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The evaluation of eggshell morphometric characteristics is essential to ensure the quality of eggs intended for
both consumption and incubation. Conventional methods for this analysis are mostly manual, destructive, time-
consuming, and prone to human error. In this context, the present study proposes the development of an
automated system based on computer vision for extracting key eggshell features: maximum length and width,
area, porosity, and cracks. The system was designed to capture images from two positions, enabling high-
resolution analysis of overall egg morphometry and shell porosity. A total of 326 commercial eggs from
different production systems were analyzed, including 162 brown-shelled and 164 white-shelled eggs. The results
showed a high correlation between the values obtained by the automated system and those from manual mea-
surement methods, with coefficients of determination (R?) above 0.85 for the morphometric variables. Porosity
analysis showed better performance for white-shelled eggs (R* = 0.97) compared to brown-shelled eggs (R* =
0.87). Crack detection achieved an accuracy above 90 % for both shell types, demonstrating the effectiveness of
the automated method. It is concluded that the proposed system is a promising tool for application in the poultry
industry, providing greater efficiency, precision, and reliability in eggshell quality assessment.

1. Introduction egg size and/or weight. Additionally, irregularly shaped eggs are more

prone to cracking during transportation and storage [9], directly

The eggshell represents the outer and visible layer of the egg struc-
ture and plays a crucial role in both artificial incubation and the quality
of eggs intended for consumption. Therefore, in modern poultry
farming, assessing the physical properties of the eggshell is a critical
factor in ensuring proper embryonic development and the commercial
quality of eggs. Characteristics such as volume, thickness, porosity, and
physical integrity directly influence chick hatchability [1,2] and the
resistance of eggs to handling and storage [3].

Geometric properties of the egg, such as volume and surface area,
have been extensively studied in the context of incubation [4-6]. Ac-
cording to Narushin & Romanov [7], egg size and shape are directly
correlated with hatch rates and egg weight. Moreover, larger eggs tend
to require longer incubation periods, which affects the operational ef-
ficiency of commercial hatcheries [8]. In the commercial egg market,
these characteristics are equally relevant, as quality grading is based on
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impacting the profitability of the production chain.

Another essential eggshell feature is its porosity, which enables gas
exchange of Oz, CO2, and water vapor between the external environment
and the interior of the egg. This process is fundamental to avian em-
bryonic development during incubation [10] and directly influences
shelf life and internal quality of commercial eggs [3,11]. Therefore,
understanding the number, size, and distribution of eggshell pores is of
great scientific and commercial interest.

Finally, the presence of cracks in the eggshell is another highly
relevant aspect for egg handling. Cracked eggs should not be sent to
incubation rooms, as they pose a high risk of bacterial contamination,
compromising flock health and reducing hatch rates [12]. In the com-
mercial egg market, shell cracks directly affect food safety, as they
facilitate microbial invasion, accelerate egg spoilage, and reduce shelf
life [13,14].

Received 19 August 2025; Received in revised form 15 September 2025; Accepted 22 September 2025

Available online 22 September 2025

2772-3755/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nec-nd/4.0/).



S.L. Castro Junior et al.

Conventional methods for assessing eggshell properties remain
largely manual and often destructive. The Archimedes method, for
example, is widely used to estimate egg volume, but it requires im-
mersion in aqueous solution, which interrupts embryogenesis and is thus
unfeasible for fertile eggs [5,15]. Likewise, traditional methods for
porosity evaluation, such as the use of methylene blue solution [16],
present significant operational limitations, as they are time-consuming,
rely on chemical reagents, and are subject to human error. The identi-
fication of shell cracks—like the other properties mentioned—is prone
to failures, since human vision is not naturally adapted to detect
microcracks, which often go unnoticed.

On the other hand, the growing demand for efficiency and quality in
the poultry industry has driven the adoption of emerging technologies.
Concepts such as precision livestock farming, automation, the Internet
of Things (IoT), and artificial intelligence are increasingly being
explored to optimize egg production and improve poultry system effi-
ciency [17,18]. Among these technologies, computer vision and digital
image processing have emerged as promising tools for the
non-destructive analysis of eggs [2,19,20].

In this context, the present study aims to develop a computer vision
system for the automated analysis of eggshell properties. The system is
designed to extract metrics related to geometry, porosity, and structural
integrity of the shell, with future potential applications in both hatch-
eries and the commercial egg industry..

2. Materials and methods
2.1. Experimental samples and variables of interest

The study was conducted in October 2024 under controlled condi-
tions at the facilities of the Environment and Livestock Research Group
(Nticleo de Pesquisa em Ambiéncia) at the University of Sao Paulo,
Brazil. A total of 326 commercial eggs were used, including 162 brown-
shelled and 164 white-shelled eggs. The samples were sourced from nine
commercial brands, covering three different housing systems (conven-
tional, free-range, and cage-free), and classified into three weight cate-
gories commonly adopted by the Brazilian egg industry: large (48-57.99
g), extra (58-67.99 g), and jumbo (over 68 g). Shelf life at the time of
analysis ranged from 5 to 19 days. The selection of eggs from various
brands and production systems aimed to increase the morphological
diversity of the sample set. Before the beginning of the experiment, each
egg was randomized, properly cataloged, and evaluated through both
the automated assessment system and manual measurements.

The characteristics analyzed included maximum egg length (L),
maximum egg width (W), egg surface area (A), shell porosity (p), and
crack detection. The development of the unified system followed the
typical architecture of computer vision systems, including image
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acquisition, digital processing of the sample set, object segmentation,
and feature extraction (Fig. 1) [2,19].

2.2. Image acquisition

To meet the requirements of this study, a dual image acquisition
system was developed. This approach was adopted to enable complete
capture of the egg’s structure — essential for determining surface area
and detecting shell cracks with the egg intact — while porosity analysis
required magnified images of specific shell sections, obtained after the
eggs were broken. A smartphone (iPhone 13, Apple Inc., United States)
equipped with a 12-megapixel camera, wide-angle and ultra-wide len-
ses, and optical image stabilization was used, mounted on a custom-built
platform with vertical movement capability (Fig. 2A). This setup
enabled image acquisition in two distinct positions: Position A (Fig. 2B),
intended for capturing the entire egg, and Position B (Fig. 2C), designed
for detailed analysis of the shell in a magnified area. The camera was
positioned 13 cm from the eggs, and a 6x zoom was applied in Position B
relative to the image captured in Position A.

To ensure the quality of the resulting image database, the experiment
was conducted in a completely dark environment (0 1x of illumination),
using a single light source positioned behind the object of interest (eggs).
The light source was a commercial candling lamp (Chocmaster, Brazil)
with three possible light outputs, depending on the size of the aperture
rings. Based on preliminary tests, the medium light intensity (medium
ring) was selected, which provided the best contrast between the egg
and the background. This approach follows established methodologies,
such as those employed by Ma et al. [21], and conventional candling
procedures [22].

In Position A, 326 images were acquired, each representing one
experimental egg, a sample size consistent with other image processing
studies applied to eggs [4,6,23,24]. For porosity analysis (Position B),

Fig. 2. Image acquisition: System setup (A), example of image captured in
Position A, and image captured in Position B (C).

Segmentation Feature extraction

Fig. 1. Flowchart of the automated system for extracting egg morphometric characteristics.
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978 images were obtained, as three shell samples were extracted from
each experimental egg. This approach is justified by the heterogeneous
nature of the shell, given that pore distribution is not uniform across its
surface.

2.3. Image processing

Images from Positions A and B were processed in sequential steps
aimed at segmentation, morphological operations, and extraction of
geometric features [25]. All algorithms were developed in MATLAB®
(R2022b, United States).

For Position A, original RGB images were first converted to the red
(R) channel, which provided the highest contrast against the dark
background and allowed segmentation with a fixed threshold. The
threshold value used for binarization was determined empirically
through preliminary testing and visual validation. Following the
approach adapted from Castro Junior et al. [26], a representative subset
of 90 images encompassing a wide range of shell pigmentation patterns
and egg morphometric characteristics was analyzed. Threshold levels
ranging from 0.30 to 0.80 were systematically applied, and the resulting
segmentations were quantitatively compared with manually annotated
masks to maximize contrast between the eggshell and the background
while minimizing the inclusion of background noise.

After binarization, internal disconnected regions were filled to cor-
rect segmentation flaws and ensure the integrity of each object in the
image. Morphological processing was then applied to remove noise and
standardize shapes, based on mathematical models described by Said &
Jambec [27]. This involved four iterations of erosion using a square
structuring element (60 pixels per side), reducing segmented region
sizes and eliminating small disconnected elements. This was followed by
four iterations of dilation using the same structuring element, restoring
original dimensions while smoothing edges and removing artifacts.

In contrast, images from Position B were converted to grayscale to
remove color information while preserving pixel intensity for subse-
quent pore analysis. From this grayscale image, segmentation by
thresholding was applied. Four different approaches and threshold
values were tested: global threshold, Otsu’s method, adaptive thresh-
olding, and edge detection, which dynamically adjusts thresholds based
on the local intensity distribution of pixels. A representative subset of 90
images encompassing a wide range of shell pigmentation patterns and
egg morphometric characteristics was analyzed to benchmark these
alternative strategies. The resulting segmentations were quantitatively
compared with manually annotated masks using visual assessment and
the coefficient of determination (R?) to evaluate accuracy and robust-
ness. Among the tested methods for pore segmentation, global thresh-
olding combined with noise filtering yielded the best overall
performance for both brown-shelled and white-shelled samples,
providing the reference baseline for the final pipeline. This procedure
produced a binary image in which pixels with intensities above the
chosen threshold were assigned to the region of interest (potential
pores), whereas the remaining pixels were classified as background
(eggshell).

Next, filtering was applied based on the area of objects present in the
binary image. Only regions with sizes within a defined range (between
0 and 600 pixels) were retained. This step removed unwanted regions or
noise that did not meet the specified size criteria. Additionally, the bi-
nary image was inverted before filtering to ensure proper segmentation.

2.4. Feature extraction

With the processed images from Position A, feature extraction was
performed on the identified regions. The area of each structure was
determined using two complementary approaches. The first relied on
direct pixel counting within the segmented binary image, while the
second identified the contours of each region and then indexed and
labeled the individual structures. From these segmentations, geometric
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properties—including the area of each object—were extracted.

In addition to area measurements, dimensional information was
obtained by generating bounding boxes around the segmented objects
and recording their coordinates. These data were used to calculate the
height and width of each egg, enabling quantitative analysis of size and
shape. The original image was subsequently overlaid with the bounding
boxes to visually assess the segmentation and validate the extracted
features.

For crack detection, a new predefined intensity threshold was
applied following the methodology of Pan et al. [28]. Pixels with values
above the threshold were classified as potential pores or anomalies,
whereas pixels below the threshold were assigned to the background
(eggshell and external field). This binarization highlighted the most
relevant regions for detecting structural defects. Candidate regions were
then filtered by their geometric perimeter, and only the region with the
largest perimeter was retained to ensure that the main structure of in-
terest was analyzed. Finally, the segmented image was fused with the
original using a blending method that preserves information from both
layers, facilitating visual interpretation and verification of the extracted
regions.

For Position B, after size-based filtering, the segmented regions un-
derwent a hole-filling process to correct any internal gaps or disconti-
nuities, followed by a morphological erosion using a 3-pixel square
structuring element. This final erosion step smoothed object contours
and eliminated small artifacts remaining after binarization. Finally, an
object-counting function was applied to the processed binary image to
quantify the number of pores present in each shell fragment.

2.5. Validation of the automated system

To validate the system proposed in this study, the results obtained by
the automated method were compared with manual readings performed
on the same samples. Given the inherent complexity of estimating the
surface area of eggs using manual and conventional methods, this study
adopted the geometric procedures established by Narushin [29]. As
demonstrated by the author, from measurements of the maximum
length (L) and maximum width (W) of eggs, it is possible to infer the
surface area based on Egs. (1) and 2, with an estimated error margin of
approximately 5 %. The equation used to estimate the egg surface area
(A) is expressed as:

Surface area (A) = 3,142 % L* x n %% o

The dimensionless parameter "n" is determined by Eq. (2):

L 2,372
n=1,057 % (Vv) 2)

Where A represents the egg surface area (cm?); L is the maximum
length of the egg (mm); n is the parameter used for calculating A; and W
is the maximum width of the egg (mm).

To obtain the variables L. and W, manual measurements were taken
using a high-precision digital caliper (model 100.174BL, Digimess,
Brazil). Manual crack annotations were performed by two trained ob-
servers under candling light, in which a bright light is directed through
the egg to make shell defects more visible, as described by Wiang and
Xiang [30]. A region was labeled as a crack when a continuous linear
disruption was clearly visible to the naked eye in the original
high-resolution image. Any disagreements between observers were
resolved by consensus. Pore counting was conducted according to the
methodology described by Rahn et al. [16], where shell fragments were
boiled in 5 % NaOH solution, immersed in aqueous solution, dried, and
subsequently stained with 1 % methylene blue, facilitating pore quan-
tification under a stereoscopic microscope.

For the comparative analysis between maximum length, maximum
width, surface area, and porosity values obtained by the conventional
method and those generated by the computer vision system, statistical
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regression was employed. A simple linear regression model was used, as
applied by Aragua and Mabayo [31] when evaluating egg length and
width. For length, width, and area, the coefficient of determination (R?)
and the characteristic equation converting pixel measurements to metric
values were obtained. For porosity, R?, mean absolute error (MAE),
regression sum of squares (RSS), error sum of squares (ESS), and total
sum of squares (TSS) were extracted.

Additionally, to validate the computer vision system in detecting
cracks on the eggshell, the performance of the automated method was
analyzed by extracting values of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN), using the expert manual
annotations as the reference standard. From these data, the system’s
precision (Eq. (3)), recall (Eq. (4)), and F-score (Eq. (5)) metrics were
calculated:

.. TP
Precision = 7P 3
TP
Recall = TPrFN ()]
TP
F— = = — S
SCOTe = TP 1 0,5(FP + FN) )
3. Results

3.1. Processing and validation — position A

Starting from a color RGB image (Fig. 3), digital image processing at
Position A (PA) began with binarization/thresholding and noise
removal. Before the actual binarization, the image was split into its R
(red), G (green), and B (blue) channels, with the R channel showing the
highest contrast with the background and greater ease of processing.
Thus, only the R channel was used in subsequent steps.

It is also important to emphasize the significance of the thresholding
step, as it plays a crucial role in the success of the subsequent digital
image processing stages. The threshold choice directly influences seg-
mentation quality [32]. A threshold value of 0.60 provided the best
results in the proposed method for both white (Fig. 3A) and brown shell
samples (Fig. 3B). Thresholds below this value increased visible noise in
the image, while thresholds above misclassified object pixels as
background.

In some cases, the threshold used during binarization was not fully
effective in segmenting the object from the background. Therefore, noise
removal processes were necessary to achieve more satisfactory out-
comes (Fig. 3.3). The algorithm proved particularly helpful in
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addressing shadows cast by the eggs on the candling device, which is
made of reflective black plastic. Morphological operations were the most
effective strategies for eliminating potential background points that, due
to lighting, appeared above the threshold during binarization. Such
operations are commonly employed in other biologically-focused
studies [33,34].

As a result of the digital image processing, morphometric charac-
teristics of the eggs were successfully extracted. Initially, algorithms
were used to extract the area (in pixels) of the highlighted object.
Concurrently, a representative image was created, coloring the identi-
fied area as part of the object (Fig. 3.4). Finally, other algorithms were
implemented to extract the maximum length and width of the object.
This involved creating a bounding box around the pixels classified as
part of the object (Fig. 3.5).

For validation of the automated system, its ability to obtain width,
length, and area was compared to manual/conventional measurements.
Table 1 summarizes the morphometric shell parameters collected
manually: weight, maximum length, and maximum width. The surface

Table 1
Characterization of white and brown eggshell samples.

Parameter Maximum  Minimum Mean Standard Coefficient
Deviation ( of Variation
+) (%)

Brown eggs

Weight P 74.15 45.95 57.00 6.09 10.68

®)
Maximum 63.19 50.42 56.32 2.69 4.78
length L
(mm)

Maximum 47.83 40.22 43.19 1.48 3.43
width W
(mm)

Surface 82.43 60.83 69.29 5.02 7.24
area A
(cm?)

White eggs

Weight P 70.62 35.74 58.74 4.99 8.49
@)

Maximum 63.28 52.62 56.72 2.25 3.97
length L
(mm)

Maximum 46.67 40.23 43.59 1.29 2.97
width W
(mm)

Surface 82.09 62.26 70.43 4.08 5.80
area A
(cm?)

Fig. 3. Stages of digital processing of a white eggshell sample (A) and a brown eggshell (B). 1: original RGB image; 2: image with the R channel; 3: processed and
binarized image; 4: visual extraction of area, in pixels; 5: original image overlaid with bounding box for extraction of maximum length and width.
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area was calculated using Egs. (1) and 2.

Table 2 presents the results of the linear regression for the
morphometric variables of brown- and white-shelled eggs collected in
Position A. The coefficient of determination (R?) indicates the goodness
of fit of the model to the data. R? values ranged from 0.8523 to 0.9389,
indicating a good fit of the equations. Numerically, white-shelled eggs
showed slightly higher R* values compared to brown-shelled eggs for all
analyzed variables.

Fig. 4 presents the curves obtained from the linear regression anal-
ysis used to compare the manual and automated methods. In this anal-
ysis, no distinction was made between white and brown eggs, and all
samples were analyzed using both the conventional and the proposed
methods. The results showed that the coefficient of determination (R?)
reached 0.9303 for the maximum length (Fig. 4A), when comparing real
measurements with pixel values obtained through digital processing.
For maximum width (Fig. 4B), R was 0.8988, indicating a similar range
of variation.

A similar trend was observed for the comparison of surface areas
(Fig. 4C), where R? reached 0.8382. It is worth noting that while the
manual method estimated the area using equations, the digital pro-
cessing system provided this value directly, simplifying the conventional
process.

The crack detection process in eggs (Fig. 5) employed specific digital
image processing steps to identify structural imperfections in a non-
destructive manner. Initially, the original color image (Fig. 5A) was
converted to grayscale (R channel), removing color information and
emphasizing intensity variations that could indicate the presence of
cracks.

Subsequently, binarization was applied — similar to the previously
described steps — converting the image into black and white using a
global intensity threshold of 0.12 (Fig. 5C). Pixels with intensity above
the threshold were converted to white, while the rest became black,
highlighting areas of interest such as cracks and reducing irrelevant
information. The next step involved the use of analytical algorithms that
identified linear and discontinuous patterns characteristic of cracks,
isolating them while discarding noise, pores, or other irrelevant details
(Fig. 5D). Finally, the detection results were overlaid onto the original
image, making it easier to visualize the location and extent of the cracks
(Fig. 5E).

Evaluating the accuracy of a crack detection method in eggs is
essential to validate its effectiveness in identifying structural imperfec-
tions. Table 3 presents the performance metrics of the proposed system,
considering different eggshell colors (brown and white). The analyzed
parameters included precision, recall, and F-score, which provide a
detailed assessment of the method’s ability to correctly identify cracks
while minimizing false positives and false negatives.

The results show that the crack detection precision was slightly
higher for brown-shelled eggs (96.15 %) compared to white-shelled eggs
(91.17 %). This performance may be related to differences in texture or
light reflection between the different shell colors. Recall values were
similar for both categories, indicating that the method successfully
detected most existing cracks, with a slight advantage for brown eggs
(89.28 %) over white eggs (88.57 %). The F-score, which combines
precision and recall, was also higher for brown eggs (92.59 %) compared

Table 2
Regressao linear para as variaveis morfométricas coletadas da Posicao A.

Parameter Shell color R? Characteristic equation
Maximum length Brown 0.9262 y = 0.0167x + 3.9135
White 0.9389 y = 0.0182x - 0.9002
Maximum width Brown 0.8873 y = 0.0134x + 10.229
White 0.9036 y = 0.0127x + 12.325
Surface area Brown 0.8523 z = 9E-06x + 16.449
White 0.8807 z = 9E-06x + 15.471

Notes: x indicates the pixel value of the variable; y indicates the variable value in
mm; z indicates the variable value in cm?2.
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to white eggs (89.85 %), reinforcing the trend of better performance for
this shell tone. These results suggest that shell color may influence the
detection system’s response, indicating the need for adjustments to
ensure greater consistency in crack identification across different egg
types.

Finally, Fig. 6 presents representative failure cases observed during
algorithm testing. The first case (Fig. 6A) highlights the effect of het-
erogeneous shell pigmentation, where a darker patch of the brown shell
(at the apical end of the egg) was partially excluded from the segmented
area, leading to underestimated length and area measurements. In the
second case (Fig. 6B), the egg’s low light transmittance (characteristic of
a rotten egg) led to a more incomplete segmentation than in the first
case, highlighting the system’s sensitivity to illumination and the in-
ternal properties of the egg. The last case (Fig. 6C) illustrates a false-
positive crack detection: a superficial imperfection that allowed
greater light passage was misinterpreted as a true crack by the algo-
rithm. These examples emphasize conditions, such as uneven pigmen-
tation, poor light transmission, and surface irregularities, under which
the pipeline may fail or produce misjudgments, reinforcing the need for
improved lighting control, adaptive thresholding, and additional vali-
dation steps to enhance robustness.

3.2. Processing and validation — position B

Similar to what was done for position A, the images obtained from
position B were transformed from RGB images (Fig. 7A) to grayscale and
then binarized. Unlike position A, the grayscale channel was found to be
the best alternative for proceeding with the processing. Noise filtering
and contrast adjustment procedures were required, as also performed in
the image processing for position A. It was also observed that adjust-
ments to processing functions were necessary depending on the shell
color (white or brown), requiring different threshold values.

To evaluate segmentation performance, a representative subset of 90
images encompassing a wide range of shell pigmentation patterns and
egg morphometric characteristics was analyzed. Four methods were
tested on this subset: global thresholding (Fig. 7B), Otsu’s thresholding
(Fig. 7C), adaptive thresholding (Fig. 6D), and edge detection (Fig. 7E).
Morphological filters were applied during segmentation to remove
noise. Among the tested methods for pore segmentation, global thresh-
olding combined with noise filtering yielded the best result (Fig. 7F) for
both brown-shelled samples (threshold = 0.59) and white-shelled sam-
ples (threshold = 0.56). Based on this optimal segmentation, feature
extraction was performed, and pores were counted using object-
counting functions. Table 4 presents the regression model fitting met-
rics for predicting the number of pores in brown and white eggs. For
white-shelled eggs, the R? value was 0.972, suggesting that the model
explains 97.2 % of the variability in pore number, while for brown-
shelled eggs, R? was lower (0.872), indicating that the model explains
87.2 % of the variability. This suggests that the regression model is more
efficient at predicting pore numbers in white eggs than in brown ones,
corroborating results obtained from other metrics, as shown in Table 2.

The mean error (ME) and root mean square error (RMSE) indicate
the model’s accuracy. The ME and RMSE values were significantly lower
for white eggs (ME = 33.863 and RMSE = 5.819) compared to brown
eggs (ME = 181.676 and RMSE = 13.478). This indicates that the pre-
diction of pore numbers in white eggs was more accurate, while the
model showed higher error for brown eggs. The sum of squares for
regression (SSR) represents the variability explained by the model. SSR
values were similar for both types of eggs (599,344.0 for brown eggs and
566,364.6 for white eggs). However, the sum of squared errors (SSE)
was higher for brown eggs (88,112.94) than for white eggs (16,423.45),
highlighting that there is more unexplained variability in the model for
brown-shelled eggs. The total sum of squares (SST) reflects the total
variability in the number of pores. The higher SST value for brown eggs
(687,456.9) compared to white eggs (582,788.0) suggests that the nat-
ural variability in pore number is greater in brown eggs.
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Fig. 5. Stages of digital processing for a white eggshell sample. A: original RGB
image; B: image with R channel; C: processed and binarized image; D: visual
extraction of the crack; E: original image overlaid with the identified crack.

Table 3
Crack identification metrics for the evaluated eggs.

Evaluation Metrics Shell Color

Brown White
Precision, % 96.15 91.17
Recall, % 89.28 88.57
f-score, % 92.59 89.85

Fig. 6. Representative failure cases of the computer-vision pipeline for eggshell
analysis. Case A shows an egg with heterogeneous shell pigmentation, where a
darker region was partially excluded from the segmented area. Case B presents
a low-transmittance (rotten) egg in which insufficient light penetration pre-
vented proper segmentation. Case C depicts a false-positive crack detection, in
which a superficial shell irregularity allowing increased light passage was
misclassified as a true crack.

Fig. 7. Digital processing steps for a white eggshell sample. A: original RGB
image; B: binarization using global thresholding; C: binarization using Otsu’s
method; D: binarization using adaptive thresholding; E: binarization using edge
detection; F: binarization using global thresholding after morpholog-
ical operations.
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In addition to this analysis, Fig. 8 presents two types of analyses for
assessing the number of pores in brown and white eggs: scatter plots (A
and C) and Bland-Altman plots (B and D).

The scatter plots (Figs. 8A and 8C) show the relationship between
automated and manual measurements of pore count. In both cases, a
strong linear correlation was observed, evidenced by the distribution of
points along the trend line. However, small variations were noted along
the Y-axis, suggesting occasional discrepancies between the measure-
ment methods.

The Bland-Altman plots (Figs. 8B and 8D) provide a more detailed
assessment of agreement between the methods, identifying systematic
error trends. In these plots, the difference between measurements is
plotted against the mean of the measurements. The red dotted lines
represent the limits of agreement, within which most observations are
expected to lie. Comparing plots B and D, the dispersion of points in plot
B is smaller than in plot D, indicating that pore count measurements in
white-shelled eggs showed less variation between methods compared to
brown-shelled eggs.

These results reinforce the earlier conclusion that pore number
prediction in white-shelled eggs shows better model fit and lower mean
error compared to brown-shelled eggs. Furthermore, the combined use
of scatter plots and Bland-Altman plots provides a robust analysis of the
model’s accuracy and precision, highlighting the importance of
considering additional factors that may influence measurement in
different egg types.

4. Discussion

The results obtained in this study demonstrate the feasibility of using
computer vision for the automated extraction of eggshell morphometric
characteristics. Linear regression analysis revealed coefficients of
determination higher than 0.85 for the main morphometric variables
extracted by the automated system. However, brown-shelled eggs
showed inferior performance in the comparative analysis with the
manual method, suggesting lower precision in segmentation and iden-
tification of specific structures. In future work, exploring adaptive or
hybrid thresholding strategies could further improve the robustness of
the segmentation process, particularly when images are acquired under
varying illumination conditions.

One of the main reasons for this discrepancy may be attributed to the
tonal nuances of brown eggshells, which exhibit greater color variation
compared to white eggs. Previous studies indicate that such heteroge-
neity in pigmentation can hinder binary image segmentation, leading to
errors in contour detection and morphological feature extraction [35,
36]. In addition, shadows cast by the candling light source may have
been misinterpreted by the algorithm as part of the egg, affecting seg-
mentation accuracy in some analyzed samples. Cunha and Martins [37]
suggest that for R* values below 0.90, system adjustments are required
to improve agreement between methods.

Despite these limitations, system validation demonstrated that the
automated method is capable of replacing manual pore count, showing
high agreement with values obtained through conventional methods.
These findings are consistent with previous studies that used image
processing for the characterization of biological structures [19,20].

Regarding the practical application of the proposed system, auto-
mated monitoring of egg quality is a key aspect for the poultry industry,
both for commercial egg selection and hatchery management. The non-

Table 4
Regression model fitting metrics for predicting the number of pores in eggs.
Parameters Shell Color R? EM RQEM SQR SQE SQT
Number of pores Brown 0.872 181.676 13.478 599,344.0 88,112.94 687,456.9
White 0.972 33.863 5.819 566,364.6 16,423.45 582,788.0

Notes: R? — coefficient of determination; ME — mean error; RMSE — root mean square error; SSR — sum of squares for regression; SSE — sum of squares for error; SST —

total sum of squares.
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Fig. 8. Scatter plot (A) and Bland-Altman plot (B) for the number of pores in white-shelled eggs. Scatter plot (C) and Bland-Altman plot (D) for the number of pores in

brown-shelled eggs.

destructive and automated analysis proposed in this study can be
implemented in industrial grading lines to enhance the selection of eggs
for consumption, reducing losses associated with cracked or non-
standard-sized eggs. However, because porosity assessment requires
shell fragments after egg breakage, its direct application to real-time
hatchery grading is limited. The system is therefore more suitable for
research laboratories or periodic quality-control sampling. Nevertheless,
the porosity algorithm remains valuable, as the conventional method is
labor-intensive, demands a trained specialist, and relies on chemical
reagents, making an automatized approach a faster and more practical
alternative.

In hatcheries, eggshell characteristics play a crucial role in embry-
onic viability, influencing hatchability and chick development [10].
Parameters such as thickness, porosity, and the presence of microcracks
can affect gas exchange and increase the risk of bacterial contamination,
compromising the quality of the batch [3,11]. The incorporation of
automated systems may enable more rigorous control of these factors,
improving hatchability rates and reducing losses due to inadequate egg
selection for incubation.

Additionally, the proposed system can be integrated with other
technologies and precision livestock farming platforms, allowing for
real-time data collection and process automation in high-throughput
production chains. Such approaches are increasingly being explored in
modern poultry farming to optimize operational efficiency and ensure

high quality standards [18].

Despite the advances presented in this study, some limitations should
be considered. The system’s sensitivity to eggshell color variations —
particularly in brown eggs — suggests the need for improvements in
lighting and algorithm calibration. Future testing may explore the use of
deep learning models to enhance segmentation accuracy and microcrack
detection, minimizing interference caused by shadows and reflections.

Moreover, more research should expand the sample size and include
eggs from different genetic strains, housing systems, and storage periods
to assess the robustness of the system under varied conditions.
Comparative studies with other imaging techniques may also contribute
to improving structural characterization accuracy. In particular, more
comprehensive comparisons of thresholding methods should be con-
ducted, especially for images used in pore-count analysis, to ensure
optimal segmentation across diverse shell types and lighting conditions.
Although the proposed computer vision system achieved high co-
efficients of determination and strong agreement with manual mea-
surements, the present analysis did not incorporate formal cross-
validation or evaluation on an independent dataset. Consequently,
some performance metrics may be overestimated due to potential
overfitting. Future work should therefore implement k-fold cross-
validation or external validation using eggs from diverse production
batches and lighting conditions to confirm the generalizability of the
segmentation thresholds and regression models, ensuring the robustness
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of the system for large-scale industrial deployment.

Finally, the integration of the automated system with IoT devices and
cloud-based analytics platforms could enable remote, real-time moni-
toring of egg quality throughout the production chain. This advance-
ment may establish computer vision as an essential tool for automation
and innovation in precision poultry farming, ensuring greater food
safety and production efficiency in the egg industry.

In summary, this work demonstrates a practical advance toward fully
automated, non-destructive evaluation of eggshell quality by uniting
whole-egg morphometry, crack detection, and pore quantification
within a single computer-vision pipeline that relies only on low-cost
hardware. The system achieved strong agreement with manual mea-
surements (R? > 0.85 for all key traits) and high crack-detection preci-
sion, offering a scalable tool for industrial grading lines and research
settings. Nevertheless, important challenges remain: the requirement to
fracture shells for porosity analysis limits immediate use in hatcheries or
commercial egg grading; brown-shell color heterogeneity and shadow
artifacts reduce segmentation accuracy; and the absence of formal cross-
validation leaves potential overfitting to be addressed in future work.
Tackling these issues, through improved lighting, algorithm calibration,
and the adoption of deep learning for more robust segmentation, will be
essential for translating the method into routine, high-throughput
poultry production.

5. Conclusion

This study presented the development of a computer vision system
capable of efficiently analyzing the morphometric characteristics of
eggshells, enabling the extraction of features such as length, width,
surface area, porosity, and crack detection in a fast, real-time, non-
invasive manner, without human interference or the use of chemical
reagents. Comparison with manual methods indicated a high correlation
for the analyzed morphological variables, although segmentation of
brown-shelled eggs posed challenges due to greater color heterogeneity.
While the system demonstrated promising results, there are opportu-
nities for improvement, including algorithm adaptations to better
handle color and shadow variations, as well as the integration of
advanced machine learning techniques. Future research should aim to
expand the dataset and validate the technology under different pro-
duction conditions, establishing computer vision as a key tool for
automation in modern poultry farming.
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