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Abstract

In genomic selection (GS), the prediction accuracy is heavily influenced by the com-
position of the training set (TS). Currently, two primary strategies for building TS are
used: one involves accumulating historical phenotypic records from multiple years,
while the other is the “test-and-shelf”” approach. Additionally, studies have suggested
that optimizing TS composition using genetic algorithms can improve the accuracy of
prediction models. Most breeders operate in open systems, introducing new genetic
variability into their populations as needed. However, the impact of elite germplasm
introduction in GS models remains unclear. Therefore, we conducted a case study in
self-pollinated crops using stochastic simulations to understand the effects of elite
germplasm introduction, TS composition, and its optimization in long-term breeding
programs. Overall, introducing external elite germplasm reduces the prediction accu-
racy. In this context, test and shelf seem more stable regarding accuracy in dealing
with introductions despite the origin and rate, being useful in programs where the
introductions come from different sources over the years. Conversely, using histori-
cal data, if the introductions come from the same source over the cycles, this negative
effect is reduced as long as the cycles and this approach become the best. Thus, it may
support public breeding programs in establishing networks of collaborations where
the exchange of germplasm will occur at a predefined rate and flow. In either case,
the use of algorithms of optimization to trim the genetic variability does not bring a
substantial advantage in the medium to long term.

Abbreviations: Fst, fixation Index; GEBV, genomic estimated breeding value; GPO, grandparent, parent, offspring; GS, genomic selection; LD, linkage
disequilibrium; OTS, optimized TS; PEV, prediction error variance; PYT, preliminary yield trials; QTL, quantitative trait loci; QTN, quantitative trait
nucleotide; SNP, single nucleotide polymorphism; TS, training set.
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1 | INTRODUCTION

FRITSCHE-NETO ET AL.

Plain Language Summary

In genomic selection (GS), prediction accuracy relies on how the training set (TS) is
built. Two main methods are: 1. Historical data: Using data from multiple years. 2.
Test and shelf: Regularly updating the TS with new data while keeping some old data.
Our study found the following: (1) Elite germplasm: Adding new elite germplasm
often reduces prediction accuracy due to increased genetic diversity. (2) TS strategies:
Test and shelf: Provides stable accuracy, especially with varying germplasm sources.
Historical data: It work well if new germplasm is from the same source over time. (3)
Optimization algorithms: These offer limited long-term benefits. Implications: The
test-and-shelf approach suits diverse sources, while historical data benefit consistent
sources. Optimization algorithms are less crucial. For best results, focus on managing

TS and planning germplasm introductions.

estimation of year effect and its interaction with genotypes.

In breeding programs, genomic selection (GS) (Bernardo,
1994; Meuwissen et al., 2001) plays a pivotal role in pre-
dicting the genetic merit of individuals based on their DNA
information. In this context, the accuracy of these predictions
hinges significantly on the composition of the training set
(TS) (Fernandez-Gonzalez et al., 2023; Sabadin et al., 2022).
This set comprises genetic data from individuals with known
phenotypic traits, such as yield, disease resistance, or quality.
Based on this data, GS models estimate genetic markers’
effects associated with desirable characteristics and use them
to predict the performance of new individuals. Therefore,
factors such as size, diversity of genetics and phenotypic
traits, heritability and completeness of phenotypic data, and
representativeness of the target population play crucial roles
(Berro et al., 2019; Crossa et al., 2017; Isidro y Sanchez &
Akdemir, 2021).

Overall, a diverse TS covering a wide array of genetic vari-
ations and phenotypic traits enables the algorithm to capture
a broader spectrum of genetic effects and make more pre-
cise predictions across various populations and environments
(Alemu et al., 2024). Conversely, a biased or incomplete TS
may lead to unreliable predictions and hinder the performance
of GS models. Therefore, ensuring the quality and diversity
of the TS is vital for the success of predictions. This may
involve meticulous selection of individuals for inclusion in the
TS, ensuring representation across different populations, and
consistently updating the dataset as new information becomes
available (Sabadin et al., 2022).

Currently, the two main strategies for building TSs are
based on accumulating historical phenotypic records from
multiple years (Beyene et al., 2021; Rutkoski et al., 2015)
and the test and shelf (Boyles et al., 2024). The advantage
of the first approach is that the estimation of marker effects
is based on multiple-year records, leading to a more accurate

However, potential risks arise when considering the smaller
connectivity between the training and testing sets and the
need for joint analysis to adjust the phenotypic data (Bernal-
Vasquezetal.,2017; Gonzalez et al., 2021). On the other hand,
the test-and-shelf methodology consists of using part of the
genotyped individuals from a larger population to be pheno-
typed, while the other part will be shelved and predicted only.
The main advantage of this approach is that utilizing a portion
of the same population from the TS to predict the other part
ensures the highest level of connectivity between the train-
ing and testing sets. However, it is important to note that this
method may overlook year—genotype interactions, mainly in
real breeding programs, where every year is composed of a
new batch of genotypes.

After defining the best strategy to build the TS, another
aspect is the quality and repetitiveness of the data collected.
In this context, optimizing the TS composition may enhance
the accuracy of prediction models (Muleta et al., 2019). In
other words, trim the genetic variability so only individuals
who maximize the relationship with the target set will be con-
sidered in the TS (Akdemir & Isidro-Sanches, 2019). Overall,
algorithms of optimization offer significant advantages such
as increased prediction accuracy and cost reduction (Crossa
et al., 2013; Heffner et al., 2009; Jarquin et al., 2014). Also,
they address potential challenges related to computational
complexity and overfitting.

Most studies showing the usefulness of genetic algorithms
of optimization relied on empirical data (Fristche-Neto et al.,
2018; de Freitas Mendonga & Fritsche-Neto, 2020; e Sousa
et al., 2019). Consequently, they worked well to increase the
prediction accuracy in the current dataset, with static hap-
lotypes in terms of size and frequency. On the other hand,
other authors performed studies using stochastic simulations
(DoVale et al., 2022), showing that the use of these algo-
rithms may significantly reduce the accuracy over breeding
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cycles, where there will be changes in allele frequencies over
time, and recombination, that will break the “big” haplotypes
into small ones, and some of them may segregate without any
maker tagging them, reducing the prediction accuracy over
cycles.

In breeding, the primary goal is to effectively utilize genetic
diversity to achieve improvement in specific traits while pre-
serving genetic diversity for the coming cycles of selection
(Meuwissen et al., 2020). For that, breeders aim to increase
the frequency of targeted quantitative trait loci (QTL), despite
the potential loss of genetic diversity at those and other sites.
Moreover, the loss of genetic diversity through artificial selec-
tion is boosted by drift because breeding populations are
often derived from a small number of parents (Juma et al.,
2021; Y. Li, Shi et al., 2022). In this context, the decrease in
diversity is only sustainable if the breeder can achieve signif-
icant long-term genetic gains (Allier et al., 2020; Meuwissen
et al., 2020), defining clear strategies to preserve or “feed” the
population with new genetic variability.

The identification and incorporation of valuable genetic
resources into a breeding program is an important procedure
that breeders have to maintain or recover genetic diversity in
populations (Allier et al., 2020; Swarup et al., 2021). For that,
the elite germplasm exchange between breeding programs or
introduction is a useful approach that can be implemented to
mitigate the problem of genetic diversity loss due to artificial
selection or drift. For instance, the Island model for GS has
shown that germplasm exchange from subpopulations derived
from a large population might be a powerful tool to maintain
genetic diversity while improving genetic gain (Yabe et al.,
2016). Furthermore, most of the industry programs exchange
germplasm intentionally. However, the impact of the one-way
elite germplasm introduction in genomic prediction models
has yet to be made clear. In this context, several aspects should
be considered, such as haplotype phasing, overall genetic
diversity, trait heritability, differences in marker and gene
effects, and the extent and distribution between QTLs and
markers (Kaler et al., 2022; Werner et al., 2020).

Given the abovementioned aspects, we compare several
scenarios to understand the elite germplasm introduction, TS
composition (test and shelf or historical data), and its opti-
mization (using genetic optimization algorithms to trim the
data) effect in long-term breeding programs. For that, we con-
sidered a study case in self-pollinated crops via stochastic
simulations and evaluated effects in genetic gain, best line
performance, genetic variance, genetic divergence between
germplasm sources, and prediction accuracy. The choice for
stochastic simulations is because comparing breeding strate-
gies based only on field trials could be risky once a unique
or a couple field trial is a random sample and does not repre-
sent all possible outcomes of a random effect, leading to low
reliable results (Gaynor et al., 2021). Moreover, the response
to selection using empirical data is only valid for the cur-

Core Ideas

* Building training sets using historical data outper-
forms the “test-and-shelf” approach.

* Genetic optimization algorithms to build training
sets have no clear benefit in the long term.

* Introducing external elite germplasm reduces the
genomic prediction accuracy.

rent generation (Falconer & Mackay, 2009) and cannot be
extrapolated to future breeding cycles.

2 | MATERIALS AND METHODS

Our study compared different strategies to compose GS
TSs, the usefulness of genetic algorithms for “trimming” or
“optimizing” the TS genetic variability, and the effect of intro-
ducing elite germplasm in a GS-based breeding program. For
that, we consider rice as a model for self-pollinated crops and
the advent of stochastic simulations via AlphaSimR (Gaynor
et al., 2021), following the main steps in this type of study:

2.1 | Historical population and genetic
parameters

The historical rice founder population was simulated as 3000
unique diploid inbred individuals, with 12 chromosome pairs
each, using a Markovian Coalescent Simulator (Chen et al.,
2009), considering a “GENERIC” species. The number of
aggregating segments was defined based on the genome size
(cM) described by L. Li et al. (2008). The “GENERIC” option
allows the user to define specific genetic/genomic features to
represent the species in the study as much as possible.

The target of the simulation was a quantitative trait, such
as grain yield. The trait was composed of 30 quantitative trait
nucleotides (QTNs) per chromosome, totaling 360 QTNs. A
simulated single nucleotide polymorphism (SNP) chip with
83 SNPs per chromosome was used for genotyping, total-
ing 996 SNPs; SNP and QTN sites were not allowed to
overlap. The additive, dominance, and average degree of dom-
inance parameters were defined based on L. Li et al. (2008).
Each QTN was assigned additive and dominance effects.
Total genetic values for each genotype were obtained by
summing all additive and dominance effects times the appro-
priately scaled genotype dosage for all QTNs; for details, see
Gaynor et al. (2021). Additive effects (a) were sampled from a
gamma distribution with scale and shape parameters equal to
1 and randomly assigned for each QTN. Similarly, dominance
effects (d) for each QTN were computed by multiplying the
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the estimated selection accuracy per stage. GS, genomic selection.

absolute value of its additive effect (a;) by locus-specific dom-
inance degree (6;). Dominance degrees were sampled from
a Gaussian distribution with §; ~ N (u;, aé), where p; is the
average dominance degree equal to 0.22 and ag is the variance
of the dominance degrees equal to 0.125. Therefore, there
is at least a 26% chance that the delta will be negative (bi-
directional dominance deviations) and a 1% chance that it will
exceed the unit (overdominance).

The initial mean of the quantitative trait was 0, and its initial
total genetic variance was 1. Phenotypic values of each indi-
vidual were obtained by adding a random error sampled from
a Gaussian distribution to its true total genetic value such that
initial broad-sense heritability was set according to the accu-
racy selection we observed in the Louisiana State University
breeding program (Figure 1). Also, the heritability changed
over the breeding cycles as genetic variances changed. This
study did not consider epistasis or mutations, although it may
contribute to heterosis or create genetic variability in rice
(Huang et al., 2016).

2.2 | Base population, burn-in phase, and the
first GS TS

In order to obtain our base population, we selected 60 individ-
uals based on their superior phenotypic values from 3000 lines
of the historical population. As a starting point, we considered
a traditional representative program as a 5-year rice breeding
program (from cross to cross), without GS or high-throughput
phenotyping in the first breeding cycles, in other words, the
previous version of our current breeding program (Figure 1).
Overall, the breeding scheme represents an adaptation of the
Pedigree method (Breseghello & Coelho, 2013). Based on
that, we simulated five selection cycles totaling 25 years of
breeding in the burn-in stage. In each cycle, 60 parental lines
were crossed to generate 160 F; plants, which were selfed
to produce 150 F, plants from each cross. After five breed-
ing cycles, we obtained the base population to evaluate the
downstream scenarios of this study.

Regarding the GS, the initial TS was composed of 1152
inbred lines from 30 crosses between 60 individuals (parents),
with nearly 40 plants per cross from the base population after
the burn-in stage. The marker effects were predicted using the
ridge-regression best linear unbiased prediction (Endelman,
2011) according to the equation below:

y=luy+Zu+e

where y is the vector of individual phenotypic values from the
TS; pu is the mean (intercept); u is the vector of marker effects,
where u ~ N(0, I 0'3); and ¢ is the vector of random residu-
als. 1 is the vector of ones and Z, is the incidence matrix
of TS genotypes for m markers. Z,, is coded as 1 for homozy-
gous A A, —1 forhomozygous A, A,, and O for heterozygous
AA,.

To perform the GS, the genomic estimated breeding
value (GEBV) was estimated using the following equation:
GEBV = Mu, where M is the incidence matrix of selection
candidate genotypes and u is the vector of predicted marker
effects. Overall, the goal in all breeding scenarios was to
deploy GS in F, plants.

2.3 | Breeding scenarios simulated

2.3.1 | Approaches to build the TSs

We compare two main approaches to collect phenotypic and
genotypic data and compose the TS, named “historical” and
“test and shelf.” In the former (Figure 2a), predictions rely on
data accumulated in the last three breeding generations (repre-
senting more than three calendar years). Every year, new data
come from the preliminary yield trials (PYT), which repre-
sent the F., breeding stage, to update the TS. For that, we
adopted the grandparents, parents, offspring (GPO) strategy
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program.

Training set schemes ([a] historical data and [b]“test and shelf”), the use of genetic optimization algorithms, and parent

introgression rates per breeding cycle. GPO, grandparent, parent, offspring; GS, genomic selection; TS, training set.

to keep the accuracy at reasonable levels for more breeding
cycles (Sabadin et al., 2022). In short, this strategy considers
only the last three breeding cycles to compose the TS (GPO).
Therefore, we added the newest data for every breeding cycle,
removed the oldest one, and maintained only the last three
breeding generations in the TS. The best individuals selected
in the F, generation are advanced. Then, after a round of phe-
notypic selection in Fs, the best individuals are selected as
parents.

In the second approach (Figure 2a), predictions rely on a
proportion of the progeny (20%) that is advanced in order to
work as a TS for the remaining part (80%) that will “wait”
in the cold room. Therefore, there is a brand-new TS every
year, with the maximum relationship between it and the pre-
diction set. On the other hand, the year effect highly affects the
phenotypic information. As described in the former method,
the new data are updated to update the TS from the PYT,
which represents the F;., breeding stage. The best individu-
als are selected from the whole dataset, TS, and predicted set
together. Then, after a round of phenotypic selection in Fs, the
best individuals are selected as parents.

2.3.2 | Optimizing TS (OTS) using genetic
algorithms

In order to define the OTS, we used the method proposed by
Akdemir et al. (2015), with a predefined population size. For

“test and shelf” (Figure 2b), we used the algorithm to select
20% of the individuals genetically representing the whole
population. In its turn, in the “historical” scenario, the algo-
rithms were used to “trim” the historical dataset, keeping 99%
genetic variability useful to predict the newest F, population
(Figure 2a).

In this methodology, the selection of lines requires only
genotypic information on the individuals present in a group
of candidates and the target. Subsequently, based on this,
a genetic algorithm makes an approximation of the pre-
diction error variance (PEV) using principal components
via the marker matrix and selects determined hybrids that
will establish the OTS. Assuming P denotes the first 50
principal components corresponding to the lines genomic
additive matrix (VanRaden, 2008), the PEV for predicting the
genotypes that are not included in the TS is approximated by

PEV = tr(Ppeg (P Py + A1) Prey), where Pr, and
Prpqin correspond to the principal components of test (lines
that are not considered for training) and training individuals,
A is a small positive real number (1E-5, in this case), and
tr is the trace operator that takes the sum of diagonals of
a square matrix. The algorithm for establishing OTS was
implemented via the STPGA R package, considering 100
interactions per scenario (Akdemir, 2017). Subsequently,
we obtain the OTS and identify the lines to compose them.
As baselines, we conducted the same breeding strategies by
sampling 20% of the lines by chance to build a TS for “test
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and shelf” or considering the historical data as a whole (no
trimming) for the other scenario.

2.3.3 | Introducing elite germplasm

In this factor, we consider four possible rates of elite
germplasm introduction: 0%, 10%, 20%, or 30%, where 0%
means a closed breeding program; in other words, only the
parents from the breeding programs will recycle the crossing
block. In the other cases, the introductions come from three
other breeding programs in a one-way migration and balanced
proportion. This scenario wants to mimic situations such as
germplasm acquisition, the breeding program working as a
hub, or breeding consortiums, but with planned introduction
rates per breeding generation. For instance, considering that
the crossing block is composed of 60 parents and the aim is
to introduce 10% of external germplasm, the 54 best parents
will be kept, and six parents, being the two best parents from
each one of the three external sources, will compose the set of
new parents.

24 | Comparing breeding schemes

Considering that all compared methods used almost the same
framework, there were no significant differences in cycle
length among them. Therefore, we measured the average true
breeding value of the lines, the true genetic value of the best
line, the true additive genetic variance, the prediction accu-
racy, and the divergence between the main breeding programs
and the sources of elite germplasm over the breeding cycles.
The prediction accuracy was calculated using Pearson’s corre-
lation between true and estimated breeding values. In turn, the
divergence was assessed by the fixation index (Fst) (Luo et al.,
2019). Each strategy was simulated for ten breeding cycles
and replicated 100 times within a single population using the
AlphaSimR package (Gaynor et al., 2021). All scripts nec-
essary to run the analysis were provided as the Supporting
information.

3 | RESULTS

3.1 | Approaches to build the TSs

Two primary approaches for composing TSs were compared:
the “test-and-shelf” method and the ‘“historical” method
(Figure 3). On average, the historical strategy yielded higher
population means and led to the best line’s highest perfor-
mances throughout 10 breeding cycles. Notably, in the initial
breeding cycle, there was a substantial increase in the per-
formance of the best line; however, this incremental gain
decreased gradually from the second cycle onward until the

curve approached a plateau. Concurrently, genetic variabil-
ity (additive variance) exhibited a significant decrease until
the second breeding cycle, followed by a slower decline,
eventually reaching a value close to zero by the 10th cycle.

Predictive accuracy mirrored this trend, showing a sharp
decrease until the second cycle but subsequently rebounding
to attain intermediate values compared to the test-and-shelf
approach. Notably, the latter method differed markedly from
the historical approach regarding predictive accuracy, main-
taining high levels throughout the 10 years of the GS-based
breeding program. While its additive variance initially dis-
played higher values in the first cycles before gradually
declining, it remained higher than the “historical” approach.

An intriguing finding is that despite the test-and-shelf
method demonstrating greater preservation of long-term vari-
ability and predictive accuracy, it did not efficiently translate
these resources into genetic gain. Additionally, it is essential
to highlight that the graph represents an average of the perfor-
mance of both methodologies, with the impacts of different
introgression rates and TS optimization intertwined in these
values.

3.2 | Optimizing the TS composition using
genetic algorithms

The optimization algorithm was applied differently in
composing the TSs for the test-and-shelf and historical
approaches. In the former, optimization was employed to
select 20% of individuals representing population diversity.
In contrast, the latter involved trimming the historical dataset
while maintaining 99% of the population’s genetic variability.
A notable finding is that there is no discernible advantage
in utilizing TS optimization with the test-and-shelf approach
(Figure 4). Furthermore, in the historical method, employ-
ing the optimization algorithm proved disadvantageous for
maintaining prediction accuracy and additive variance in the
long term. However, it did not confer any advantage when
analyzing population mean and best line performance.

3.3 | Introducing elite germplasm

The last factor investigated was the percentage of elite
germplasm introduced from external breeding programs,
ranging from 0% to 30% (Figure 5). Concerning popula-
tion mean and best line performance, both the historical
and test-and-shelf approaches exhibited similar increasing
patterns across the breeding cycles. However, the historical
method remained unaffected by varying introgression rates,
whereas the test-and-shelf approach displayed its poorest per-
formance when operating as a closed breeding program (0%
introgression).
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Average population performance means (a), the best line (b), additive variance (c), and prediction accuracy (d) over 10 breeding

cycles considering different scenarios of training set composition and the use of genetic optimization algorithms, regardless of the rates of external

elite germplasm introduction. OTS, optimized training set.

Regarding additive variance and prediction accuracy, the
two approaches reacted divergently to different introgression
percentages. The historical approach demonstrated higher
values for these parameters under an open system program
(with more than 10% introgressions), while the test-and-shelf
approach yielded the highest values in a closed breeding
program scenario. Additionally, the historical approach expe-
rienced a decline in accuracy in the second cycle. Still, over
time and with consistent material introgression, accuracy
levels were gradually recovered.

3.4 | Comparing breeding schemes

The final step in comparing the long-term effects of breed-
ing schemes involved analyzing the performance of all
tested parameter combinations, including the approach used
to compose the training population, the utilization of the
TS optimization algorithm, and varying introgression rates
(Figure 6). Overall, the historical approach (represented by
warm colors) demonstrated superior performance in terms
of selection gain. However, this gain was accompanied by a
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genetic variability and accuracy loss over the years. Notably,
certain parameter combinations within this approach resulted
in intermediate losses in genetic variability and predictive
accuracy, such as the cases with 30% and 10% introgres-
sion without TS optimization (depicted by gray and orange
lines).

Conversely, the test-and-shelf approach (represented by
cold colors) exhibited the best prediction accuracies and
preservation of genetic variability, albeit without translat-
ing these advantages into population genetic means. For
instance, combinations like the dark blue and light grayish-

blue lines (0% introgression, with and without TS optimiza-
tion) showcased the highest values of predictive accuracy
and preservation of genetic variability in the long term
yet achieved the lowest genetic gains. However, similar
to the historical approach, test and shelf also produced
intermediate results, as evidenced by combinations like
the pink and purple lines (30% introgression of materi-
als, with and without TS optimization). While these com-
binations yielded lower genetic gains than all historical
approach combinations, they closely approached them in
performance.

85UB0117 SUOLLLLOD SAIIES.1D) 3[R ddke 3 A PouBAOB B8 SDID 1L WO ‘38N J0 S| O} ARIc]| BUIIUO AB]1AM UIO (SUOIHIPUOO-PUE-SWLB) W00 3 1M ARRAq 1 PU1UO//Sc1IY) SUONIPUOD) PU. SIS | 843395 *[G202/TT/TZ] Uo ARiqiT aulluo A8)im ‘saded AQ ¥BETZ Z950/200T OT/10p/00" A M Aeid) 1jou! JUO'SSaSae//STy LLOIJ POPeOJUMOQ ‘9 *7Z0Z ‘ES90SErT



FRITSCHE-NETO ET AL.

(a) Historical
14-
13-
c
©
o
£ 12-
c
2
3 7
[=3
&
10-
9-
o -~ o~ ™ < l;) © ~ © o o
(b) Historical

o - o~ 2] ~ 0 © ~ © [

cropscience JEB

Test and Shelf

10-

Test and Shelf

Q
£12-
7
[ p
o o
2 ”
£
10- //
s intro
S - N ™ <+ o © ~ © > S S - & ® <« o © N @ > S 0
—~ 10
(C) Historical Test and Shelf 20
0.6- 30
0.4- /
s
0.2-
0.0- v : d v v v : : : v v v
(d) Historical Test and Shelf
e %
.. 06-
o
g
3 A
Q
<
0.4-
\
02 b ' v v v ' ' ' ' v v ' ' ' v v v ' ' ' v v v
cycles
FIGURE 5 Average population performance means (a), the best line (b), additive variance (c), and prediction accuracy (d) over 10 breeding

cycles considering different scenarios of training set composition and rates of external elite germplasm introduction (Intro), regardless of the use of

genetic optimization algorithms.

3.5 | The one-way introduction effect on the
genetic distance between breeding programs

Finally, the Fst between the main breeding program and
the other three external programs was calculated in order
to understand their genetic relationship throughout the years
(Figure 7). In the first cycles, the relationship between the
main program and the other three external ones was high, with
a Fst close to zero. With no introgression, the closed system
breeding program distanced itself from external programs as
the years passed. Meanwhile, programs with annual material
introduction were able to maintain a high relationship with

external breeding programs, maintaining a low index value
during the 10 cycles considered. As expected, the higher the
percentage introduced, the smaller the increments in Fst over
breeding cycles. These results have been observed in other
empirical studies, where germplasm exchange between breed-
ing programs has resulted in low genetic differentiation and
high genetic diversity within germplasm collections (Delfini
et al., 2021; Tsindi et al., 2023). The Fst value still slightly
increases over cycles, primarily due to artificial selection and
genetic drift in each breeding program and also because the
introductions were made in just one direction, in other words,
from external sources to the main breeding program, but
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TS, training set.

the opposite was not true. These factors naturally shape the
genetic structure among populations through allele frequency
changes and favorable alleles accumulation across breeding
cycles (Kolawole et al., 2017).

4 | DISCUSSION

Plant breeding is a complex, long-term process requiring
significant time and resource investment. Decisions within a

breeding program must be made with utmost caution, as their
short-and long-term impacts can be critical to the program’s
success. With an ever-increasing amount of data, there is a
gap between developing plant breeding practices and apply-
ing new information that could optimize processes within the
breeding programs. This gap may result from the time needed
to develop breeding program practices or the risk of negative
impacts that a wrong decision could have on maintaining the
program (X. Li et al. 2012). Simulations offer breeders the
opportunity to explore a wide range of conditions of interest,
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aiding in developing and testing strategies to maximize
genetic gain, preserve genetic diversity, optimize operational
costs, improve parental crosses, and introduce trait variation
from external sources (Y. Li, Shi, et al. 2022). Therefore,
stochastic simulation emerges as a valuable tool for address-
ing this challenge, facilitating the cost-effective design and
optimization of breeding programs (Gaynor et al., 2021).
For instance, they enable monitoring the impact of strategy
adoption on various aspects over dozens of breeding cycles,
such as maintaining genetic diversity based on the selection
scheme (Allier et al., 2020), training population designs and
genotyping strategies (Hickey et al., 2014), the number of par-
ents, the number of hybrids, tester updates, and the genomic
prediction of hybrid performance (Fritsche-Neto et al., 2024),
among others. In contrast, empirical studies often depend on
assumptions from static data collected at one or a few points
in time to make inferences about the past and/or present.

Researchers utilize genetic algorithms and methodologies
to optimize TS composition in GS studies. For instance,
Fritsche-Neto et al. (2018) compared different sample selec-
tion methods to random sampling with biparental popula-
tions. Lorenz and Smith (2015) combine data from mul-
tiple related and/or unrelated individuals, while Rincent
et al. (2012) focus on incorporating diverse populations
in the TS. This last one, with criteria from the mixed
model equations, the coefficient of determination, and the
PEV. Additionally, Isidro et al. (2015) introduced strati-
fied sampling and stratified coefficient of determination
as alternative algorithms aimed at enhancing the optimiza-
tion of TSs, particularly under the influence of population
structure effects, with stratified methods exhibiting supe-
rior performance, particularly when population structure
effects were prominent. By doing so, breeders can fully
leverage GS to accelerate genetic gain and enhance the effi-
ciency of their breeding programs (Ferndndez-Gonzalez et al.,
2023).

cycles

Fixation index (Fst) between the main program and the three external sources, over 10 breeding cycles, considering different rates

Concerning the TS compositions, overall, those composed
of historical data provided higher genetic gains than test and
shelf. Therefore, the advantage of having more years of data,
even without the maximum connectivity, leads to a more
accurate estimation of breeding values. On the other hand,
the test-and-shelf scenarios were much more stable in terms
of accuracy, even when elite germplasm introgressions were
considered. The reason resides in the fact that a brand-new TS
is composed every year, using a random part of the new popu-
lation, ensuring the highest level of connectivity between the
training and testing sets and representing all the “new alle-
les” and haplotypes in their current frequencies and linkage
disequilibrium (LD) patterns but not necessarily reflecting in
genetic gain.

In this context, some studies analyzed the optimization
of long-term breeding schemes, aiming to balance increased
selection gains with the preservation of genetic variability
(Gorjanc et al., 2018; Obsteter et al., 2019; Pocrnic et al.,
2023; Sabadin et al., 2022; Wientjes et al., 2022). However,
we present an intriguing result regarding the efficiency of
“test and shelf” in transforming genetic variability into selec-
tion gain. The two breeding schemes we used started from the
same base population after the burn-in stage and had identical
selection intensities, cycle lengths, and heritabilities. How-
ever, only the “test-and-shelf” approach maintained consistent
rates of selection gain and lower population means across
the cycles. For instance, the dark blue and light grayish-blue
lines (0% introgression, “test-and-shelf” approach) appear far
from reaching the population mean curve plateau, represent-
ing significant preservation of additive variance. Conversely,
the black and dark red lines (0% introgression, “historical”
approach) achieved the highest population means but quickly
exhausted the population’s additive variance. This observa-
tion might lead to the misconception that the “test-and-shelf”
approach has lower predictive accuracy but provides the
highest. A plausible explanation is that the “test-and-shelf”
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training population, although accurately representing the
haplotypes in the test population, includes only genotypes
selected from the current cycle with residues from only 1
year. This environmental residue might erroneously exclude
some important haplotypes for the trait, thus reducing selec-
tion gain. This could also explain why open breeding schemes
using the “test-and-shelf” approach resulted in an increased
population mean despite a decrease in accuracy relative to
their test population. In contrast, the “historical” approach
includes the last three generations in the training popula-
tion, featuring haplotypes from the best lines over the last
three annual cycles. In addition, the test-and-shelf approach
does not consider multi-year genomic information; in other
words, the allelic frequency across years might change dras-
tically, depending on the TS of each cycle, keeping high
genetic variance and accuracy. Still, it might lower the mean
when compared with the multi-year approach because, in each
cycle, a group of different haplotypes will be recombined
and kept to improve its frequency in the population, reduc-
ing the population mean. Although the historical TS shows
lower accuracy with the current cycle’s population, it provides
a more precise representation of the important haplotypes for
the target trait.

Observing the additive variance trends of both approaches
demonstrates further evidence that important haplotypes are
being excluded from the training population in the “test-and-
shelf”” approach (Figure 4). GS typically results in a significant
drop in additive variance during the first cycles, known as
the Bulmer effect (Bulmer, 1971), as observed with the “his-
torical” approach. However, the “test and shelf” showed an
opposite trend, probably because the approach “kept” the
allele frequencies almost constant, or the most probable expla-
nation is that it increased the frequency of minor alleles,
consequently “compensating” the losses due to drift and
selection. It is well-known that the highest levels of addi-
tive variance occur when loci alleles have a frequency of 0.5
in populations of self-pollinated crops (Falconer & Mackay,
2009). Thus, the “test-and-shelf” approach initially led to a
more balanced allele frequency, then experienced a decline
as selection cycles progressed, indicating a change in alle-
les previously selected within this breeding scheme. Again,
this change suggests that considering only 1 year in the train-
ing population directs the selection toward just one haplotype
group that is not necessarily the most important for the trait.

The deployment of optimization algorithms aimed at trim-
ming datasets to enhance prediction accuracy often fails to
yield substantial gains in population improvement or the
preservation of genetic variability and accuracy over time.
This limitation stems from the iterative fine-tuning process
inherent in optimization, which may inadvertently accumu-
late “constraints” or lead to overfitting across breeding cycles,
particularly within the context of the historical approach used
to build the TS (Neyhart et al., 2017). For instance, consider

a scenario where an optimization algorithm is employed to
select a subset of individuals for the TS based on their genetic
markers. Initially, this may result in improved prediction accu-
racy for the target traits. However, the algorithm’s emphasis
on selecting individuals with known favorable alleles over
successive breeding cycles may inadvertently limit the genetic
diversity within the TS (Muleta et al., 2019). Consequently,
the TS becomes increasingly specialized toward known alle-
les (Sabadin et al., 2022), potentially overlooking rare alleles
or novel genetic combinations that could contribute to trans-
gressive phenotypes (Isidro et al., 2015). In practice, this
limitation can be observed in a breeding program that utilizes
the historical approach, where the TS is constructed based on
past breeding data. Initially, the optimization algorithm may
effectively select individuals with favorable traits for inclusion
in the TS. However, as the breeding program progresses, the
algorithm’s tendency to prioritize known alleles may reduce
the representation of genetic diversity, hindering its ability to
predict the performance of novel genotypes (DoVale et al.,
2022) or identify transgressive combinations. Furthermore,
the high computational demand associated with optimiza-
tion algorithms poses a practical challenge, particularly when
working with large populations. Addressing these challenges
will require a nuanced approach that balances the benefits of
optimization with the need to preserve genetic variability and
adaptability in breeding populations.

Finally, regarding the elite germplasm introgression, the
“historical” approach showed to be very stable in terms of
introduction rates concerning population improvement, with
a significant drop in accuracy in the first class, but over
the cycles, considering that the introduction will content and
from the same source, recovered the accuracy, balancing the
increasing of genetic variability available and losses in predic-
tion ability. On the other hand, the “test-and-shelf” approach
was shown to be well designed in cases of germplasm
introduction, keeping the prediction accuracies much more
stable.

Similar to our results, studies involving multibreed ref-
erence populations in cattle breeding have also observed a
drop in prediction accuracy when predictions are made across
breeds. The breeds dominate SNP effects in greater propor-
tion within the reference population, and the prediction model
captures the effects of SNPs that exhibit the same LD pat-
tern with the QTLs across all breeds or only in the largest
population. This can lead the model to predict a non-existing
SNP effect in other breeds, resulting in a loss of SNP pre-
diction ability (Karaman et al., 2021; van den Berg et al.,
2016).

We also observed that introducing germplasm using the
“historical” approach led to a quicker recovery and overall
improvement in prediction accuracy as the introduction
proportion increased (Figure 5d). This might allow the
model to equalize the SNP effects across the germplasm
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better. Conversely, the “test-and-shelf” approach exhibited
an opposite pattern where increased introduction proportion
decreased prediction accuracy. The presence of different LD
patterns between SNPs and QTLs could have introduced
“noise” into the closed system and reduced the prediction
accuracy. Meanwhile, programs with annual material intro-
duction maintained a high relationship with external breeding
programs, keeping a low index value during the 10 cycles con-
sidered. As expected, the higher the percentage introduced,
the smaller the increments in Fst over breeding cycles.

Other studies via stochastic simulations have studied
germplasm exchange and its consequences. For instance,
Yabe et al. (2016) used the Island model to understand
how small-breeding programs can exchange germplasm and
improve their relationship to increase the GS TS sizes and
accuracies. The proposed scheme better maintains genetic
improvement in later generations than the other GS meth-
ods, suggesting that the Island-model GS can utilize genetic
variation in breeding and retain alleles with small effects
in the breeding population. Another interesting study was
performed by Technow et al. (2021) to understand how the
genetic gains happened, considering the structure of commer-
cial plant breeding programs, particularly in major crops like
maize, is characterized by a large degree of decentralization
with the exchange of successful germplasm within but not
across companies.

Besides the interesting findings, the abovementioned ones
did not cover the aspects of the present study. Of course, a
limitation of this manuscript is that we considered a one-
way introduction; in other words, a main breeding program
brings new variability from others, but the opposite is not
true, which is a potential next hypothesis. Moreover, we did
not consider epistasis; besides, it may impact the genetic vari-
ability, genotypic values, and the response to selection. The
bottleneck to include epistasis in simulations is to quantify
the real importance of this genetic component in commercial
breeding programs. Finally, we considered just one algorithm
of optimization, which may not be the best in terms of stability
and response across all crops and traits (Fernandez-Gonzéalez
et al., 2023).

Conclusively, considering the practical consequences of TS
compositions in breeding programs, the test and shelf seems
more stable regarding accuracy in dealing with introductions
despite the origin, frequency, and rate. Therefore, it may be
useful in programs where the introductions come from dif-
ferent sources over the years; in other words, they are not
programmed. Conversely, using historical data, if the intro-
ductions come from the same source over the cycles, this
negative effect is reduced as long as the cycles of introductions
and this approach are the best. Furthermore, it may support
public breeding programs in establishing consortiums or net-
works of collaborations, where the exchange of germplasm
will occur at a predefined rate and flow. In either case, the

cropscience NS

use of algorithms of optimization to trim the genetic variabil-
ity does not bring a substantial advantage in the medium to
long term. It may be more useful in budling the first TS from
big and heterogeneous historical data. Ultimately, it is impor-
tant to highlight that in this study, we used population sizes
that were more similar to those observed in public breeding
programs and the absence of genotype X year due to pack-
age limitations. Therefore, the advantages or disadvantages of
the test and shelf may vary depending on the population size,
the crop, and the trait considered as long as the year effect
causes crossover interactions. Consequently, more studies in
this context are needed.
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