heat. If, albeit positive, o < a, the curve will remain concave, as in the
dotted curve of Fig. 1(b) where o = 1/2. On the other hand, if « > a,
the heating curve becomes convex, as in the dot-dashed curve in
Fig. 1(b) where oo =3/2. The condition « = a yields I'(t) = Sot, as is
obviously seen directly from the DE (3).

From Fig. 2(b) it is clear that, even though the SAR may initially
increase, it must eventually tend to zero; thus, any heating curve
that is initially convex must also eventually present an inflection
point. Based on the DE (3) it is straightforward to obtain a general
condition for the existence of this point since, on noting that I" %0,
it suffices that I"=0. Since I" = —al" +$(I') = I'[—a+S'(I')], we see
that an inflection point will occur if

ds
ar
Recalling that a > 0, this implies that S(I") must have a positive slope
(over some interval of I') — that is, only systems in the high barrier
regime (oo > o2 ) may present an inflection point. Notwithstanding,
even in this case, the condition imposed by Eq. (11) may not be met;
that is, albeit positive, S'(I') may never reach the required value a. If
we rewrite Eq. (11) as s'(I') =a/¢&, we see that as Hyp increases the
right hand side tends quadratically to zero (since éocHé), thence
facilitating the appearance of an inflection point. This leads to the
important conclusion that quantitative (even substantial) changes in
the heating curve that may occur as Hy increases are not necessarily
related to the departure from the linear regime.

In Fig. 3, we present simulated heating curves using
Egs. (3) and (8), for different values of oy, fixing a=1 and
7o =10"% In Fig. 3(a) and (b), =1 whereas in Fig. 3(c) and
(d), £=20. As can be seen, in the first case, the condition (11) is
not met for any value of gy, even when s'(I') > 0. The relative
heating power shown in Fig. 3(a) may thus be directly compared
with the initial values of s(I"-0) shown in Fig. 2. This, as is
commonly discussed in the literature, impinges the idea that in
order to optimize the SAR, one must produce samples whose
value of ¢ are as close to g, as possible.

On the other hand, note that the entirety of the previous
discussion changes when & =20, as in Fig. 3(c) and (d). First and
foremost, recall that £occH2 so that this 20-fold increase corre-
sponds only to a ~4-fold increase in Hy, which is well within
experimental reach. In this condition, the curve for ¢y = 12 heats
more than that of 6y = 10, and also presents an inflection point, as
seen in Fig. 3(d). The curve for gy = 14 is quite exotic, presenting
an inflection point at much larger times. As seen in Fig. 2, this
follows because in this case s(I") is quite small when I~ 0 (i.e.,
when T ~ Ty). Clearly, results such as this are not in agreement
with experimental curves usually reported in the literature, even
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Fig. 3. Simulated heating curves for (a) I'(t) and (b) I'(t), computed using Eqs.
(3) and (8), for different values of go, with a=1, w1y =10"% and ¢ = 1. (c) and (d):
similar, but with ¢ =20.

for high anisotropy samples. The reason for this discrepancy, as is
discussed next, is the presence of a size distribution in real
samples, which flattens s(I") considerably.

5. Poli-disperse systems

For definiteness, we consider a system composed of spherical
particles with diameter D distributed according to a lognormal
distribution.

We use the notation x ~ L(xg,0x) to denote that the random
variable x is distributed according to a lognormal distribution
with location parameter xo and dispersion parameter dy according
to the probability density function (PDF)

2
1 _exp _log (Xz/XO) .
V27X3x 255

Analogously to the normal distribution, where sums of normally
distributed random variables are also normally distributed, the
lognormal distribution satisfy the property that products of
lognormally distributed random variables are also lognormally
distributed; formally, if x~ £(Xo,0x) and y = ax™, then

Yy =~ L(axg,ndn) (13)

P(X; X0,0x) = (12)

[Note the n-fold increase in the dispersion parameter.] This relation
is easily proven starting from the formula p(y) dy = p(x) dx.

Let us now take D ~ £(Dg,dp). Then, according to the definition
o =Kv/kT, we have

3
a~£(00,55)=[1<’5,n20,360>. (14)
This result has two remarkable consequences, both of which
spring from the fact that the fundamental quantity determining
the magnetic properties of the particles is the volume, not the
diameter. Eq. (14) first shows that there is a 3-fold increase in the
dispersion of o, so that even samples with narrow diameter
distributions may suffer a substantial broadening in its volume
distribution. Secondly, Eq. (14) implies a substantial enhancement
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in the skewness of the distribution. Perhaps the simplest way to
visualize this is by examining the ratio between the mean
(Doe’/2) and the median (Dy); i.e., e5/2. In the volume distribu-
tion, due to the 3-fold increase in the dispersion, this jumps to
€%995/2; 3 clearly remarkable enhancement.

Previously, go denoted the value of ¢ corresponding to T=300,
whereas it now represents the location parameter for the PDF (12)
in the same condition. This is convenient since both definitions
agree when J,—0. Moreover, as before, the value of gy will
change with temperature during the heating curve. This means
that the probability density in the variable ¢ will itself be a
function of temperature; viz.,

~ %0
GN£<1+I"/T0'5”>'
Thus, if we consider the linear response formulas of Section 3,

then for each value of I" the power loss of the ensemble will be an
average of Eq. (8) over the PDF (12):

0o

ﬁ=f/0 5(0)p(52m

,65) do. (15)
Example curves are show in Fig. 4 for wto=10"%. Each image
illustrates curves similar to those in Fig. 2(b), here shown in solid
lines to represent mono-disperse samples. Circles, squares and
triangles correspond to d, = 0.1, 0.2 and 0.4 respectively. As can be
seen, due to the asymmetrical nature of the lognormal distribution,
a variety of responses are possible. In Fig. 4(a), since oo =38 is
somewhat far from the maxima o,,;,; ~ 10.5 [as shown in Fig. 2(a)],
it yields a low SAR for the mono-disperse system. However, on
increasing the dispersion, it encompasses values of ¢ closer to o2
and thus increase the overall dissipation. The very opposite occurs
for 69 =10, as shown in Fig. 4(b). Notwithstanding, note that in
this case the poli-disperse SAR falls much less rapidly than its
mono-disperse counterpart. As a consequence, there exists a
temperature where the former eventually surpasses the latter.
This is an illustration of the “inertia” of poli-disperse systems; that
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Fig. 4. Temperature dependence of the SAR for poli-disperse samples for 6, = 0.1
(circles; red), 0.2 (squares; green) and 0.4 (triangles; blue). As usual, wto =104,
The mono-disperse SARs, which is the same as those in Fig. 2(b), are shown in
solid lines. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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Fig. 5. (a) Heating curves and (b) corresponding time derivative computed from
Eq. (3), with the SAR given either by Eq. (8) for a mono-disperse system (solid) or
by Eq. (15) for poli-disperse systems, with d, = 0.1 (dashed) and J, = 0.2 (dotted).
Other parameters are a=1, £ =20, 6o =14 and wty=10"* [see also the blue
curves in Fig. 3(c) and (d) for o = 14]. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)

is, a larger J, yields a SAR that tends to remain roughly constant
over a broad range of temperatures. This result, contrarily to our
previous discussion, partially corroborates the use of the Box-
Lucas function [Eq. (5)].

With respect to the high barrier cases, illustrated in
Fig. 4(c) and (d) for 69 = 12 and 14 respectively, it now becomes
clear that increasing o, substantially reduces the initial positive
slope of S(I'), as argued in the end of Section 4. As a further
illustration of this effect, Fig. 5 presents a comparison of the
heating curves for op=14. The mono-disperse result, which
corresponds to the blue curve in Fig. 2(c) and (d), is shown as a
solid line; its poli-disperse counterparts, for 6, =0.1 and 0.2, are
shown in dashed and dotted lines respectively. As can be seen, the
inflection point is significantly shifted to smaller times in the
former case and disappears completely in the latter. This effect is
quite remarkable, in the sense that 6, =0.1 means Jp~ 0.03
which, for all practical purposes, correspond a mono-disperse
system. We thus reach the important conclusion that the 3-fold
increase in the dispersion of ¢ produces marked changes in the
heating properties of the material, which can only be accounted
for by properly replacing Eq. (8) with Eq. (15).

6. Computing the SAR from experimental data

A cooling curve well described by a single exponential strongly
corroborate the use of the present model. If this is indeed the case,
then it is possible to devise a simple method to compute the
temperature dependence of the SAR from the experimental
heating curve, which holds regardless of the underlying dissipa-
tion model. The method requires only that a is known (i.e., is
fitted from the cooling curve). The steps are:

(i) Compute I'(t) from I'(t); '
(ii) Construct the function S(t) = I'(t)+al (t);
(iii) Graph a parametric curve (I'(t),S(t)) to yield S(I).

Step (i) is clearly the most troublesome since differentiating data
greatly magnifies even the slightest fluctuations. Several methods
exist to remedy this deficiency. Among them we recommend
either Smoothing Splines [25] or the Savitzky-Golay filter [26];
both fit local polynomials, thus allowing the derivative to be
computed by differentiating the fitted functions analytically.
Gaussian and Wiener filter may also be employed to smooth the
data and thence compute the derivative by finite differencing.
The procedure is illustrated in Fig. 6. The data, depicted by
open circles, was generated considering a poli-disperse system
[Egs. (3) and (15)] with a=1, ¢=20, g9=12, 6,=0.1 and
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Fig. 6. Procedure to compute the temperature dependence of the SAR from the
experimental data. The heating curve was simulated from Egs. (3), (8) and (15)
with a=1, =20, g9 =12, 3, =0.1 and w7y =10"*. Red solid lines denote the
exact solution and open circles the simulated data, with added random noise.
(a) Heating curve, I'(t); (b) I'(t) computed using a Savitzky-Golay filter with
quadratic polynomials and a 5-point centered window; the scattered points
denote I'(t) computed from centered finite differencing. (c) S(t)=I"(t)+al(¢t).
(d) Parametric plot of (I'(t),S(t)) yielding S(I'). The inset in image (a) shows a
comparison between the exact solution (red), a Box-Lucas fit [Eq. (5)] yielding
a=1.54 and Sy =152 (black), and the same function computed using the exact
values a=1 and Sp = S(I" = 0) ~ 97 (blue). (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

@ty =10"%. To mimic real situations, random noise was also
added. In each image, the exact solution is depicted in red for
comparison. We note that the SAR for this condition was
presented in Fig. 4(c) as red circles.

The heating curve is shown in Fig. 6(a), where it is seen to
present a subtle inflection point at small times. This is also visible
from the maxima in Fig. 6(b), where I'(t) was computed using the
Savitzky-Golay filter with quadratic polynomials and a 5-point
centered window. The scattered solid points in Fig. 6(b) illustrate
the unacceptably high level of noise that results from computing
the derivative [26] wusing simple centered differencing
[f'x) = (f(x+h)—f(x—h))/(2h)]. In passing, it is worth noting that
this is nonetheless still vastly superior than forward differencing
[f'® = (f(x+h)—f(x))/h]. The step (ii) above is illustrated in
Fig. 6(c) where the time dependence of the SAR is computed.
Finally, in Fig. 6(d) a parametric plot yields the desired tempera-
ture dependence.

The inset in Fig. 6(a) serves to illustrate an important point
concerning the Box-Lucas Eq. (5). The red curve is the exact
solution (same as in the main figure); the blue curve was
computed from Eq. (5) with a=1 and Sy ~ 97, which is the value
of S(I'-0) for the present conditions [cf. Fig. 6(d)]. As one might
expect, albeit agreeing at very short times, it yields an entirely
different response. The black curve, on the other hand, corre-
sponds to a fit of the data using Eq. (5). The best fit parameters
were a=1.54 and Sy =152. Note how these values are entirely
false, even though the agreement between the fit and the exact
solution is roughly acceptable. On the one hand, this indicates
that great care must be taken in using Eq. (5). On the other, it also
emphasizes the fundamental importance of the cooling curve,
from which a could have been unambiguously determined.

7. Two-temperatures model

We have thus far assumed that the entire medium has a
uniform temperature. However, it is a known experimental fact
that the nanoparticles reach temperatures far greater than that of
its encompassing fluid. In this section we propose a simple (or
perhaps the simplest) model to account for this temperature
difference. As before, the large number of particles and their
random spatial arrangement suggest an approach based on
average quantities. Fig. 7 illustrates the setup: the nanoparticles
have an average temperature T; and dissipate heat in the fluid
whose temperature is T,. The fluid, in turn, interacts with the heat
bath that is maintained at a fixed temperature T,. The experiment,
we note, is only capable of measuring T,.

A generalization of Eq. (3) then reads

I'y=a(l',—I')+ST),
Fz :a(Fl—Fz)—ZbFZ, (16)

where a and b are constants (unrelated to the previous ones) and
the factor of 2 was inserted for convenience. In this model the
particles exchange heat with the fluid via a transfer rate a and the
fluid exchanges heat with the thermal bath via 2b. In matrix
notation let I' = (I'1,I') and S = (S(I'1),0) be column vectors. Then

. a —a
I'=_Ar+S, A={ . 17

—a a+2b

The matrix A is both symmetric and positive definite and thence
has both eigenvalues real and positive, as expected. They are
Ji=a+b+Va2+b* and Jp,=a+b—Va2+b?. Since I'(t=0)=
(0,0), the general solution is simply

t
@)= / e A §dt’ = (I—e4HA"'S, (18)
0

where [ is the identity matrix and e’ is the matrix exponential
solution for —A.

Let us focus on the solution for a constant heat source
S(I'1) = Sp, which can be easily shown to be

—_— SO — — y —
= WA [(A1—a)f ,(O)—(A2—a)f 1 (D],
Soa
()= ——— t)—f1(0)], (19
2(0) 5 a2+b2[f2() f1(0] )

where f;(t)=(1—e %t)/J; is a “Box-Lucas factor”. It is worth
noting that this function has the property that, because 1, > 43,
f1(®) <[, for all t.

The key point to note concerning the solution in Eq. (19) is
that, in general, a<b, since these constants depend on the
characteristic length of each element. It then follows that
A1> Ay and fy(t) <f,(t). In this limit it can be shown from

Thermal Bath: T

Fluid: 75 Sample: T

Fig. 7. Schematic description of the two-temperatures model: the particles are
represented by a single temperature T; and dissipate heat to the fluid whose
temperature is T,. The latter, in turn, interacts with the thermal bath maintained
at a fixed temperature To. We assume that the experiment measures T».
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Eq. (19) that
r, _2b

> a (20)
It is thus seen that throughout the heating process, the tempera-
ture of the particles is always larger than that of the fluid by a
factor of 2b/a > 1. Intuitively, this factor is the ratio between the
rate at which the fluid dissipates heat to the environment and the
rate at which the particles dissipate heat to the fluid. This result
shows that this simple model is indeed capable of capturing the
key aspect we sought. Unfortunately, to actually infer the
temperature of the particles would require knowledge of a and
b, the former not being readily available through experiment.

As a final comment, the two-temperatures model predicts, for
both the heating and cooling curves, response-time phenomena
similar to that discussed in the previous sections. As mentioned,
those are related either to a response time of the experimental
setup or to the thermal radiation stemming from the coils.
However, it is our belief that since a < b, the present contribution
should be negligible compared to the others.

8. Discussion and conclusions

In this paper we discussed in detail a simple theoretical model
capable of describing the heating curve in magnetic hyperthermia
experiments. Its simplicity is simultaneously its greatest advan-
tage and limitation; advantage in the sense that specific proper-
ties of a given experimental setup are described by simple
parameters appearing in the model, which can thus be fitted
from experiment; and limitation in the sense that it cannot be
extended beyond the lumped-element approximation (i.e., it may
not serve as a starting point for more elaborate models involving,
for instance, the heat equation). Another merit of the present
approach is the ability to connect the calorimetric and magnetic
properties of the system with great simplicity. Since the power
loss enters merely as a forcing term in the heating differential
equation, it is quite trivial to test and investigate different models
for it. An example, not pursued in the present paper, is the linear
response theory for Brownian relaxation instead. Another would
be, for instance, the non-linear response for Néel relaxation. In
this case, the magnetic response must be computed numerically
for each temperature and condition of the external field. Not-
withstanding, an interpolating function for S(I") may still be easily
constructed from simulations at different temperatures.

The present discussion also served to illustrate the importance
of the cooling curve. In fact, because this curve is entirely non-
magnetic, it enables one to extract all thermal properties of the
sample. This, in turn, leaves only magnetic parameters to be
studied in the heating curve, greatly facilitating the analysis. As
an example, consider the influence of the heat stemming from the
coils which generate the magnetic field. Midway through the
heating curve this may start to become significant, presenting
itself as a different slope in the heating curve. However, the
heating and cooling properties of the coil are described by the
same time constant and should thence appear at the initial
instants of the cooling curve [cf. Fig. 1(a)]. With such knowledge,
one may safely discern if changes in the heating curve spring from
the nanoparticles or the apparatus.

We have also shown that depending on the properties of the
magnetic sample, it may be important to take into account the
temperature variation of the SAR during the measurement of the
heating curve. In particular, if the particles are initially blocked at
ambient temperature (with respect to the frequency in question),
then the SAR as a function of temperature will initially present a
positive slope. However, since it must eventually tend to zero as T

becomes sufficiently high, the heating curve may present an
inflection point. We have also shown that, within the scope of
the linear response theory, increasing the magnetic field facil-
itates the appearance of this inflection point. This means that
changes in the shape of the heating curve are not necessarily
related to a departure from the linear regime, a quite relevant
conclusion.

Significant information can be obtained by sequential measure-
ments of the SAR for different field amplitudes. The reason, at least
within the scope of the linear response, is that the only quantity
changing in Eq. (15) is éocHﬁ. Thus, combining knowledge from the
size distribution from a morphological analysis may possibly yield
important parameters, such as oy or to.

Finally, we would like to note the following possibility which,
to our knowledge, has never been pursued in an experiment.
Irrespective of the models discussed in this paper, the SAR at
ambient temperature may always be computed from the usual
formula, Eq. (4). However, it is also possible to repeat the
experiment at different starting temperatures (i.e., different
“ambient” temperatures). In this form one may construct the
function S(T) without the need for any underlying models. While
measuring the SAR at different temperatures may be of no
interest to biological applications, it may yield important infor-
mation regarding the energy barrier distribution of the system.
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