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SOME GEOMBTRIC PROPERTEES OF
DmFEREiWTiAL-ALGEBRAiC EQUATiONS

PAVLO sÉRaro PnREiRA DA SiLVA AND CARLos Jumi WATANABE

ABSTRACT. The aim of this papu is the study of some geometric properti® of
a claw af nonlinear di6erential-algebraic equations (DAE:s). A anonical state
nprweatation of this class af DAE3 is introduoed. When the input of the
Qetem is a canonical input, it is shawn that the DAE: dou not have impujgjve
behavior. The 801%bíHty of this class of DAE:8 is studied. A de6nition of
diauential indu is introduced. This new deânition is compatible with under-
determined DAE18, i. e., DAE8 that npruent control Qutems. The standard
de6nition of diaenntial indu jg then oompared with the propwed de6nition,
showing the equi%lence of this notions when the w'stm is completely de
termined. A class of indw-zero impHcit systms, called l»eudo€xpHdt, is
introduced. The solutions af ap$eudo«rplicit wstem are the solutions of an
arpHcit wgtm with initial conditions that Eeg on a iwaüant manifold F. It
is shown that F an be gtabilized ty a convenient modiâmtion of the ocplicit
wstem without modifying the dynamics over F. The relationship between the
dynamic extension algorithm and the transformation of an impUcit system irrto
a p3euda€xplidt R>rm is di3cussed. This would led to a wmbolic method of
indu nduction, and of stabinzation of the oonuponding iwaHant manifold,
but this method seems to have some practical disal%rd:agu and numuical
difHculties. The main rwult af the paper shaw9 that one mn cansLruct an
explicit Q©tm whose solutions cowerge to the onu of a given implicit gyb
tem. This would led to a suond method that mn be useful for the numuical
integration of a class of higher-indoc DAEg.

1, INTRODUCTION

Imphdt systems, Singtrlar Systms, D«aiptor Systems, or Di#ermtial-Algo
braic Equations (DAES’s) are deeply studied in the lituature. Linear duuiptor
systms are an important class of control systems and many papers and books on
this subject are found in the lituature [8, 30, 9]. Solvability of DAns is considued
in [41]. The numerical integration of DAEs is the subject of two occeUent books
[6, 4], but this mat;tu is still an active area of ruan(!h, specially for higher-indoc
DAE;3

Our paper is an attempt to study DAEs throw a geometric approalh, as done
earliu for instance by [40, 23, 39, 18]. In previous works, the connections between
DAEs and the relative degree and zero dynamia wm aIre«iy pointed out [42, 26]
(see also [27, 7]). In the literature it is shown that, when the indoc is reduced by
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symbolic operations, one may transform the systm into an explicit system with
an invariant manifold. In this case it may be important to gtabilize this invaüant
manifold, atherwlse the numuical integration methods may introduoe a drift in the
constraints [40, 3, 1, 2].

Our work gtudiu thwe aspects further and is mainly based on the infinite di-
menúonal geometric approüh of [20] and on some raults of [35] that will be brieay
recalled in sections 2 ans 3.

In this paper we introdua the notion of cmonical state repr«entation of a
DAE, whidh has a geometüc meaning and anures that the systm dou not possw
impu]sive behavior of its ruponw. We improve some sol%bility ruults obtained in
[35] showing that, undu some regulaHty awumptions, a DAE is a control system
that «lmits local state reprwntations around any point. Hmce, if one âxes the
input and chome a compatible initial condition, thu the sol%bility of this class of
DAns is usured in the sme way as the solvabiliQrof a standard oontrol system.

Assume that one regards the congtránts y = 0 of a DAE as out;puts y of an
explicit system S and this explicit systm cm be decoupled by static-state h«ibuk.
Tbm the indoc is directly related to the relative degree. In this 6rst átuation the
system may be r«luced to an indoc-zuo system by the application of the decoupling
hedb«ik law [42, 25, 26]. The more gmual situatJon, considend in this wper,
arM whm system S is not decoupable by static-state bedb«!k. In this second
átuation, the standard way of redudng the indoç simply by aiding the deü%tivu
ofconstrãnts1 bewmu more complicated because the derivativu of the con8trãnts
will depend on the algebraic vuiablw (it is the cue of the wmple of section 7).

Whm the axplidt system S is not decoupable by static-state h«ib«ik, we show
that the general method of indu-nducHon is directly related to the dynaaücal
axtenáon algorithm and we also prove that the difumtial indoc can be deduoed
üom the algebrãc structure at infinity deâned in [15]. A nation of di#amtial indw
that consider also undudetermined DAEs (1. e., control wstms deâned by DAEb)
is then introduced and compared with the standard notion of di#umtial indu. It
is important to strus that the standard de&nition of diflerential index is suitable
for completely detennin«l DAE’s. In order to oonsider this de6nition for implidt
oontrol systems one must chow a particular input. Howwer, our dgÊrútion of
di#erential inda makw sean wen if the system is underdetertrün«i, without the
need of chowing an input fünction.

We give a new ináght to the problem of indu reduction showing that the DAEs
of this class cm be (locally) transR)rmed, by computable symbolic opuations, into
a a class af indu-zero DAEb called hue pseudc>explicit systems. A syst,em JB
of su(11 clan is equi%lent; to an explicit syst,em S with an invuiant manifold F
in a way that the solutions of the implidt system E are the solutions of S with
initial conditions in F. We also show that psgudo€xplidt systems cm be modiâed,
without changing the dynamia over F, in away that F bemma (locally) stable,
combining previous idem of [5, 18]. Bued on tIme ideu one could estabhsh a
numerical integration method that combinw simultaneoug symbolic and numerical
mmipulations. Although such method may work well in some particular cum, we
believe that it is not reliable in genual and may have many practical problms for
its implementation. This beEef is justiâed bellow and motivates the need af an
alternative method. This gemnd method is based in the main ruult of the papu,

ISee chapte, 2 and the acample ofequations equatioDS (6.2.9)-(6.2.10) of [6].
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namely, theorem 2, which states that givm an implicit system F one can construct
an explicit systm S (using some symbolic diaumtiations of the constrãnts y that
ue ocecuted R3r onu and for all), in a way that the solutions of S mnverge in to
the solutions of F. In hct, under some regnlaritDr usumptions we will show that
thue exjgtg a explicit control system2 with input a givm by

(1) : ) = 7@) ,Q) 1 „(o) a(o, d1) 8)(

where 8 isa subv«:tor of K, u = (8, 8) and system (1) has the property that zd) of
the solutions of (1) convuge (globally) to the solutions af the impHdt system. Note
that the parameterized 6eld 7 may be construct;ed using the symbolic deüvatives
y(t) and tMr di#erentiais for k = 0, . . . k’, whue Ê' is the di#ermtial indoc. Note
that this wmnd method is very di#umt from the reduction of indoc using symbol-
ical operations dwaib«l in the ârst method, as it will be dem &om fiction 6. In
both methods one has to oompute symbolic deãvativw of the constraints. For the
second method, all the othu computations may be puformed numuically, but for
the ârst method however, the implmentation of the dynamic extension algodthm
nwds also symbolic matrix invuüons and the rank computation of symbolical ma-
trices, which is a hard task. Note that, if the equations of the system are sparse,
the matrix inversions may dwtroy this property, whereas the symbolic derivations
of restrictions will pr®uw sparsity.

If the implicit system is complately determina (a = o), then a and 1/o) are not
prwent in equation 1 (we the orample of section 7). Whm the impbcit system is
a control systm, then the prmnm of the deri%tive of the input may be regarded
as a disuivantage of the method. This difnculty may avoided if the input of the
implidt control system is drivm by a control system of the form

2(t) = @(a('),,(*),„(*))
6(t) = a(,(1))zd) 3„(t))

whue zd) is the state of the controller and ud) is the new external input. Then

d=) = gEf(t, ,) + g(f, ,)„] + g@(z(0) z(09 „(0) + g„(1)
If a does not depend on u(f), { e., thue is no direct Bedthrough, tbm 81) does
not depend on u(1). Othuwise, if the new external input ud) is known a pr+oH,
thu one may assume that u(1) (f) is also known.

In the prwmt paper we do not perform any numuical analysis. Our main
result is a strong indication that our geometric results may be a starting point for
utablishing numuical methods for the integration of higher-indoc DAEs. However,
in order to develop a reliable numuical integration method based on the idem of
our mán result, it is necessary to look thwe issuu in a deeper way yet, alapting
our algorithms to the needs of stable numerica=1 calculus (R)r ingtance, working with
orthonorrnal basi3 and orthogonal matricu, QR factorizations etc.).

The paper is organized as follows. In section 2 the preliminary remarks and
notations are introduced. A brief ovwview of the infinlte dimenáonal diflermtial
geomgtric approa:h of [20] is also prumted. Some geometric rmults about the

2Note that this system is nondawical in the 8mse that it is aaectal ty the derivativw 8Cl)(t)
of the inputs.
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solvability and state spam reprwmtations of implidt systems are presented in sec-
tion 3. A new deâIÜtion ofdiaumtial the indoc (k’) is prwmted and is compued
with the standard one (r/d) in section 4. In section 5, the dynamic extension al-
gorithm is shown to be a tnhnique of indoc-reductM by symbohc mmipulations.
The gtabilizability of the invuiant manifolds associated to the indu-zero system
obtained by this method is also studied in this section. The mdn ruult is obtained
in section 6 and a orample af its application is prumted in s«$ion 7 along with
numeücal expuimmts. Finally, some conclusion rPmarks ue stated in section 8.
Some complmmtary material and some proofs are presented in the appmdims.

2. PR8LIMINARrHS AND NOTATION

The 6eld of real numbus will be dmoted by 12. The set of real matrims of n
rows and m columns is denoted by IRpxm . The matrix MT stands for the transpose
af M. The set of natural numbus {1, . .., É} will be denoted by IA:1 . Our approu:h
will follows the infinite dimensional geometric setting introduced in control theory
by [17, 38, 20] in oombination with the ideas present«i in [35]. We will use the
standard notatáons of diferential geomat,ry in the ânite and infinite dimenáonal
eme. A brief overview of the hr6nite dimmsional apprc»xíh of [20] is present«i in
section 2.1. Some notaüons and deâIÜtions of sntion 2.1 are usui along the paper
(e. g. the deânition of system as a digtely, and the deânition of state tepTe3entation
as a local coordinate system).

For ámplicity, we abuse notation, letting (Zr , z2) stand for the column vector
(zf,z;f)7, where zl and z2 ue also column vectors. Let z = (zl, . . . ,z„) be a
vector af fünctions (or a collection of functions). Thm {dz} stands for the set
{cüc1, . . . , tan}. If Lisa set ina metric space M, with metric dist(', '), and p € M,
tbm dist(p, E) = bIf.cr. dist(p, a). Givm a oontrol system evolving on a manifold
S, we say that a gubmanifold F is in%riant if, given initial conditions over F, then
all the oonespondi% solutions ue always contained in F.

2.1. DifHeties and Systems. The aim of this g«;tion is to introduce a brief
overview of the appraüh of [20]. The prwmtation will follow the lian of [35].

ZZ4-Manifolds. Let A be a countable set. Derrote by RA the set offünctions
from Á to 12. One may de6ne the coordinate function ri : IRA + ZZ by a(€) =
€(i),{ € A. This set cm be mdowed with the FYédret topology (see [20]). A
function é : RA + 1? is smooth if é = @(% , ...,niB), where VP : R’ + ZZ is a
smooth function. Only the dependmce on a âIÜte numbu ofooordinates is allowed.

From this notion of woothn«s, one cm %sily state the notions of vector 6elds
and difumtial forms on HÁ and mooth mapping8 #om RA to RB. The notion
of IZ4-manifold cm be also wtablished euily as in the ânitely dimensional case_

Given an @-manifold P, OW(?) denota3 the set of smooth maps &om ? to
R. Let Q be an Z?B-manifold and let é : ? –> Q be a smooth mapping. The
oonesponding tangmt and cotangent mapping will be dmoted nspectively by é. :
TIP + T+(p) Q and é' : T;(p) Q + TjP . The map é : p + eis called an i7nrner3ion
if, around evecy € € ? and é(€) e e, thue exist local charts of ? and Q sutIl that,
in thwe coordinata é(z) = (3, O). The map é is canal a subt7ter3ion if, around
every ( € ? and é(€) € e, thue axist local charts of P and Q such that, in these
coordinates, é(z, y) = g. Contrarily to the ânite dimenáonal cue, immersions and
gubmusions cannat be charactuiz«i by the injectivity or the surjectiyilDrof the
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corresponding tangent mappings. In fact, the inverse function, imphcit function
and rank theorems do not hold in this context [45].

DifBetiese A di#retu Mis a IRA manifold equipped with a distribution A of
6nite dimension r, called Cartas distlib%tion. A section of the Cartan distribution
is called a (Jartan 1181l1 An orrh%ary di#rety jg a dinety for which dim A = 1 and a
Cartan âeld aM is djgtinguisbed and called the CaTta% jtda in this papu we will
only consider ordinary DiHeties that will be called simply by Di8let;ies.

A LioBãdklund mapping é : M o IV bet;wen DiHetiw is a smooth mapping
that is oompatible with the Cart;an 6elds, i e., $,aM = aN a @. A Lie-BãcH%nd
iTntnersion (r«pectiwly, submersion) is a Li&Bãlklund mapping that is an im-
mersion (resp., submuáon). A LieB&klund isomorphism between two dinetiu
is a di#eomorphjgm that is a LibBãdklund mapping. Context permitting, we will
dm(lte the Cart;an âeld of an ordinary dimetDr M simply by á. Given a smooth
object é de6ned on M (a smooth fünction, âeld or form), tbm á stands for 14 é
and Ln, 4 = é(n) ,n € 7V.

1

Systems. The set of real numbus 1? have a trivial structure of dinety with
the Cart;an 6eld á given by the opuation of duivation af mooth functions. A
system is a triple (s, n, 7) whue S is a difÊetDr equipped with Cart;arI 6eld as and
7 : S b+ li 18 a Li&Bãlklund submusion. The global coordinate function f of
R reprwents time, that is chwen for ona and for all. A Li&Bã:klund mapping
bet;wen two systems (S, 1?, r) and (S1 , n, 7/) is a timmespecthg LibBãdklund
mapping é : S b+ 5', i e., 7/ = r o é. Context pumitting, the syst,em (S, 12, 7) is
dmoted simply by S.

State Repre6entation and Output;s. A local state representation of a system
(S, R, 7) is a local coordinate systm, #5 = {f,2, C/} where z = {ai,á € jnl},
U = {up lj € jrd,k € 1V} whue 7 o @–1(t, = ,U) = t. The set of functions g =
(zl , . . . , a„) is called state and u = (th, . . . , u„,) is called inptrt. As a consequence
af the last deânition, in these mordinate3 the Cart71n 6eld is locally written by

(2)
á = é + 1E É â + ;1: uj 4 + 1 ) &

;EL7n1

A state representaüon of a system S is completely detumined by the choice of the
state z and the input u and will be denoted by (z, u). An OtIte st y of a system S is
a set offünctions de6ned on S. The state reprwmtation (z, u) is 8aid to be classic
if the functions 11 depmd only on (t, z, u) for i = 1, . . . , a. The output y is said to
be classic if y depends only on (t, z, u).

System associated to diHerential equations. Now assume that a control
systm is given by a set of equations

(3)
1 = 1

à = É(11 a;9 117 . ' ' 7 U(ai))7 € € jn]
vi = ,lj(,It'9...7t'( 8))7 i€1P1

One can always u30date to th«e equations a dinety S of global coordinates @ =
{f, z, tF} and Cartan 6eld given by (2).

Endogenous feedback, in this section we state a simpliâed notion of mdoge
nous feedback based on ooordinate changu. This deânition is convmMt for our
purposu, but it is not suitable for gtudying feedback equi%lence (see [20] for a
nation of endogenous feedback that is an equi%lenoe relation between systems) .
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Two local state repramtations (a, u) and (z, u) of S indums a local coordinate
dhange map called endogeqo%3 feedb&ch if we have span {dt, dá} = span {df, dz}
and span {cÊ, dr, du} = span {df, dz, dt/}, then we locally have diaeomorphMs
(t,e) h> (t,z) and (t,z,u) o (t,z,tI) called static-state h«lb«!k. The extension
of state by integrators is anothu particular example af endogmous fudb«it. For
instana, putting integrators in suiw with the ârst; k inputs of the state represm-
tatIion (g, u) gives z = (z, ul , . .. , uk) and u = (fIl, .. . , @, %+1 , . . . , u„,). Note that
the local coordinate functions of S in this ase are the game, but they are joined
together in a different way, giving rise to (z, u) and (z, u), which are related by an
mdogenou8 feedbalk.

2.2. Regular implicit sy8temso Let F be an mooth implidt w'stem of the form

(43) é(t) /(tp ,(t)) + 9(t, ,(t))„(t)
(4b) y(t) a(17 ,(f)) + b(6 ,(t))„(t) = 0

whue zd) € 1P is the pgeudegtate af the system, ud) € 1P is the pseudeinput3,
and yi = O, 1 = 1, . ..,r are the congtraint8.

One may awodate to the implidt system F, the explicit system S given by
(5a) à(t) fttl ,(t)) + g(17 zd))„(1)

a(12 ,(t)) + bd,,(t)).'(f)(5b) y(f)

Nav conádu the system 5 with Cartan âeld é given by (2) and output y, in the
ãamework af [20] @ section 2.1). Then y(n stands for the function Ag deâned
on S, whidh may depmd z, tI(O) , tI(1), . . _

De6nition 1. In the sequel toe shall consider the follotgjng codi3tr+bstions de$ned
on S

(6aP–1 = Wm {d) &} 7 Y, = ,p,n {,#, &, dy, ..., dy(Q } f„ '11 k CIV

Yi = span {dt,dy, 9(6b) Y–1 = gw {c#} , ,ig(Q } /a, dJ h cIV

(6c) Y–1 = {0}, vê = span {dy, ...,dy(Q } fm aa k € JV
4

In [35] it is shown that we may identify (cmonically) the implicit system F
deÊned by (4) with the subsgt of S deâned by4

(7) F = {€ € S | y(') = oI k e W}.
De6nition 2. Let U C S be the open and dense set of ng%lar points of all the
crxli3L!{br&lions n, vk and vk, h = O, . . .n. The implicit system F given by (4)
is said to & reg$1ar if F C U, F + 0 and there e:1lists a set of (fuma) irrtegers
{ao,. . . ,a„}, 31&ch that ah = dim % (€) – dim )h_1 (€) for every € € F. In this case,
the 3eqt&enoe {ao, .. ., an} is called the structure at inânity of the implidt systm5.
4

8Note that u 18 nat a dieereatiany indepmdeat input for F, gjnoe the oonstraints y = O induce
diabrential relations Enking the mmponeat8 of u. By the 8ame reason8, a is not a state of F.

4The Prop. 1 viU show that F is a immu3ed submanifold af S.
5Thi3 sequmee jg in fut the allg.braic structure at inânity of the axpHdt system S de&led ty

(5) [15, 12] (we al„ [34]).
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The class ofnonlinear impüdt systems (4) is not particular as it appears ata ârst
glance. In &wt, the next remark shows that genual nonlinear differential-algebraic
equations (DAEs) cm be always mnverted into an equi%lent wstm of the form
(4). For this, consider the following di#uaItial equations:

(8) á(tlt1,1)...,t',Í'"), . . . ) „8, . . . 7 u,S“)) = ol1 e 1,1

Let pj be the greater ordu af derivative af oj that may appear in (8) for i = 1, . . . , n
Tbm pj = mm{aji,i € {1, .. .,r}} , j € {1, .. ., 8}. Conádu the wstem S with
state z = (wl,.. ., u/ÍP1–1), . . ., tu„. .. ,uSP•–l)), input tI = (ul,. .. , u,), whue
% = w}Pj), and output y deâned by «luaüons6;

{ 4p,-–1) = Hj
gi = A(tIt1,17 - .. 9 wi'’”)

69 wj1)

(9) i e l81

9 n n + ) 111|J 111 ) q n n ) 1!y|JS1c1E • i ) ) i 1: Lr1

It is cl%r that the system (8) is represent«l by the system (9) with the congtraint8
ui = O, which is in the form (4a)-(4b). So, aU the raults developed here may be
appH«i to a set of DAEs of arbitrary order. IYon the results of this paper it will
be cleu that a (local) state 2 of the implicit system cm be always chwen as a
sut»et of z = (tIa , ... , wpl–1) , .. . , to„ . . ., @–1) ) and an input a cm be always
a subset of u.

For instance, conádu a DAE in dnaiptor form:

E(z)2 = A(z) + B(z)u
and note that it cm be transR)rmed into the implidt wstm

2 = p+ Ou
y = Z(z)p–A(z)–B(z)t, =0

which is in the form (4a)–(4b) where z = z and u = (v, p). Note that y is anne in
tie

2.3. Afftne systems and nnbounded coonlinatua We now deâne a notion of
un&>unded ooordinate8 on l?Á-manifolds (see section 2.1) and some related ruults.
Rnughly speaking, a set of coordinatu is unbounded if one may drowe the value of
thue set of coordinata arbitrarily. In othu words, given coordinatu (3, w) with
w unbounded, if (go, wo) is ulmisáble, tbm (ao, w) is also adrnissible for any w.

Definition 3, LeI tb '. u + nA x @, where é = (X, Y) is a local chart of a
manifold 5 deflsed on ae open set U C S where X : u + nÃ and , Y : U + RB
ate smooth maps. Then, the coordinates Y are said to & %lIbor$ndedifV := é(E/) =
IP x RB, where TP is an open sul)set of IRA. Int @ : & + Hl & a di$eomoTThism
tntuleen open sul)sets Jg and Xl of RA x RB, srbch that (X, 7) o (Xl, Vl). Then
@ is said to õe 118&runded irr Vl if the image of 9 is of the folrn 7 x ltBrDüh 7
an open ssl)set of aP +

6Note that yi (i € jr1) maDr depmd on game % (j € 131).
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Remmbu that a state reprumtation (2, u) is a speda1 wordinate chart for
a system S (see section 2.1). Given an explicit systw (5) one may construct a
system S with global coordin8tes {t, z, t/}, whue CJ = (tI(Q : k € 1V) and Cartan
âeld (2). It is a simple ocudse to show that an anne locally regular static-state
hedback, i. e., u = a(z) + p(z)u, for $ that is locally nonángular, deânes a new
state reprwentation (a, u) and the chart {t, a, 7}, whue Y = (u(A : k € 1V) is
unbound«i in Y (see the proof of lemma 2).

We may state the â>llowing auxiliary rwults,

Lemma 1. 1/ (Zr, W) is a local chart with tIn&>unded W, cardZr = cardZ2 is
frnüe and span @1} = span {dZ2}, then (22, W) is also a local ccx»di%ate sygtelr\
uÉth trnbounded W.

Proof. By the M;e dimensional) inverse function theorem it R>llov8 that Z1 b}
a(Zr ) is a local diaeamorphjgm deâned in some open sub8et Y C 1tÁ with image
u c nÃ. Hen@ (Zl, W) h} (Z2(Zl), W) is also a local diaeomorphism deRned in
some open gubsgt Y x aB c RA x EB with image U x RB. It follows easily that
(Z2, W) is a local chart with unbounded W O

The next lemma isdirectly related to the steps of the dynarrücal extension alge
rithm (see wet;ion 2.4). Part (i) rufers to a regular static-state bedbük and part
(ii) to a dynamic extension.

LeInma 2. Let S 66 a system, and let (z, tI) 6e a state repre3entatian of S . A33tr77re

that {t, a, u(o) , . . . , tI(k) , W} is a local chart with tmbotlnded {tI(O), . . . , tI(b) , W}, and
let (a, u) be de$ned õg an a$utc locally wg%lar static-state feedback th = a(z)+p(r)tI.

(i) That {t, z, t/(o),...,uCh) , W} is a mal chart with unbounded {tI(o) , .. ., t/(8 ,
W} and span {d, &, dtI(OI , .. . , dv(A } = span {dt, dr, dtI(o) , . , . , du(B } .

(ii) if v & wttitioned as u = (0,8), € = (g,8) and p = (0(1),8), then {f,
€, p(o) , . . . , p(k–1) , 8#) , W} is a local chart with tlnboqnded {p(o) , . . . , p(k–1) , ÕH , TV}
and such that span {&, #, dp(o) , . . . , dp(&–1) , díXb) } = span {c#, dr, du(o) , . . . , du(H} .

Proof. Note that the equations
V

{1

–P–1(,).(,) + p–1 (,)“
41 (z, u) + 6–1 à

D(k) @(,) u, . . . ! u('–1)) + p–lu(')
for k € 1V deâne a local diaeomorphism ©Á such that (t, a, U) H} (f, a, Y), whue
U = {u(&) : É € A}, Y = {u(Q : k € 4} with A = W or with A = {0, . . ., A}.
This diaeomoQhism is emily seen to be unbounded in Y (with invur8e unbounded
in C/)- Taking A = {0, .. ., k} note that the map (t, 3, U, W) o (t,a, Y, W), where
(t,a, Y, W) = (94(t, z, U) , W) is a local morphism which is unbounded in (Y, W).
This shows (i). To show (ii) it suÉ6c® to sm that {t, €, p(o),.. ., p(k–1),ÍXi) , W} =
{t, (g, 8(o)), (0(1), 80)), . . . , (ú(k),ÍKi–1)), 8<Q , W}, i e., thae sets of coordinata
coindde up to a renaming of the variables. O

2.4. DwaInic extension algorithm (DBA). The DE3A is a well known alge
rithm in nonlineu control theory and it is ewmtially a tool for computing system
right?inversa and the output rank [16]. It is strongly related to the problem of



SOME GBOMHrRlc PROPERTiES OF DiFFERENTiAiFALGEBRAic EQUATiONS 9

input-output decoupliIU [14, 32] , disturbance decoupling [33, 13] and inputhoutput
lineuization [13, 36]. The dynamic utenáon algorithm fora system (5) has an in-
túnác interpretation [15]. This intupntation ww conádu«i fbrthu for the study
af quad-static hedb«:k in nonlinear oontrol theory [12].

We will see that the dynamic axtmsion algorithm is a sequenoe af applications of
regular static-state feedbalks and axtenáons of the state by integrat;org. According
the the ideas of the md of section 2.1, one seu that this algorithm can be regarded
as the dhoioe of a new local state reprwentation of system S. Now we state a slightly
di#erent vuáon of DnA that is useful for our purpmes. Let S be the 8ystm (5)
with Cart;an 6eld á de6ned by (2), classical state repr«mtation (z, u) and classical
output y. Assume that y(o) = y = ao(t, a) + bo(t, g)tt and dmote z_1 = z, u_1 = u,
/_1 (f, z) = /(t, z), g_1 (f, z) = 9(t, z). The step & of this algorithm (k = 0, 1, . . .)
is dwaibed below:

Step k. In the step k – 1 we have oonstructed state equations

(10)

(11)

àb–l = A–1(t,zk–1)+g#–1(f,z&–1)trk–r
y(k) = ahd,%_1) + bhd, zh_1)%_1

where zh_1 = (3,tIo,. . . , h_1). Assume that (i,ek_1) is a rqglrlar point for the
matrix bbd, a_1) and let a& be the rank of bk around (i,%_1). There axist a
partition7 y(k) = (gp, #) of y(A such that dimgíh) = ah and we may deâne a
(locally) r%ular static-state bedbalk (we appwdix B):

(12) %–1 = ak(f, %–1 ) + Ad, zb–1 )uk

vhue % = (@, Ü) is such that

(13) 8:: Bh

d')(t: ,4–11 %)
Add the dynamic extension:

(14)

and de6ne tQ = (@, ah). This deânes a new set of state equations:

(15) à = Ad, a) +gh (t, a)ub
whue zh = (%_1,gp ) and uh = (dk+1), Gb).
y(4) (t, %). Hwce we may compute

By mngtruction we have y(k)

(16) g(#+1) &pf:) + y:IHE + gEt'A)
ai+1 (t, %) + bk+1 (t, a)uh

+

The following lemma urmmariz« the matn geometric propertiw af the DEA for
timein%dara nonlinear systems. This lemma is a geometdc vuáon af previous
results stated in [15, 31, 12, 35] and it improvu some ruults obtained in [M]. We
strws that the list af integus {ao, . . .,a„}, where n = dimz, is the geometric
counterpart of the algebttúc stt«ctute af infInity (see [15]) and the integu p = an

71DcludiDg po«bly a rmrdering of its elemuts.
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is called autptrt taTa at €. We stress that, with the exoeption of part 9, this ruult
is valid for nonaffine sygtms8.

Lemma 3, Id S be the system (5) with Carta% fIeld é de$ned by (2), classical
state 7epre3entation (r, u) and classical output y. Let VÊ be the open md dense set
of ng%lar pobrEs of the CCRliS Mib%üorrs E and )4 for € = 0, .. .,k defubed in (6a)
and (6b). Let € € %. In the kth step of the dynamic ea;ten9ioTr algorithm, one may
congtnrct; a neto local classical state rep7e$errtation (zh, uh) of the system S with
state zk = (3, do) ,. . ., gp), hp%t u# = (&p , &) and oq®ut g(h+1) = hb(t, % , ub)
àefmed i% aq ope% neighbothood uk of e, 9%ch that

(i) gmn {db9 oki} = gmn {oü) ab) dy, . . . ) dy(k) } = %.
(ii) span {&, dz#, d%} = span {dt, dr, dy, . . . ,dy(h+1), du} = :h + sw {du}.

(iii) a ü always possible to clux)se gB) h a way that gf+1) c d111)
(iv) 11 is always possible to choose Ei+1 c ah.
(v) Let € € Vn. Let sh be the g7eater ope% %eighborhood oj € 8%eh that

the dimeTrsion3 of Yi ,) 5 j € {0, . . . , k} are constant inside St. The se-
g&enoe ah = dimObIc) – dim04_1 IE) is %ondecrea3ing, the seqtlence ph =
dim(% if) – dim(%_1 if) is norú7rcreasing, and both 8ewnces coTrverye to
the game integer p, called the output rank at €, for same k' $ n = dim z.

(vi) sh = She fat k 2 k-.
(vii) Y& n span {dr}Ip = %+_1 n span {th}Ip for every # € sh. and k ? À:'.
(viii) For k 2 k*, one may choose gh = @+ in uk+ . F\rrtherrnore, Y4+1

n + span {if+1)} for k 2 k'.
(ix) 1/ the system 13 aglne, i. e., it 13 of the faIlll (5), theTI the state representa-

8871 (a, uk) obtahed in step k indtlus a kx:81 chart {t, gk, (u?) : j € 1V)}
of S that is tlntxnlnded fn VP = {uP} : j € 1V}.

Prmf. See appendix A. n

aA )Remnrk le Note that dimM = 1 + dimm = 1 + n + EL ai, dim@
dim% = m and dirnaÊ = in – ah, where n = dimz, and m = diInu.

3. SOLVABILrTy

In this s«:tion we study the solvability and state space repramtations of reg-
ular DAEs. We improve some previous ruults of [35] and introduce the notion
of canonical state repre9entation. The results of this section are closely related to
some idem af [19].

3.1. Regular implicit systems are immer8ed submanifolds. It is shown in
[35] a regular DAE deâned by (4a)–(4b) cm be reguded as an immersed system in
the expEdt system S de6ned by (5).

Prop06ition 1. [35] Let S & the system associated to (5) in the sense of [20] (i.
e,, a di8retg with Cüttan fIeld (2) and 8 time not;ion r : S + IR). Let TIn the
sub3et DjS de$%ed by F = {€ e S | #(k) (€) = o, k e W}. S%TWse that:
(Al) F is n«neTnptg and every { € F is a reg%lar point of the codisttib$1ions
Yt, =PÊ9À: = 01 • - • in (see (6a)-(6b))•

8111 this case the steps (SI) and (S2) of appendix A may be reganded as the dnaiption of the
DE)A and the calculations may depend on the impHdt function theorm [29].
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(A2) For ellen C € F and ellen ope8 %eighbo%thotH U C S of €, there enist8 some
e > 0 such that 7(F n cf) cartai%s an open interual (7(€) – e, 7(€) + e).
Then the strb9et FcS has a canonicaZ slrvcture of immersed (embedded) strb7rran-
#old of S such that the oanorücal i%3wtion is a Lie-B(W%nd ir7&r73er3iíin. /brtAer-
more F admit3 a local state teprwentatian ato8na eDen point ( € F.

The proof of propo$ition 1 is based on the R)llaving result (mmpue with [35,
Tbm. 4.3]):

Lemmn 4. Let Sóe the system (5). Let n = cardz. Let Uc PP be the set of
7v#ular poiTrts of the codjgtrib%lions Yh,Yh,h € jn1, deAned on S and let € € U.
Set k' as in tenma 3, Let 2,, tIa, zb, vb be sets of f%Bctions ssch that {c#,cZz,},
{dt, dz,, du,}, {c#,CZza,cizb} and {d, &,,dzb, dua, dub} ate te3pectivelg local bash
of Yu _\ , % , %_1 and )4+ + span {du} atautrd €.

Then, there ealists an open 8eighlxnrrhOCRi vE of e 3$ch that (z, u) = ((z,, zb), (%,
ub)) is a local classical state npm3e%tatjoq of the system S that is defuwd on Vc
and is StICk that the (locd) state eguations are of the form:

(17a)
(17b)

àa = /a(t:Zal %)
fEb = fb(tI Zal Zb9 %1 %)'

and span {d, dz,, (apP : k € W)} = span {d, dy(Q : k € 1V}. LeI Z = {z,, (uP :
k € W)} and Y = {gp : j € Lá,k € W}. Then we may ctux)se Z C Y. Fbrther-
more, ae state repre3entation (z, tI) induas a kx:aI chart {1, z, (t7(h) : k € W)} thaI
is trnZxrunded in {tI(h> : À: € JV}.
Proof. The idea of the proof of this lmma is to ocecute the dynarIÜc extension
algorithm mnsidering the axplidt system S given by equation (5) with output y.
The conditions of Def. 2 awuru (according lemma 3) that the dynarIÜc extension
algorithrn may be axecuted without any local singuladtiu. In the step À:' – 1
of this algorithm we have oomput«i a new state reprwentation (ã, &) where a =
(z,dl),...,gg'–1)) and ã = (a/, p), whue w = #21 and p = Go_1. Note that
the new state equations are anne, 1. e., they are of the R>rm

(18) é = /(128)+9(Lã)„,+g(118)p

By parts 1 and 2 of Mma 3 we have span {dt, dê} = span {c#, dz, dy, . . . , dy(&' –1) }
and span {dt,dá,dã} = %+. Nate that, by construction we have span {c#,dê} =
span {c#, dz} and span {c#, dE, clã} = span {c#, dz,do}, which de6n« a relation af
local static-state hedbu=k beLwwn the state repramtations (8, ã) and (z,u) (see
the end af section 2.1). The other properti« are easy cons«luenms af parts 5, 8
and 9 af lemma 3 and of lemma 1. D

The idea9 of the proof of Prop. 1 is to apply Lemma 4 and to show that (zb, %)
is a local state representation of F and in the coordinatu {t, z„, %} for F and
{t,z„zb, Y,,%} R>r S, the immuáon & is given by &(t,zb,%) = (f,0,zb,0,%).
F\rrthumore, the state repr«mtation (zb, ub) induw8 state equations of F given by

(19) à = /b(t,o,zb,o,%)

DAn important detail that is ovulooked in the pruent sketch of the proof of Prop. 1 is the
construction of the mootb atlas af F.
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whue fb is given by (17b). Note that, in Lemma 4, the state zb ofF may be dhosen
as a convenient sul>set of z and the input % may be chmn as a convwimt subsgt of
u. In othu words, % is the diaerentially independent part of u and the constrãnts
g = O induoe diaamtial relations linkin8 the other components of tt. This explains
why we call z by “pseudestate” and u by “pseudeinput“ of F.

Now we will show that awumptions (A1)-(A2) of propoútion 1 are implied by
the asgumptions af deânition 2:

LemIna 5. Let S be an arplicit system (5) 3%ch that the corrwpo%ding implica
system (4) ü tegrrlar. Let n = cardz. Then the foUouÁng a8rmnati07rs bolas:

(i) let vh = span {dy, .. . ,dy(O }. Then span {c#} n Ykl€ = {0} in an own
neighbOThOOd of www pojqt e eT, for k e IN .

(ii) Coasidet the state repre8entation (17) of Zemtrra {. Then span {dz,,
(duI#) : # € 1V)} = span {dy(A : h € W} araund eue7w € € F.

(iii) The asstHnptiub9 of defInition 2 implies (Al) and (A2) of pTwposüion 1.

Proof. We show ârst that 8pan {dt}rlYÊ = {O} for every point ofF. In hA, let € cF
and let ,7 = EL, E;=, %dg}OIe = @fIc. Tbm <,7; á> = E,j<aoddi)lc; á> =
LJ %<dyii) If; á> = Eia %di+1) IE = 0 = PIe. Note that, br aU &, € S we have

dimyê1,, = dim (spm {a} 18,) + dimYklB, – dim(spa- {&}1,, n Yhl,,)
thu the nonsiIrguluity of span {df}, of b and of Vi impliu that span {dt} n vk
is nonsiIrgular around € € F and hmce (i) holds. To show (ii), let q e Yê. Sina
span {dt, dz., (chF : k € 1V)} = span {d,dy(O : ke IV}, it R>llows that 77 =
pdt+Ei 7idz,,+},ij ôudvsi} . By luma 4 we have Z = {z„, (uP : k € W)} C 7 =
{y(b) : k e IV}. nom (i), it follows that p must be zero and (ii) hold8. Nov, since
{1, z., zb, (tIP, up ,k € 1V)} is a local coordinate system, by (ü) it follows that in
thue mordinates, ya) do not depmd on t, but only on {z,, zb, (uP, up ,k € JV)}.
In parücnlar, if (i, 2,, Zb, %,%) € F thu (i+c, ã,,Zb,P,, %) € F br every jeI small
mough, showing that (Al) and (A2) ue imphed by the awumptions of de6nition
2 0

3.2. Canonical state repruentation ofimplicit systems. The following prope
sition dharacterizw special state reprumtations of implidt systems whi(!h have a
canonical meaning.

Proposition 2. Let A;' be the integer defured in Lemma 3. Consider nato the m-
pJicif system S de$ned bg (5) alta let 2, a t» sets of 1%rrctions de$ned en S StICk
that (locallg) the canonical prvjectÀoTis of {dF} on n+ IYk+ and the canonical prr»
jectÃoTU of {da} on (%+ + span {du})/%+ are both basis. ThaI (8,6) is a local
state nprwentabion of the implicit system (4) called canonical state repruentation.

Proof. From lemma 3 part 7 it is euy to show that dim)?p/Yi• = dim)7r_1/
Yt+ _1 . Ftom this, it follows easily that the construction of the state reprnmtation
(zb, %) ofF given by the equation (19) (sw luma 4) is equi%lent to the statement
of the prumt proposition with zb = 2 and % = a D

Remark 2. Note that the state np7e3entation (19), obtained by the choice of a
ca7ranicai state repre9entation, is classical, i. e., the de7$vative of the state is a
f%fiction of the state md the input. In parHctÂlar StICk a state nI»esentation does IbOt
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haue imprrl3ive response, which mag arise with other choices of state represe7rtation.
For instanoe consirier the DAE ã1 = g2 + 111, á2 = z3, ã3 = t12, y = 31 = 0. /1
is easy to gerify that (2, a), where 2 = (z2,z3) and a = 112 is a canonical state
nimseTrtahon uriür state eqt&atians ã2 = as and às = te. If the hptst of ae
ünplicit system is ul then one mag choose a non-canonicaZ state rzpresentation
(2,8), where 2 = z2 and 8 = ul, corte3pondürg to the state equations á2 = iII.
Note that the state npresentation (2, 8) is not classic.

4. DrFFnRENrrAL INDnx

The indoc af gmeral DAEb vas studied for instnnce in [10, 28]. In this work we
deal with the diaermtial indoclo. In [18] a geometrical deânition of the indoc of
DAEs was given. It was shown that this deânition was compatible with another
deârütion given earlier in [22] for linear systems, sina the lineu de6IÜtion of indoc
applied to the linearized system eoindd« with the nonlinear deânition.

In this section we will give a new geometrical de6nition of the difnentiation
indezofDAEs af the form (4). This geometric de6nition will be compared with
the classical not;ion of indoc and will be shown to be independent of the canonical
state reprumtation chwen. In particular, the indoc of a system dou not depend
on the canonical input chown among the componmts of the pseudeinput u. We
st;rus a,gMn that our de6IÜtioa is compatible with underdeterIrúned DAEis, whueu
the standard deârütion of indoc is not. Our regularity conditions of de6nition 2
awure that the indoç is an invuiant of the system.

4.1. A new de6nition of diHerential index,

Deanition 4. Int (4) be a reg%kIt irnplicit system and let {ao, . . . ,an} be the
aigebrnic strbctun at infInity of this system (3ee Def. 2). Let if tn the least integer
sru:h that au = max{ao,. . ., an}. The integer F jg called the diaarentãation indoc
of the TegtÜat iTnplicit system (4). +

The following propoáüon links our last d€finttion with the “dasdcal” notion of
indoç, that gtata that this int%er is the least ordu of dui%tion of congtrãnt8
that me necessary to oompute á [10]. It means that the indoc is the least order of
dui%tion af the constrãnts y in a way that i may be computed asa fünction of a
canonical state and afa cmonical input.

Prop08ition 3. Ass8»w that (2, a) is a ca7ronicaZ state r€pre8entation oftheTtgrbht
implicit system (4) . Á33ume that the a=plicit system S de$ned õy (5a) is well-
forrlbed1 , i. e., span {dt, tb, dá} = span {c#, ch,du}. Then the i%dez: À;' is the least
integer k* such that à mag & computed asa fvnctioTr of {t,2, a, g, . . . , g(h')}. In
other toortZg, the foRotDjqg condition hold3 for the «zplícit sgstem S defured by (5)
for E = 1:'

(20) span { a} c sw {a, a, ,@ @, ..., dy(A } c % + span {cn}
brIt the same condition do not hold for k < k' .

IOWbíü may diaer ãDm the perturb,ti,a indo, ,, ,th„ nati,n, ,r index, aB shown in [lO].
llThjg is a]uivaleut to say that 9(t, a) of (5) has full column rank [43].

)
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PTOOf. By construction, we have that

(21) span {d, d„, d„} C span {d, @ @ @, . . . , dyO') }

As 5 is classic, it follows that (20) is satjg6ed. Now awume that (20) holds for
some k $ F. By Lemma 3 part 2 it is euy to see that dina is given by m – abR
and that;12

(22) dim (X O span @) = (1 + n + ao + . . . + %) + (m – au)
Ftom (20) we su that span {tã, db,dtr} = span {dt, dá, cb} C yk O span {cn}. In
particular, it follows that

(23) A O span {cn} = Yk + span {du}

By Lemma 3 parts 1 and 2 it follows that Ph + span {du} = span {ch 8_1, dt1&_1 }.
Hmce,

(24) dim (M + span {du}) = 1 + n + ao + . . . + ok_1 + in
It follows üom (22), (23) and (24) that ai = ah+ and so k = k’ . 0

Remar:k Se The folbuúng points mInt be stresse(1 out:
(i) One mag re-state 8 new uersion of woposihon 3 by replacjqg (20) by the

co%dihon:

(25) gmn {,a} c span {a, &, ,n, dg, ..., @(A } = % + span @}

In this uer3ion, the inde:r jg 1Ae least integer k' 3qch that (25) bolas for
k = k'

The pn>of is similar and is left to the reader.
When (58) is not toell-fonned, one may replace conditian (20) óy(ii)

span {&, dt,} C span {d, dF, @ @, . . . , dy(Q }

(iii) When abB = m, then the tegulat imphcü system is completelg determined,
i. e., there is no inp8t rz = 0). In this case, from (25) we see that the indeir
À:' is the least integer k such that span {dÊ} c span {dt, dá, dy, . . . , dy(i) },
which is similar to the tlstraJ defInition of difwwrtial inde= (see section 4.2
for a complete comparison).

(iv) 11 can be 3hor0% that Def. 4 is eqr&iualent tothe the ane o/ [18] . In par'hc%lar,
assume that the reg%lar i7nphcit system (4) is infttbe#rced bg a distur+ance
wd) cRI acconling the follatúw egttafions;

(26a)

(26b)
à(t) = /(t,'(1)) +g(1,,(t))„(t)
y(1) = h(11,(t)2„(t)) = „,(1)

Then the inda:r F is the greater ortier of tí77re-derfuatfue of w (t) that in-
ft%e%ces the response oI system (26).

12Nate that direct sum af quaion 22 jg a con3equence of the fut that the mnonical projections
af @} form a bads af 04+ + span {du})/)/h•' .
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4.2. Comparison. In this section we will compare our deânition of diauential
indoc with the standard one. For this, recall the deÊnition of diaerential indoc
given in [10, 6, 4]. Given a (sol%ble) nonlineu DAE:

F(tI à(t)13(1)) = 0
whue z € 1? and oonsider the derivative array equrrtions:

F(t7á7z) 1

J||Pt + J||Pá (t 2 11i 9 Z ) ? + J||Pa (t 7 i 7 11111r ) iI = a ( tá ) 39 w ) = o

[

(27)

5 FCt, é, z)
whue ul = (z(2), . . . ,a(4+1)). Rnughly speaking, the dlgerential indor wd of the
DAE is the least integer k suar that à is uniquely determined by (t , z) and the
equations (27). It is clear that this de6nition is not suitable when the DAE repr&
sents a underdetenIÜned wstm. In this cue, one must droose an input function
a(-) in a way that the DAE becomw oompjgtely detumined. IHt us msume that
this is the cue. Considu the systm:
(28a)
(28b)

à = u
y = F(tlu7 g) = 0

which is in the form (4). Assuming that this DAE is regular according deânition
(2), and that the DAE is oompletely determined, i.e., ou = a, then the part (iii)
of remark 3 impliw that our de6nition of indoc applied to system (28) gives the
standard de6nition of indoc. Conádu«i in this way, the relationship between the
indico 1/d and k' is vd = k* + 1 (sw section 4 of [10]). To see this, take for instance
equation (6.2.9) of [6, p.154]13 which is given by

(293)
(29b)

(29c)
(29d)
(29e)

ál
ã2

às
à4
U

Z3

Z4
–ai À
.z2;\ – 9

z? + d – 12 = o

whue L,9 ue positive real numbus. This system is cleuly in the form (4) with u =
À. Computing the standard diaerential indoc one obtains wd = 3 wM mnsidering
À = 35 . Howevu, computing the diaermtial inda acoarding our de6nition one
obtains k' = 2. The axplmation of this di#umce is the following. In order to
integrate this systm, it is necessary to detumine À and i but it is not necwsary
to know À. So, in ordu to recover our deânition of indoc from the standard one,
we may rentate its deânition in the following way. Given a (sol%ble) nonlinear
completeiy detumin«i DAE:

F(tI à(f)ja(f)) À) = 0
whue F dow depend on ái for all 1 = 1, . . . , n, then the inda is the least integer
k sutIl that one may compute i as a fünction of (t, z) and the DAE and thdr
duivatives up to ordu k. In other words one may distinguish di#erential vuiablw
z ãom the algebraic variabl« À. Note also that, for system (29), one may compute

13This DAE is a model of a pend„1„m.
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À as a function of z and 8. Hena the system cm be integrated with the knowledge
of the snond order deli%tive of the congtránt. Hmce, it gems that the indoc
2 reprwnts the real dinculty af integrathrg this DAE, rathu than the indoc 3.
Note that, applying the de6rütion af indw to an explidt control qystem (po®wsiag
algebraic %üables) in the game way that we have done to recover the standard
de6IÚtion of indoc, one obtains vd = 1. Hawevu, our deâIÜtian givw k' = 0.

5. TRANSFORMING D AES INTO AN INDEX-Z8RO FORM

We nov recall some idem of [42, 25, 21]. Assume that the DAE of (4) is time
invwimt and that the axpEdt system (5) with output y(t) € 1? is deooupable
by static statef@dbük, i.e., it «lmits relative degree and the decoupling matrix
A(z) has constant rank r [24]. This meus that thue axists a regular static-state
hedbadk:

u = aCr) + 4(z)u
whue u = (o,8) and the 6rst r components of une of the form o = (dÊ1), . . . , ah) )
[24]. In this case, it is not diacult to show that our de6IÚtion of indoc givu
k' = mm{kl, .. . , k,} and the input of the DAE is a The explicit gystm S obtained
by taking u = a+pu with 8 = O has an invuiant manifold F and the solutions with
initial conditions in F are the solutions of the original DAE. For instance, conádu
the system (29), let À = u and nate that y(2) = 2(4 + d – 329) – 2(r? + d)À,
Hmce, if y = 0 then

(30) À = (a;3 + d – 2;29)/(a? + 4).
The explicit sygtm obtained by subgtjtuting (30) b«:k in (29) is such that the
submanifold F of the state space deâned by g = # = O is an invMant manifold. In
this work we genuali7€ this ideas whm the system S with output y is not static-
bedback decoupable. We begin this section with the study of a particular dIns of
DAEs

5.1. P8euduexplicit systems. We nov deÊne a class of indüc%ero implicit con-
trol system, called pse%dc»a»licit systems, for which the problm of 6nding its
solutions is equi%lent; to seeklng the solutions of an explicit system, with initial
oonditions that liu on an invuiant submanifold Z\ of the state space.

Deânition 5. A regIstar ünphcit system (4) ü called pseudc>explicit if, for the
uphcit system S de$ned for (5) (wruidwed in the 3er19e of the section 2.1) toe
hatu.

(i) sw {dy(A , k € W} c sw {dt, dIZ:}.
(ii) There HBiSt3 À:' € 1V 91,ch aat14 SW {dy(H} c span {clt, dy, .. . , dy(h')},

for talk e IN .
+

Note that in this cue, the inânite dimensional manifold S deâned by systm (5)
is given by Rx ;E xUn , where ;Y = IP and Z/ = IP and the mrresponding Cartan
âeld is given by (2). The following proposition nrmmarizu the mãn propertiu of
pseudc>explicit systems:

Prop06ition 4a Assume that (4) is a psc%dc»acplicit system. Zhen:

14We consider that A:' is the least integer with this proper@
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(i) Let F = {€ € SIg(Q (€) = 0 for all k e IV}. Then F = A x tIm toIlete A
is an ir7rt7&ersetl (emlndded) i7roaría7rt submanifold of R x X.

(ii) The c8we €(t) is a solution of the implica system (4) if and onlgif €(D
is a solution of ele aEplicÜ system S giuen by (5) with +niHal condition
edo) = ao urith (to, go) € A.

Proof. See appendix C. 0
The p3eudoexpbdt system is sdd to be F-stable if, for every iniüal condition

(to, no) dme enough to A, the solution af the systw tends to F. This há may
be important R>r numuical integration for such a system, since enors, that could
arise in the numerical integration, would be corrected by the attractivenus of F.

Deünition 6. A pse$dthe3plicit system is said to be T-#able if, for (to, ao) € Z\
then ezist3 c > O sutlh that if the initital condition is ã with distO, ao) < e, then
tAe solution €(t) of the explicit system S for euetf5 tr(.) conrlerye9 to F, i e-,
dist (zd), A) + 0. +

Now we genualize some idem of [5] about stabilization of invuimt manifolds
related to DAEs.

Proposition 5. Assume that Sjga p3eudc»arphcit uplicü system with invariant
manifold F. Then, ara8nd euety € inF then e::jgtsa T-stable p8e%do ewhcü system
g stu:11 that, for etIca applied inp41t and euelu initial condition € on F, the soj$tjoqs
of B and S(loeaüg) eohcide.

Proof. Lat B = {c@p,,. ., dy{n), . . . , avg, . , , , @É%)} be the basis of Vn of the
proof af propodüon 4 . Let gO> = (yg1), . . . , yg’))p.

Write du{A as row vectors in local coordinates, obtaining the r x n matrix M(r) .
Let id, 3) = MT (M MT)–1 . By construction, ã may be regarded as a set of r
(oolnmn) 6elds such that A(1, a) = <dy<p> ;a = 1,, vhue 1, is the r x r idmüty
matrix. We show now, using the sme idem of decoupling theory [24], that there
exist u = 4(1, r) such that the system à = f +gu+@ in clc»ed loop with u = é(1, g)
(locally) givu the system g with the dMred propertia. Let ad, z) = (dy<p>; /+gu>.
bIke u = (A,_.. ,@), whue éj = –% – EL)bÜBt}1 and the mngtants by € ZZ
are chmn in a way that the Enem diaermüal «luatlions y}a)+E,20bbB\}1 = O are
asymptotically stable for j € jr1 . Sina é(t, 3) = 0 br all (t, z) € A, the d«ir«i
result follows.

Note that, if Bis globally a buis of be , then the construction of S may be also
global (the integers pi may change ãom point to point and this is the obstruction
to the globali7ntlion of the rwult). O

In [18] it ww shown that implidt systems may be locally put in pseudc>explicit
form. The next r«ult shows that this cm be done using computable (eaective)
algebrác opuations and the invuiant manilold is always stabilizable.

Theorem la a 7egular implicit 3g3tenr F deÊTred õy (4) can be lux&119 tra%sfonrwà
into a T-stabZe pseud@aÊphcit system around euerT point ofF . Furthernu»e, if the
r&3tl+ction3 ate a$ine, i e., ify = a(z) + b(z)11, then the Teorkes trun9fotwurtion
is a composition of a 3eguence of (efechve) symbolic operations.

15W, aw„m, th,t u(.) i, ,.d th,t th, ,,1„ti,, ,f S od,t, f,r t € [to, w).
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Proof. See appendix D. D

6. MAIN RESULT

In this section we show that, given an impEdt syst,em, one may construct a
axpndt system such that some oompoamts of the solutions of the explidt system
mnverges to the solutions of the implidt system. For this, one has to compute
wmbolically (for ona and for all) the duivativu of the constraints up to ordu k' ,
vhue k' is the diaerential indu. We bst study this question only locally. Aftu
that, we di netIn how to establish a global version of this result.

6.1. Special coordinatu, in this subsection we will egtablish the existenoe of
gpedal mordinates af gystw S that are instrumental for wtablishing our main
r,„,it,
Prop06ition 6. Let S & a system with gloW state tzprwentation (5). Let € € S
be a vegqjar poi%t of Yk,)b,k € {0, . .. , #'} de$ned in (6a) and (6b). Consider the
írotatlion oJ tenma 3 and let {ao,. ..,an} be the algebtuic g#tictxrte af infInity of
this system, let d:rib & a local bash of )b aruund € and let k* be the conve7yence
incleir of the structure at infInity. Chcx)se a %ested fam% of s%bset;$ of the i%p%t
u 3 âo D .. . D 8h• with card(&) = 771 – ah and in a rüag that (dt, dak , cnb) is a
local tRrsis oj )x + span {du} arwnd €. Tlrenthe f%ncüon8

(31) {t) ap 9887...94# )) z}
ufhete Z = {u(b+k+1) : k € JV}, fortn a ltxlaI coorzlinate system around € which is
„nb.unded in W = (49,...,Ü4') Z) and is ,1,ch fluKE {ck, di;k. , dI$1P,. .. ,aí,E)}
& a baús o/ sw {cÊ,du, ...,du(h')}. In partjcqstar, V {dg} is a local bash of Yu
and (2, 8) are de8ned as in prop03itürn 2, then

(32) {l78l9,aId,?_,, . . . ,4''), z}

is also a local ccx»xiinate system which is %nbounded in IP = {8, 1{?_1, . . . , 44'), Z}.
r\,'11,a,1,arE {dt,dg,©d©4, . . . ,di#')} is a basis of span {dt,du, ... , du(r)}.
Ptmf. First note that, by parts 1 and 2 of lemma 3 (gu also (Sl) and (S2) in
appmdix A) it is easy to we that the choice of âÊ desaibed above is a powible
dhoioe of such subsets of the input;s in the dynamic extension algorithrn (DEIA).
So duote (zk, %) the state repr%mtation obtained in the step k of DE:A. The
pm(if pmoeeds by induction. In step O of the DE:A, write the global mordinate
wst;eIn induced by the state reprmtaüon (z,u) as {t,z,tI, . . . ,u(h'),Zo}, with
Zo = {uCh'+h+1) : k € W}. By Mma 2 and the dwaipüon af the DBA it foUows
that {t, ao, tio, . . . , W' –l) , #') , Zo} is a local mordinate wstem that is unbounded
in Zl = (dh'),zo). Conünuing in this way, in the step & of DnA, we shall have
mngtruct;ed a dlart {f, zk, %, . ..,uF' –t–1) , â{F–h) ,zê}, where zh = {a{!fh+1) ,
...,íéu), Zt)}, that; is unbound«i in {íáu –b) ,a}. Note that, in emb step, lemma
1 aIm msurw that {dt, da;b dub, .. ., du:'–h–1), 8F'–b),4jl–k+1), . . . , €)} is a
baás af span {d, cb,du, ..., du(F)}. Proceeding in this way, the ârst part af r«ult
is easily pr(wed by induction. The mt that (32) is a local chart with the clámed
propertia is an easy oonsequenw of luma 1. O
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6.2. E6tablishing the main ruult. For ámplicity, in this section we may con-
gdm the following usumpüons ü>r the explicit system (5):

(33)
(34)

The set 1 = {c#, dy(o), .. ., dg(#')} is independent for every € € $.
There axists a âxed choice of the füncüons of (32) in a way that

{cB,cn,dg,cn,diE_,, . . . ,díéF)} i, globaUy a buis af

span {dt, dz, du, . . . , du(h-)}.
(35) The input of the impEdt qystem isa = 89 (which is a gubset; of u).

We shall see that condition (33) will assine the global convergena of our main
result. If the set 1; is dependmt for some points outáde F tbm our r«ult will
hold only locally. The condition (34) will guarantee that one dou not ne«i to 9eek
for diaumt choicu of the fünctiong (32) during the procus of integration16. The
condition (35) implies that the input of the implidt wstem isa cmonical input. In
particular, the behavior of the system is not impulsive.

Now we will construct the system (1). Let M = 1? x X x (IP)k'+1 with global
wordinates (t,3,u(o),. .. ,uCP)), where z € 1P and tI(4) € RP ,k = 0, ...,k'.
Considu the partition17 aCO) = (8, â)whue dünü = abB and dim 6 = m – ai+ . Int
N = 12 xXx IRR–ap x (ip)k' , with global coordinates (f, z, 8, tI(1) , .. . , uCk')) =
(t,z, 1/). Note that, aff;u a reordeúng, the coordinatu of Mare (t, z, #,a), with
1/ = (89 tI(1;9 ' „ 9 tIc#'))'

Let S be the system (in the smse of [20]), with global coordinatw {t, z, (u(Q :
h e IV)} de6ned by (5). Let á be the Carl;an 6eld awodated to S (©ven by
(2)). As before, let y = ad, a) + bd, a)u(o) be the output of S and dmote y(o) = y
and gtQ = L 4#(4-1). Let TM : S –> M be the canonical projection. Abusing
notation, we consider that {y(o), , . . , y(k')} are ftlnctions dgÊned on M. Let € € S,
and rM(€) = p = (t,a, v, 8). With the game abuse of notation, we may conádu
that B = {d, ca, dy(o), . . . , dg(F), (m, abT_1, . . . , c@F) } is the local bas of P;M
induced by Prop. 6. De6ne B = á2 = f(z) +â(z)u and let g = (9(o) , . ..,yCh')) and
6 = (í<t)_1,.,,,dJh'}). Note that, up to some reordering of coordinates, we have
M = NxÜ where 8 = Rp–a-' . So let 7 : IW x 8 –> TM, be the parameterized
âdd de6ned by:

(36a)

(36b)
(36c)

(36d)
(36e)

dt(4
dE(7)
'@(,)
cD(d
cn(7)

a = 1
% = f(,) + g(,)“
TT= –lB
Tf = –@
Ta = do)

In order to help the reaier, we gummarize our notations of this section in the
tabular urangmmt ofâgure 1.

161t mw b, d„i,able, at least &om th, „,merical point af view, to choose thne ãlnctiOBS
p©iuLwin iu order to improve the conditioning of matrix T of (37).

17With a powible reordering of the componmt3 of u(o)
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Nllies ltsm 8 is the input of the DAE=tItI
Duivativw of u, apart 8

state of f (canoni coorm cm
') mPart of the 21tI T)

ã i') 1y
met, 2, g 8, 8 seeIrnQ

FIGUR= 1. Table of notatlions of this section.

Let :F be the matrix formed by the difumtials dt, ca, tB,cn, cn whm wril;tm in
the coordinat« {t, z, u(o), . . . , u(h')} as row vectors. Let

(37)

The equation (36) is equivalent to18

$)(

(38) TT = =?

Let II : M + IV be the canonical projection. Note that, in the coordinates (t, z, % a)
for M and (f,3, &r) for IV, II(t, z, 1/, a) = (t, 2, #). Let f : M –} TN be the parame
tuiz«i âeld deÊned by:

(39) t = II,.7
Equation (39) means that the parametedzed Beld f in cordinates (t , z, #) is obtáned
üom the âeld r written in coordinates by (t, z, #, 8) by eliminating its components in
the directions 888. Since f is paramateriz«i by a, ÍXO) , then F deânw a (nonclassical)
control system with state (3, br) and input a.

The part (ii) of the next theorem means that every solution of (4) corresponds
to a solution of (40) with initial condition on an invuiant manifold :F of (40).
Furthermore, the parts (iii) and (iv) shows that every solution of (40) oonverges to
T and every solution of (40) that is clue T is also close to a solution of (4).

Theorem 2. Á3s8me that the condition8 (33)434)]’35) hold. Denote a point
(t,z,&,,8) € M = IV x O by ((,a), where ( = (1,z,&/). Let r, be ae canonica!
projection Tz : IV 4 X deflned by 7r, (o = z and 7ru : M –> gP de$ned bg
z„((,a) = u(o). Choose a smooth inpvt a : [to,tl] –> IRD–aln . Consider the control

18Ftt)m a numerical point of view, it is better to solve the lin%r equation Tr = ? rat;her than
compute r = T-1?. In the same veia, when integrating numericnUy the erpUcit equation there is
no need to include the equation { = 1.
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system de$ned an N with inptlt 8(t) € 8 giuen 6g;

(40a)
(40b)

e(D
((to)

F(((t), a(1), a(1)(f))
(0

When f is de$TIca bg (38)139). Consider y(Q = éê(y),& = O,...,k' as a Anc-
lion deflTUd on M and let f = (g(o) , . . . , y(h')) . DefIne the set T = {((,â) €
A/ | F((, a) = o}. The% the fOllotoiTrg properties hold:

(i) if (( 18) = (t,z? „18) € T, a„. à = <&i,,>1((,a) = á(,i)1((,6) = É(,,
1111 ( () ) | ( ( ) a) ) i = 1 7 o a a 1

71

(ii) Choose an inp4ü â(.) and let ((t) be a sojqtjon of (40) toH:h (((to), ado)) €
T. Then z(D = 7rz (((t)) is a sol%tian of (4) UIith inp%t tt(f) = ru(((1), (t)).
Conver3ely, if aCf) is a smooth solution oI (4), then zd) = rB(((t)) iot
some 80hrtion of (40) with (((to), ado)) € T and €(((f), ad)) = o.

(iii) Izt ((1) õe a 80hltür% of (40) with initial condition (o and input 8(1).
As 8time that ((t) is well de$%ed for t e ([to, 1l], then III(f)11 É e–7tlli(to)II
for aa f € [to, 1l].

(iv) Let 1 CM 66 a compact set. Let el > O and 11 = {p € MId&t(p, E) <
ei }

Ás3ttnle that there ealists a > 0 31ÀCh that, if IIa(1)11 $ a /art € [to,1l],
then euery sol8üon ((t) of (40) with initial co%ditlion (((to),6(to) € 11 is
8%ch that (((t), 6(t)) is well def11led and is irr3ide a compact set R cM
for every t € [to, 1l].

Then there úst3 e > 0 3%ch that, if ((f),fc 1 = [to, t/] ü a sol%tion of
(40) raith initial condition inside Z, and III(((to),ado))11 < e, then then
ealist n1,n2 > O and a 30lution zd) of (4) 3%ch that IIra(((t)) – ad)II $
„lllHto)Ije”’('–'') f.t all t € [1ol t/].

PTOOf. (i)o Lat rM : S + M be the canonical projwtion. Let € € S and é be a
function in the set 9 = {91,. . . , 91} = {1, 2, y(o) , . . . , y(k'–l)}. In this part of the
proof we will distingnish the fünction z{ deâned on S from the function Ei de6ned
on M such that 21 = Ei o rM. So we may write é=éo ZM, etc. The notation g
is then clear h)m the context.

Note that, by (36) we have dê(7)ITM(€) = @(á)if for any { € S su(!h that
XM(€) e :r. Sina {d©} is a bMs of )h•_r , by part 7 of luma 3 it follows that
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,a € ,p,n {,tÔ}. In paúl„da, w, must ha„, @ = a=1 %d%. Not, now that

(41a)

(41b)

/i(1l39 tI) (d,i) é>

<d(ã . 7rM)) á>
(41c)

(41d)

(„:,@1 é>

<@) (,rM)+ á>
(41e)

l

<E %dÕj, ("M)+á>j=1

(411) E %<d$/) („M)+ á>
j=1

It is easy to show that, for every ((,a) € T, every € such that ((,a) = IM(€) and
every function Wj € @ for j = 1, . ..7 we have

(42) @i},>1«,8) = @i, (,'M).ál€> = (dW i, á>le

(this is an easy mnsequence of (36) and the fact that 0 = <dyCI) , 7>1((,a) for every
((,8) € T). From (41a), (41f) and (42) it follow3 that:

É(t, „3 (o, „tI((, a)) E %<@, („M). é(€)>K,a)
13

l
aO<dÕj} ,>1((,8)

j=1
E

l

<aOdÕj, ,>1((,8)
j= 1
E
<dEi 1 7>((,8)

for every ((,8) € T, showing (i).
(ii). Construct the system evolving on M with input ÍX1) and state p = ((, a)

given by

(43) A = ,(#181))
It is cleu that (43) is the prolongation by integrators of (40). Hena the smooth

solutions of (40) corre8ponds to the solutions of (43) for convpnimt initial condi-
tions. Furthermore,

F((’ãl?(=)) ) = ,((,Qa(1))(

From (36c) it is clear that T is an invuiant get for system (43). In particular,
by (i) we have dr(7) = i = /(z, u) along p € T, and so the âISt part of (ii) holds.

Now let g(f) be a solution of (4). By Propwition 1, there axists a conesponding
solution 6 (t) of S with y(t) = 0 and €1z(f) = gd), Gu(f) = u(1) obeys the
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diaerential equation (4a). It follows that à = rg = ? + gu and so 8(1) obeys
(36b)

Note also that proposition 6 usure that the local chart {+, 2, 68, 8, (u@'+k+1) :
k € JV)}, where 8 = (í4Ê'–1), .. .,de), is unbounded in Z = {8, (u(F+&+1) : k €
JV)}. Since y(€1 (1)) = 0, in thwe coordinates, we have 6 (1) = (f, 8(1), o, ad), z(f)).
As this local chart is unbounded in Zd), we may de6ne€2 (t) = (1, 2(f), o, acf), o) by
taking Zd) = 0. By construction, span {cb;, du} C span {@, c©, cm}. Hmce, its is
deuthat 68(t) = &3(t) and 611(t)) = &tI(D- Now taken(t) = (fIz(t)2 p(D98(D) =
((2(f), a(1)) = rM(€2(t)). So, /42(t) obeys (43) and hence (2(t) is a solution of
(40) with initial condition (o = (2(to) and input a(D. As z(6(f)) = 0, we have
8(P2(t)) = O.

(iii). StraightR)rwud ãom (36c).
(iv) . We know that every smooth fünction is globally Lipdútz inside a compact

R. Hena,there mist some kl > 0 such that 117((1,81) – 7((2,82)II $ kIll((1, 81) -
(6182)II- Tàking 8 = 81 = a2 it fOllOWB that 117(Cl ) 8) – 7(GIa)11 É klll<1 – GII for
every ((178)2 (<198) € 11

Since two solutions (1 (t) and (2(t) of (40) with bounded input a(.) and with ini-
tial conditions rupectively ((1 (to), 8(to)), ((2 (to), 8(to)), both in 11 are well deÊned
in [to,1l] and ue such that ((1(t),ad)) € R and (Gd),8(t)) € R for f € [to,tl],
&om the same idea of the proof af the classical ruult af continuous dependmce of
the solutions of Lipchitz wntinuous differential equations19, we have

(44) 116 (*) – <2(,)II $ Kle’'('–&’) 116 (h) – 6(to)11,' € [to, tl].
for convmimt positive real numbers Kl, Ka.

Now around every point p € 1 we may construct apm sets %, U» and a local
clbart 6 : Un + % of M, such that (t,a, 1/, a) o (t, 2, f,6,8). This construction
may be done in a way that % is a rectangular opm set containing Ü (p) and the
dwure of U» is oomwt. Since T is closed, for every p g T we may dbowe %, %
in a way that th n T = 0, whue t7# denota the clwure of Un. In this cwe we,
dmote Y# = min,ca# III(a)II. Note that g, = O, vhm p € T, and % > 0, when
p gT

Furthermore, for every pair pi € Un,i = 1, 2, the mean-value inequality applied
to é;1 #vw

(45) llpl – p2ll É K„ (IIt(p1)–t(p2)I1 + 118(pl)– 2(p2)II+
III(pl) – i(P2)11 + 118(#1) – f(p2)11 + IIa(pl) – a(p2)11)

Note now that the hrnily C = {C/# : p € 1} is an opm oovering of the oompact
set E. So we may take a ânite suboovering {%, : € e A} and let if = maxi€Â KD, ,
whue Kn is de6ned in (45). Note that this class is divided in two gubclasses
C, = {C/, : p € À,U, r\ T = 6} and C, = {t/p : p € h,U, r\ T + 0}. Let
Y = min{Y# : p € 1 | % € Cl }. By construction, if we take e2 = 9, then
(46) a € É and III(a) II $ €2 impüu that a is inãde some Un € (:2.

H Up € C:2, we may deâne ltn : 1/;, –> :F de6ned by 11,(t, 2, f,1, 6) 4 (f, 8, o, 8, a)
(deâned in the local mordinates @). By (45), it follows that

(47) IIa – 7%(a)11 $ 1íllí(a)11la € U»IU» € C:2

19Whiü is a c,a„q„,,,, ,ÍB,IIm,,-G,onwaU 1,mm&
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Now let e = mIn{€2,cl/K}. Then, for every a e I, with IIP(a)11 < e, we may
take the solution with initial condition po = (((to), 8(to)) = % (a) with input 8(.).
FFom part (ii), as po € T, it follows that 7r,.(((t) is a solution of (4). From (47)
it is clear that % (a) € El .From (46), (47), and (44), the duüed ruult follows
eu® []

7. EXAMPLE

We shall illugtrate the main rwults of this paper with an acaimic orample.
Considu the system

1 1

ã1

ã2

23

gl
y2

10z3 + %ul
111

112

zl + ae’1 – 2 – 2a + z2 – b cos(t) = 0
z2 + bcos(t) = 0

The symboEc deri%tiws of the output were computed using Matlab® symbolic
package (Mapple®). The numuical dimmsion of )4 is the numuical rank of the

JacobM matrix Jb = 8„% ). In ,rd,r to datumin, th, g,ami„al „nk ,fã,
thdr ranks have bmn computed for random valu® off, 8, u, . . . , u(b) , giving ao = 0,
al = 1, a2 = 2, indicating that, if the system is regular, the indoc is given k' = 2
(during the numuical integration of (40), one may test poinLwise the condition num-
ber of the matrix :F and compute numeücally the rank of Jk in order to t«t if our
awumptions of regularitDr do not hold). By the sme method, one may verifr that

th, rank ,f D,. = o8y=::::cZ>) 1,r ,and,m „alu,s af (t, r, u, ...,„('•)) i, ,q.aI t,
1 + 2 x (k' + 1) = 7, showing that the out;puts are genuically diâumtially inde
pendent. In this cue the implidt wstm is completely determined. One may show
that y is gmerically a âat output for S, which is veriÊed by showing that the rank
of Db+ is the same of Ju , or equivalently, span {dz} c span {d,dg, . . . ,dy(k')}
[31, 37, M]. Then, it is clear that 2 = 0. Testing numuically other random points
and combinaüons, we have dmm 8 = uF). In this way the mordinate system (32)
for this system is {t, 8, g,B, 8} with 2 = a = o, g= (#, á, g), 8 = {12. It is important
to ment;ion that, in this orample, y(&') dow not depend on 11(h'). Henw it is easy
to su that one may eliTninate (as done in the ocample) the set u(&') of coordlnat®
üom M , redudng the dimension of the state space of systm (40). The symbolical
computations in Matlab/Mapple give
T= [ 1,

b+sin(t) ,
-b+sin (t)
b+cos (t) ,

9

0, 0, 0, 0, 0;
1+a+exp (11) ,

0 1 3

19 0, 0,
0 9

0,

a+exp (xl)+(IO+x3+x3+ul) , O ,
( 1+a+exp (xl))+(IC»ul) , ( 1+a+exp (11) ) +I3+1 ,
-b+cos (t) , O, O, 0, 1, 0, 0, 0;
-b+sin(t) , a+exp (xl)+(IO+x3+l3+ul) -2+a+exp (xl)+(IO+ul)+u2+
a+exp(xl)+x3+ulp , O , 2+a+exp (xl)+ ( 10+x3+x3+ul)+(l(»ul) +
(l+a+exp(xl))+ulp , 2+a+exp (xl) + (IO+l3+l3+ul) +x3+(1+a+exp(xl))+u2 ,

0 9

Vs 0, 0;
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(1+a+exp (11) ) + (1(»ul) , ( 1+a+exp (xl) ) +l3+1 ,
b+sin(t) , O, 0, 0, 0, 0,
o, o, o, o, o, o, o,

whue [t, 11, 12, 13, ul, u2, ulp, u2p] =[t,z1,z2,z3u1,©2,i&1,Ü]. These
lution af system (a) with initial conditions in T givw the regujts20 ofâgures 2 and
3. The 6gure 4 shows that the distance buLwem the point {(t) = (((t), 8(1)) and
T does not grow in time. In order to vert& the numeücal errors in the duiv-

FIGURE 2. Curves of r,.(((t)) vwsus time. The curve zr (f) is
continuous, z2 (t) is daqhed and z3(t) dashed«iotted

FIGURE 3. Curves of 7r„(((t)) versus time. The curve ul(f) is
continuous, 112 (t) is dashed.

ative of aCf) of our method, we have computed the error ed) = ((da;, 7({(t))>
/(f,7r3(((t)), x„ (((t))) – g(r, (((1))x„ (((t)). The ideal ruult would be zuo, but
maII numuical urors are shown in 6gure (5).

Another twt was performed by applying the input T„ ({(t)) of 6gule 3 to the
wstm (5) with the game compatible initial conditions h (((to)). The ideal rwult
of y(t) obtained in this way would be zero, but small deviations have bun detected

20Simulations have been made in Matlab/SimuUnk®.
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FIGURE 4. Curves of y(Tz(((t)) vusus time. The curve gl(t) is
oontinuous, y2(t) is das lled.

in âgure 6, due to numuical enors of our method and the urors in the numerical
integration of the test itself

FIGURE 5. Error eCf) in the deri%tive ofIra(((1)). The curve el (t)
is continuous, e2 (t) is dashed and 63(t) is daqhed«iotted.

Note that all the solutions of (40) will converge to T and hmce a set of compatible
initial conditions can be found simply by integrating the explidt system (40). We
have dhosm a = 6, b = 0.2, 1 = P = 70 and initial conditions (Matlab long e
forruat)21:

((0) [t7 Zl 1 321 331 Ul 1 U21 Ül9 Ü2] (0)
[0 2.595584190645906+000 -5.999999999754128e+000
4.546949839215331b012 4.207790366139719b012

-8.330778672817486eO02 5.999999999754128e+000 0]

Remark 4. The “standard” difereTrtial ivlde3 of this system is vd = 3 (k' = 1).
IBci%ding the fIrst order deriuativ es of the cor&st7rri7rtg info the set of corwtruints,

21The Eles for Matlab 6 used in this test may be retrjgved in
http ://wu .Iac .naF . br/-'paulo/iWlicit; .
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FIGUR= 6. Cuww yr (t) and y2(1) with Tu(((t)) as the input of
systm (5). The curve yr is continuous, y2 is dashed.

one may na%ce the indw of this system to vd = 2 (F = 1) wing the fecÀri{que3 of
[6, 4]. Hotoa}et, the second deriuatives of the construints depend on the derirlatives
of the dgebTuic uariabtes 111 a%d %2. Hence in oraet to ted%ce the intiez fluther
o%e mInt 11se sgmbohe truwformatjoqs, for j7&gta73ce the tech%iq%es of theoTem 1.
This simple mample Aas the property that the uplicit system obtained bg adding an
integTutor i% the Inst inp%t is decaupable bg statie-state feedback, and so one coqjd
use the ideas of the begi%qj%g of section 5 171 arder to obtain ü%other i%de=-zero
eguiuaJenf system. Houeun, for mate cample3 e3amples the symbolic rvd%ction of
the indez by ang meu%s mag be a hard task, tohereas the tech%iq%es of ü\eorem 2
corda be applied.

8. CONCLusIONS AND FUPrrHZR RnSEARCH

Further raeuch combining symbolic and numuica1 algorithms can be useftrl
for improving numerical integration sdrmu for higher-indoc DAEb (see [11, a]).
In this papu we have wtablished two potmtial methods of integration of DAEs.
The ârgt one, based in the dynamical axtmsion algoüthm (DEIA), can be applied in
particular casw, but it can produce very comploc symbohc manipulations associated
to the DEIA. The second method is basal on the geometric propertiu of DAEb and
gems to be promising for the numerical integration of highu-index D AEs. This
semnd method is based on the computation of the symbolic derivativu of the
congtraints and on the numuic solution af the (pointwise) linear equation Mr =
? (see equation (38)). If the systm is sparse, this property will reaect on the
derivatives of the constraints, and then it will wsure that the matrix :r is also
sparw. Hwce, our second method is compatible with the application of linear-
algebra padagw for sparse matrims. The usumptions (34)–(35) of theorem 2
may be w%kmed, and the corr«ponding fünctions may be dhosm point;wise using
numerical methods, but this is the subj«:t of future rueudh.
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App=NDU A. PROor or I,nMMA 3

Proof. let (z_1 , u_1 ) = (z, u) be the original state reprumtation of systm S with
output y(o> de6ned by (5). In step É – 1 of this algorithm (k = 0, 1, 2, . . .) one has
constructed a cla«ical (local) state reprwentation (%_1, uk_1) with output y(4) de
Bnd on an opm ndghborhood ub_1 of € € S. Assume that sw {dt, dri_1, dy(4) }
is nongjngular around €22. Note that we can give the following geometric description
of DEA

(Sl) Choose gt (posábly among the components of y) by complating
{&h_1} into a bMs {dt, thb_1 , dIP } for span {df, dz#_1, dy(H}. Now
(!home & (posdbly among the mmponwts of %_1 ) by completing {zü, da;b_1 , dip }
into a basis {ck, dnb_, , düjk3, cnh} of span {c#, &h_1 , dub_1 }. According
to the last paragraph of section 2.1, this deanes a local state feedbarlk. By
construction, this state feedba:k have the propertiu (13).

221t is ea8y to show that this i, equivalmt to the fact that the mat,ix h(%_1) af (11) has
constant rank around €.
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© (S2) Define % = (zk_1,gp), and % = (ip,ak). This is an axtm8ion of
the state of the form (14).

Note that, (su the end of section 2.1), we have that (Sl) and (S2) produws a
new local state reprwmtation (%, uk) ofsyst,em S deâned in an opm neighborhood
uk C uk_1 af C. Note that the steps (Sl) and (52) duaibes the procedure of the
Dynamic Elxtenáon Algorithm that could be performed, at least theoretically, for
nonaffine wstms23. In particular our geometric interpretation of Lemma 3 holds
for nona6ne systems.

(i and ii). We show ârst that the state repr«mtation (a, uh) is clasácal, i. e.,
span {ctt 8} c span {df, dn,du#}. This property holds for (z, u). By induction,
awume that it holds for (%, ui). Then ãom (81) and (52) we have span {cai+1 } c

,p,n {d, ü„ &h, diP , diP } C span {d, Mh+, , d„b+, }.
In step É = 0, we dom a partition #(o) = (gp , do)) and oongtruct ão satjgfying

(sr) b, k = o. Then c@D) € sp,n{dt,d,,dgá')}. Th„,, @p e ,paTI{Ü,ü,dà,dgp ,
djp} c span{dt,dz, du,djp, djp }. So, cO € span{c#, cho,d%}. Thm it is eaqy
to we that 1 and 2 are satis6«i for k = O. Now a«ume that, in the step k – 1 we
have a local state reprwntation (a_1, %_1 ) saüsbing i and ii. Chowe a partition
y( 4) = (gp, #)) in away that (Sl) is saügâed and construct ah satis&ing (S2). By
i for k – 1 and (Sl) it fonows that, span{dt, dh } = span{cü, &, dy, . . . , dy(h) }. By
msbrucüon,notim that c@p) € ,p,n{dt,,bk_„dth_„dIP ,djp} c span{dt, da,h_,
dub_1,cOp,@p}. By (Sl) it follovs that dy(h+l1 € span{d,&, dui}. We
show now that ifiiholds for k – 1, then span{df, da, club} = span{c#, &, dy, . . . ,
dy(b+1) , att}, completing the induction. 111 bet, note that span{d, dn, duh} =
span{c#, & 8_1, dip, cn#}+ span {dif) }. By (Sl) and the induction hypotheás

it fonows that span{a, @, dt,k} = sp,n{,ü, d,:, d„, dy, . .. , dy(H }+ span {@Q }.
Since dy(b+D € span{cü, &h, dub}, thu ii holds hr k. This shows i and ii.

(iii9 v, vi, vii). We show Brst that

(48) dim n(#) – dim n_1 (#) 2 dim n+1 (#) – dim b( 1/) for every # € sb

For this note that, if the 1-forms {41 , . . . , %} C Y# are lin8uly dependmt mod
Y4_1 , i e., if aoa + E=1 aia+ E,Ll Ejt %dy}i) = 0 then, diauMúaüon in
time 8vu doa + i'Ll(digi + aià)+ E,Ll En (óudd)+ Ajdy Sj+1) ) = O. In
ot;hu words, 41 ,. . . , 4, are linearly dependent mod Y&+1. Let € € sh. From the
nonsingulaútyofYj,B, j = O,. . . , kin 54, ifdimYb – dim b_1 = 1 in € e S 8, then
we may dho«e a partition g = hT, gT) such that g has 1 components and we locally
have VÊ = span {di(Q } + Y#_1. Let Ü be any component ofF for je ip – 11 . By
consl,'ucbion we have that {@p,dg(h)} i, linea,ly dependmt mod %_, for e„e,y
je b, – 11. nom the rmark above it follow, that the set {,fpf1),dg(u1)} is

231n this case the oomputations are much more difHcult since one may apply the inverse function
theorm to compute the feedback UA_1 = 7(36_1, % ) in eadr step of the al@rithm. A dwcription
of avudon af the DE>A for nonamne w«ms an be found in [29].



SOME GBOMBFRIC PROPERTIES OF DIFFERENTIAbALGEBRAIC EQUATIONS 31

(locally) dependmt mod % for every j € jp–r1, showing (48). In particular the
sequance ph is noninareasing.

We show now that

(49) dim:Pk(„) – dim:n-1 (1’) $ dim:Pk+1 („) – dim :P4(„) far evely p € sk

Assume that (a, u#) is a state repramtation constructed around a neighborhood
uk ai a point € € sh and saügMng (Sl), (52), i and ü. Since @p c %, it
bUows that the oomponmts of djp are independent mod )h dna they are ajgo
oomponmts of the input uh and fürthumore, span {d, @} = %. Hmce gH)
may be dIOsm satWrrg iii, showing (49). In particular, a#+1 2 ak.

To show the convugmce of sequencu pk and ak for some k' < n, usume that
p € Si. Dmote span{ch} by X. Tbm )4 = X + b and thug

dim % (#) = dim X(#) + dim % (r/) – dim(%(#) n X(r/)).
Derrote for k € 1V :

sÊ(&') = dimM(„) –dim%–1(„)
m(&') = dimYk(#) – dim%_1 (w)

Note that éa = 14( 1') and a 8 = sk(&') are constant R)r every r € Si. We also have
(50) ,h(„) =a(„) – dim(b(„) nx(„)) + dim(h-1 („) n x(„)).
We show nov that

(51) if thue axists k' and some # € She such that She (w) = A+ (w) = p,
the=1 8p+1 (e) = n.+1 (€) = p for evEry € € sE. .

Note that, &um (51), a simple induction shows that sb(o = m(€) = p for every
k 2 h’ and € € Sv . Furthermore, this last amrmation impliu that sê = S» for
k > k'

To show (51), usilme that 1)kn (&,) = Se (1,) = p for some w € aB . Fkom (50), it
follows that

• dim(Vp (#) n x(#)) + dim(Yu _1 (#) n x(#)) = o.
Since the dimensions of % n X and of n+_1 n X are constant in Su , it follows
that, for every € € She , we have

(52) PP (€) = ,i• (€) = P
and

– dim(&. (€) nx(o) + dim(n.–1(€) n x(€)) = o.
Note #om (50) that

(53) su+1 (€) – m•+1 (€) = – dim(Yr+1 (€) n X(€)) + dim(Yh• (€) n x(#))
for every € € sk+ . By (48), (49) and (52), it follows that

8h•+1 (€) – PU+1 (€) 2 0.
Since

– dim(Yr+1 (€) n x(€)) + dim(Y#• (€) n x(€)) $ o1
the only pwsibilitDr is to have bath sidw of (53) equal to zuo for every { € She .
Using (48) and (49) agãn, then (51) follows. Note that a simple induction shows
that (51) impliw vii.
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To complete the proof of v, vi and vii it suaoes to ghow the exjgtence of &:'
such that (51) holds. For this note that dim(% (#) n x(1/)) is nondeaeasing for
k = 0, . . .,a and it is least than or equal ta n = dim X. In particular, tIme exists
some k' $ n such that dim(Yo (#) n x(#)) = dim(Y4+ _1 (r/) n x(&/)).

(iv). Ehsy con8equmce of i, ii and the way that âk is chww in (Sl).
(viii). The ârst part of viii follovs easily &om iii, üom the brt that card Ü = ah

and &om v. The second part of viii foUows easily from the equality cmd gi = ab,
&om the fa:t that the components of dg{k+1) are indepmdent mod vh and &om
the fu:t that ak = pi = p for t > k*.

(9). Easy consequmce of lmma 2. 0

APP8NDU B. COMPUTATION or (a&,A) IN STEP k or TaE DEA
Let

ir)
ãk)

ã(t, zh_1 ) + bd, a_1 )uh_1
ad, ah_1 ) + bd, zk_1 )uh_1

whue rank 8 = ai around &_1. Up to some r60rdering of inputs, let 8 =
( b11 b12 ) where 811 is locaUy non8ingular. Then de6ne locally around (t, ik_1):

„'*,„-»=Ç;: ;F )-= ( ;#= –;;}=;=’ )
%(z) = Po(z) ( lã )

It is easy to @rib that such (a&, A) is a possible choice that has the convenient
propertiu.

APPnNDIX C. PROOF OF PROPOSrTION 4

Proof. By the nonsinguladty of the codjgtributions Yi,k € W, and using the same
idea of the proof of part 5 of lemma 3 (in particular the proof that the sequmce
ph is nonincreuing) , it is not diÉÊcult to show that there exjgt a local basis of
Yi' .f the form {dt7dyl7...1 @Í’=)9.-.,dyr, ..., @P’)}. ArQtlnd any € e r, the
part (i) of Lemma 5 (see the proof of part (ii) of this lrmma) impnu that IB =
{@io) , . . . , dyÍP=), . . . , dyÉO),...,dyÍ%) } is a basis of vh, .

Let A C 1? x ;Y be the subset such that g(h) (f, z) = 0, k € ZV. Let

A’ = {z € X | yyj>(t,a) = O, j e ld,6 € {0, 1, . . . ,O + 1}} ,
We show now that, around any (t, z) = Tt,z (€) with € € F, we have A = A'. In fact,
let (t,z) € N. It is cleu that A C A’. By part (ii) of Deânition 5, we must have
dg(a+h) € Yt. for k e IV. By part (i) of lemma 5 it tellows that dytpi+H € Yu
(othuwise one can construct a 1-form 77 + 0 su(!h that q e Yu n span {dI}).
In particular, The+k = The for k € 1V. Hence, dytpj+H = E;=1 2.rEl aody}i) for
mnvenient; âlncüons % (t, z) and for all k e IV. Thm dn+b+1) (z) = <dy}6+b) ; /+
w> = E=1 E a3 audi+1) = 0 showing for every z e A’, showing that A' C A.
By the nonsingn]arity of the codistribution Y&+ = Ye+1 , it follows that A is
an immersed gubmanifold of ZZ x X. Then it is dear that (i) is true. To show
that (ii) is true, it suHcu to show that A is an invariant manifold. But this
is a straitghforwmd oonsequence of the üct that one may complete the set g =
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{y1,.. ., dn),..-,g„-..,yÉp’)} into a local mordinate system (t, g, é) of a x x.
Since dg(V e Yi+ , we locally have i(1) = 9(i) = 0. If (to, no) € A then g(1) lh = 0.
It follows that g = 0 is an equilibrium point diferential equation

1(=) = 9(g)
and so, it follow8 that g(1, rd)) = 0. Since dy(k) € span {B} , one has y( 8) = y(O (9)
Hwcep y(') Od)) = y(') @(to)) = O a-d s. (19 ,(t)) € A. O

APP8NDIX D. PROOF Or THnOR8M 1

Proof. Using the same argnments of the proof of lemma 4, one may construct an
aHne state repnsentation of the same form of (18) after the step k’ of the dynamic
extenáon algorithIn (brst;eai of step É* – 1 in the proof of that luma). In this case
2 = ku,á?1 , . . . ,sE )) and & = (a, p), where o = #'+1) and p = &+ . By parts 1
and 8 of lemma 3 we see that dy(&) € span {dE, (do(i) : j = O, . ..,k – E’ – 1)} for
all k € JV.

Making a = 0 (a nonregular feedback) and adding the constraint y = hCg) = 0
we will show that we obtain a pseudegxpHcit systw. In fa:t, making a = O deâna
a LieBãdklund imudon & : T + S, where the gystm :F is deâned by:
(54) à = /Q9ã)+g(t7ã)p
Note that the local coordinates af S induced by the state reprwmtation (Z, @
are {t,Z, (p(Q : # € W)} and the local coordinata of S are {t,Z, Q,M} where
O = (o(k) : k € 1V), and À4 = (p(4) : k € 1V)}. In thue mordinates we have
&(f,Z, M) = (t,Z,O,M). Let é be a function de6ned on S. We abuse notation,
dmoting é a&ámply by é. As & is a LieBâiklund immersion, it follow8 that
é(Q o 6 = (é o &)a) . By construction it is clear that

fat
r'dã

&*d/l(k)
&'da/(A)

dt

da

dIt(h), for all k € 1V
O, for all k e IV.

To show that :F has the propertiw of de6nition 2, it suncu to consider the same
propertiw of wstem S and obwrw that the pull-back &' will pruuve thue proF
ertie8. In h:t, as a = #'+1), noting that y(h) = y(n(8 for k $ A:' and #(i) =
y(&) (Z, a/, . . ., hI(h–F –1)), it is easy to show that the sets Fs = {€ € S : g(4) (€) = 0}
and FT = {# € :F : gh) (1/) = O} are such that Fs = &(FI.). Using part 1 of
Lemma 3, and (55) it is easy to show that the dimensions of &'Y& are pruuved for
k = O, . . . , k’ and property 8 of Lemma 3 impliu that &'% = &'%+ for k > k’.
By similar argnments, it follows that the dimensions of 1’)4 me presewed for
k = 0, . . . , A* and &’)h = &-yk• for k 2 k'. The regularity of &-Yk around the
points FT cm be emily deduced #on the part (iii) of lemma 5 and the r%ulaúty of
the other codistributions. The propertiu (i) and (ii) of deânition 5 ue consequence
of the Brt that24 6*%+ = &*span {t#,ca} = span {dt,ta} and that Ja = &'%+
for k > k'

The ruult follows from the application ofProp. 5 to system T deâned by (M). D

24Abusing notation, we derrote to & = 1 and E o & = 2.
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