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Ana Carolina de Sousa Silva c, Iran José Oliveira da Silva a
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A B S T R A C T

The evaluation of eggshell morphometric characteristics is essential to ensure the quality of eggs intended for 
both consumption and incubation. Conventional methods for this analysis are mostly manual, destructive, time- 
consuming, and prone to human error. In this context, the present study proposes the development of an 
automated system based on computer vision for extracting key eggshell features: maximum length and width, 
area, porosity, and cracks. The system was designed to capture images from two positions, enabling high- 
resolution analysis of overall egg morphometry and shell porosity. A total of 326 commercial eggs from 
different production systems were analyzed, including 162 brown-shelled and 164 white-shelled eggs. The results 
showed a high correlation between the values obtained by the automated system and those from manual mea
surement methods, with coefficients of determination (R²) above 0.85 for the morphometric variables. Porosity 
analysis showed better performance for white-shelled eggs (R² = 0.97) compared to brown-shelled eggs (R² =
0.87). Crack detection achieved an accuracy above 90 % for both shell types, demonstrating the effectiveness of 
the automated method. It is concluded that the proposed system is a promising tool for application in the poultry 
industry, providing greater efficiency, precision, and reliability in eggshell quality assessment.

1. Introduction

The eggshell represents the outer and visible layer of the egg struc
ture and plays a crucial role in both artificial incubation and the quality 
of eggs intended for consumption. Therefore, in modern poultry 
farming, assessing the physical properties of the eggshell is a critical 
factor in ensuring proper embryonic development and the commercial 
quality of eggs. Characteristics such as volume, thickness, porosity, and 
physical integrity directly influence chick hatchability [1,2] and the 
resistance of eggs to handling and storage [3].

Geometric properties of the egg, such as volume and surface area, 
have been extensively studied in the context of incubation [4–6]. Ac
cording to Narushin & Romanov [7], egg size and shape are directly 
correlated with hatch rates and egg weight. Moreover, larger eggs tend 
to require longer incubation periods, which affects the operational ef
ficiency of commercial hatcheries [8]. In the commercial egg market, 
these characteristics are equally relevant, as quality grading is based on 

egg size and/or weight. Additionally, irregularly shaped eggs are more 
prone to cracking during transportation and storage [9], directly 
impacting the profitability of the production chain.

Another essential eggshell feature is its porosity, which enables gas 
exchange of O₂, CO₂, and water vapor between the external environment 
and the interior of the egg. This process is fundamental to avian em
bryonic development during incubation [10] and directly influences 
shelf life and internal quality of commercial eggs [3,11]. Therefore, 
understanding the number, size, and distribution of eggshell pores is of 
great scientific and commercial interest.

Finally, the presence of cracks in the eggshell is another highly 
relevant aspect for egg handling. Cracked eggs should not be sent to 
incubation rooms, as they pose a high risk of bacterial contamination, 
compromising flock health and reducing hatch rates [12]. In the com
mercial egg market, shell cracks directly affect food safety, as they 
facilitate microbial invasion, accelerate egg spoilage, and reduce shelf 
life [13,14].
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Conventional methods for assessing eggshell properties remain 
largely manual and often destructive. The Archimedes method, for 
example, is widely used to estimate egg volume, but it requires im
mersion in aqueous solution, which interrupts embryogenesis and is thus 
unfeasible for fertile eggs [5,15]. Likewise, traditional methods for 
porosity evaluation, such as the use of methylene blue solution [16], 
present significant operational limitations, as they are time-consuming, 
rely on chemical reagents, and are subject to human error. The identi
fication of shell cracks—like the other properties mentioned—is prone 
to failures, since human vision is not naturally adapted to detect 
microcracks, which often go unnoticed.

On the other hand, the growing demand for efficiency and quality in 
the poultry industry has driven the adoption of emerging technologies. 
Concepts such as precision livestock farming, automation, the Internet 
of Things (IoT), and artificial intelligence are increasingly being 
explored to optimize egg production and improve poultry system effi
ciency [17,18]. Among these technologies, computer vision and digital 
image processing have emerged as promising tools for the 
non-destructive analysis of eggs [2,19,20].

In this context, the present study aims to develop a computer vision 
system for the automated analysis of eggshell properties. The system is 
designed to extract metrics related to geometry, porosity, and structural 
integrity of the shell, with future potential applications in both hatch
eries and the commercial egg industry..

2. Materials and methods

2.1. Experimental samples and variables of interest

The study was conducted in October 2024 under controlled condi
tions at the facilities of the Environment and Livestock Research Group 
(Núcleo de Pesquisa em Ambiência) at the University of São Paulo, 
Brazil. A total of 326 commercial eggs were used, including 162 brown- 
shelled and 164 white-shelled eggs. The samples were sourced from nine 
commercial brands, covering three different housing systems (conven
tional, free-range, and cage-free), and classified into three weight cate
gories commonly adopted by the Brazilian egg industry: large (48–57.99 
g), extra (58–67.99 g), and jumbo (over 68 g). Shelf life at the time of 
analysis ranged from 5 to 19 days. The selection of eggs from various 
brands and production systems aimed to increase the morphological 
diversity of the sample set. Before the beginning of the experiment, each 
egg was randomized, properly cataloged, and evaluated through both 
the automated assessment system and manual measurements.

The characteristics analyzed included maximum egg length (L), 
maximum egg width (W), egg surface area (A), shell porosity (p), and 
crack detection. The development of the unified system followed the 
typical architecture of computer vision systems, including image 

acquisition, digital processing of the sample set, object segmentation, 
and feature extraction (Fig. 1) [2,19].

2.2. Image acquisition

To meet the requirements of this study, a dual image acquisition 
system was developed. This approach was adopted to enable complete 
capture of the egg’s structure — essential for determining surface area 
and detecting shell cracks with the egg intact — while porosity analysis 
required magnified images of specific shell sections, obtained after the 
eggs were broken. A smartphone (iPhone 13, Apple Inc., United States) 
equipped with a 12-megapixel camera, wide-angle and ultra-wide len
ses, and optical image stabilization was used, mounted on a custom-built 
platform with vertical movement capability (Fig. 2A). This setup 
enabled image acquisition in two distinct positions: Position A (Fig. 2B), 
intended for capturing the entire egg, and Position B (Fig. 2C), designed 
for detailed analysis of the shell in a magnified area. The camera was 
positioned 13 cm from the eggs, and a 6x zoom was applied in Position B 
relative to the image captured in Position A.

To ensure the quality of the resulting image database, the experiment 
was conducted in a completely dark environment (0 lx of illumination), 
using a single light source positioned behind the object of interest (eggs). 
The light source was a commercial candling lamp (Chocmaster, Brazil) 
with three possible light outputs, depending on the size of the aperture 
rings. Based on preliminary tests, the medium light intensity (medium 
ring) was selected, which provided the best contrast between the egg 
and the background. This approach follows established methodologies, 
such as those employed by Ma et al. [21], and conventional candling 
procedures [22].

In Position A, 326 images were acquired, each representing one 
experimental egg, a sample size consistent with other image processing 
studies applied to eggs [4,6,23,24]. For porosity analysis (Position B), 

Fig. 1. Flowchart of the automated system for extracting egg morphometric characteristics.

Fig. 2. Image acquisition: System setup (A), example of image captured in 
Position A, and image captured in Position B (C).
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978 images were obtained, as three shell samples were extracted from 
each experimental egg. This approach is justified by the heterogeneous 
nature of the shell, given that pore distribution is not uniform across its 
surface.

2.3. Image processing

Images from Positions A and B were processed in sequential steps 
aimed at segmentation, morphological operations, and extraction of 
geometric features [25]. All algorithms were developed in MATLAB® 
(R2022b, United States).

For Position A, original RGB images were first converted to the red 
(R) channel, which provided the highest contrast against the dark 
background and allowed segmentation with a fixed threshold. The 
threshold value used for binarization was determined empirically 
through preliminary testing and visual validation. Following the 
approach adapted from Castro Junior et al. [26], a representative subset 
of 90 images encompassing a wide range of shell pigmentation patterns 
and egg morphometric characteristics was analyzed. Threshold levels 
ranging from 0.30 to 0.80 were systematically applied, and the resulting 
segmentations were quantitatively compared with manually annotated 
masks to maximize contrast between the eggshell and the background 
while minimizing the inclusion of background noise.

After binarization, internal disconnected regions were filled to cor
rect segmentation flaws and ensure the integrity of each object in the 
image. Morphological processing was then applied to remove noise and 
standardize shapes, based on mathematical models described by Said & 
Jambec [27]. This involved four iterations of erosion using a square 
structuring element (60 pixels per side), reducing segmented region 
sizes and eliminating small disconnected elements. This was followed by 
four iterations of dilation using the same structuring element, restoring 
original dimensions while smoothing edges and removing artifacts.

In contrast, images from Position B were converted to grayscale to 
remove color information while preserving pixel intensity for subse
quent pore analysis. From this grayscale image, segmentation by 
thresholding was applied. Four different approaches and threshold 
values were tested: global threshold, Otsu’s method, adaptive thresh
olding, and edge detection, which dynamically adjusts thresholds based 
on the local intensity distribution of pixels. A representative subset of 90 
images encompassing a wide range of shell pigmentation patterns and 
egg morphometric characteristics was analyzed to benchmark these 
alternative strategies. The resulting segmentations were quantitatively 
compared with manually annotated masks using visual assessment and 
the coefficient of determination (R²) to evaluate accuracy and robust
ness. Among the tested methods for pore segmentation, global thresh
olding combined with noise filtering yielded the best overall 
performance for both brown-shelled and white-shelled samples, 
providing the reference baseline for the final pipeline. This procedure 
produced a binary image in which pixels with intensities above the 
chosen threshold were assigned to the region of interest (potential 
pores), whereas the remaining pixels were classified as background 
(eggshell).

Next, filtering was applied based on the area of objects present in the 
binary image. Only regions with sizes within a defined range (between 
0 and 600 pixels) were retained. This step removed unwanted regions or 
noise that did not meet the specified size criteria. Additionally, the bi
nary image was inverted before filtering to ensure proper segmentation.

2.4. Feature extraction

With the processed images from Position A, feature extraction was 
performed on the identified regions. The area of each structure was 
determined using two complementary approaches. The first relied on 
direct pixel counting within the segmented binary image, while the 
second identified the contours of each region and then indexed and 
labeled the individual structures. From these segmentations, geometric 

properties—including the area of each object—were extracted.
In addition to area measurements, dimensional information was 

obtained by generating bounding boxes around the segmented objects 
and recording their coordinates. These data were used to calculate the 
height and width of each egg, enabling quantitative analysis of size and 
shape. The original image was subsequently overlaid with the bounding 
boxes to visually assess the segmentation and validate the extracted 
features.

For crack detection, a new predefined intensity threshold was 
applied following the methodology of Pan et al. [28]. Pixels with values 
above the threshold were classified as potential pores or anomalies, 
whereas pixels below the threshold were assigned to the background 
(eggshell and external field). This binarization highlighted the most 
relevant regions for detecting structural defects. Candidate regions were 
then filtered by their geometric perimeter, and only the region with the 
largest perimeter was retained to ensure that the main structure of in
terest was analyzed. Finally, the segmented image was fused with the 
original using a blending method that preserves information from both 
layers, facilitating visual interpretation and verification of the extracted 
regions.

For Position B, after size-based filtering, the segmented regions un
derwent a hole-filling process to correct any internal gaps or disconti
nuities, followed by a morphological erosion using a 3-pixel square 
structuring element. This final erosion step smoothed object contours 
and eliminated small artifacts remaining after binarization. Finally, an 
object-counting function was applied to the processed binary image to 
quantify the number of pores present in each shell fragment.

2.5. Validation of the automated system

To validate the system proposed in this study, the results obtained by 
the automated method were compared with manual readings performed 
on the same samples. Given the inherent complexity of estimating the 
surface area of eggs using manual and conventional methods, this study 
adopted the geometric procedures established by Narushin [29]. As 
demonstrated by the author, from measurements of the maximum 
length (L) and maximum width (W) of eggs, it is possible to infer the 
surface area based on Eqs. (1) and 2, with an estimated error margin of 
approximately 5 %. The equation used to estimate the egg surface area 
(A) is expressed as: 

Surface area (A) = 3, 142 ∗ L2 ∗ n− 0,532 (1) 

The dimensionless parameter "n" is determined by Eq. (2): 

n = 1,057 ∗

(
L
W

)2,372

(2) 

Where A represents the egg surface area (cm²); L is the maximum 
length of the egg (mm); n is the parameter used for calculating A; and W 
is the maximum width of the egg (mm).

To obtain the variables L and W, manual measurements were taken 
using a high-precision digital caliper (model 100.174BL, Digimess, 
Brazil). Manual crack annotations were performed by two trained ob
servers under candling light, in which a bright light is directed through 
the egg to make shell defects more visible, as described by Wiang and 
Xiang [30]. A region was labeled as a crack when a continuous linear 
disruption was clearly visible to the naked eye in the original 
high-resolution image. Any disagreements between observers were 
resolved by consensus. Pore counting was conducted according to the 
methodology described by Rahn et al. [16], where shell fragments were 
boiled in 5 % NaOH solution, immersed in aqueous solution, dried, and 
subsequently stained with 1 % methylene blue, facilitating pore quan
tification under a stereoscopic microscope.

For the comparative analysis between maximum length, maximum 
width, surface area, and porosity values obtained by the conventional 
method and those generated by the computer vision system, statistical 
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regression was employed. A simple linear regression model was used, as 
applied by Aragua and Mabayo [31] when evaluating egg length and 
width. For length, width, and area, the coefficient of determination (R²) 
and the characteristic equation converting pixel measurements to metric 
values were obtained. For porosity, R², mean absolute error (MAE), 
regression sum of squares (RSS), error sum of squares (ESS), and total 
sum of squares (TSS) were extracted.

Additionally, to validate the computer vision system in detecting 
cracks on the eggshell, the performance of the automated method was 
analyzed by extracting values of true positives (TP), true negatives (TN), 
false positives (FP), and false negatives (FN), using the expert manual 
annotations as the reference standard. From these data, the system’s 
precision (Eq. (3)), recall (Eq. (4)), and F-score (Eq. (5)) metrics were 
calculated: 

Precision =
TP

TP + FP
(3) 

Recall =
TP

TP + FN
(4) 

F − score =
TP

TP + 0,5(FP + FN)
(5) 

3. Results

3.1. Processing and validation – position A

Starting from a color RGB image (Fig. 3), digital image processing at 
Position A (PA) began with binarization/thresholding and noise 
removal. Before the actual binarization, the image was split into its R 
(red), G (green), and B (blue) channels, with the R channel showing the 
highest contrast with the background and greater ease of processing. 
Thus, only the R channel was used in subsequent steps.

It is also important to emphasize the significance of the thresholding 
step, as it plays a crucial role in the success of the subsequent digital 
image processing stages. The threshold choice directly influences seg
mentation quality [32]. A threshold value of 0.60 provided the best 
results in the proposed method for both white (Fig. 3A) and brown shell 
samples (Fig. 3B). Thresholds below this value increased visible noise in 
the image, while thresholds above misclassified object pixels as 
background.

In some cases, the threshold used during binarization was not fully 
effective in segmenting the object from the background. Therefore, noise 
removal processes were necessary to achieve more satisfactory out
comes (Fig. 3.3). The algorithm proved particularly helpful in 

addressing shadows cast by the eggs on the candling device, which is 
made of reflective black plastic. Morphological operations were the most 
effective strategies for eliminating potential background points that, due 
to lighting, appeared above the threshold during binarization. Such 
operations are commonly employed in other biologically-focused 
studies [33,34].

As a result of the digital image processing, morphometric charac
teristics of the eggs were successfully extracted. Initially, algorithms 
were used to extract the area (in pixels) of the highlighted object. 
Concurrently, a representative image was created, coloring the identi
fied area as part of the object (Fig. 3.4). Finally, other algorithms were 
implemented to extract the maximum length and width of the object. 
This involved creating a bounding box around the pixels classified as 
part of the object (Fig. 3.5).

For validation of the automated system, its ability to obtain width, 
length, and area was compared to manual/conventional measurements. 
Table 1 summarizes the morphometric shell parameters collected 
manually: weight, maximum length, and maximum width. The surface 

Fig. 3. Stages of digital processing of a white eggshell sample (A) and a brown eggshell (B). 1: original RGB image; 2: image with the R channel; 3: processed and 
binarized image; 4: visual extraction of area, in pixels; 5: original image overlaid with bounding box for extraction of maximum length and width.

Table 1 
Characterization of white and brown eggshell samples.

Parameter Maximum Minimum Mean Standard 
Deviation ( 
±)

Coefficient 
of Variation 
( %)

Brown eggs
Weight P 

(g)
74.15 45.95 57.00 6.09 10.68

Maximum 
length L 
(mm)

63.19 50.42 56.32 2.69 4.78

Maximum 
width W 
(mm)

47.83 40.22 43.19 1.48 3.43

Surface 
area A 
(cm²)

82.43 60.83 69.29 5.02 7.24

White eggs
Weight P 

(g)
70.62 35.74 58.74 4.99 8.49

Maximum 
length L 
(mm)

63.28 52.62 56.72 2.25 3.97

Maximum 
width W 
(mm)

46.67 40.23 43.59 1.29 2.97

Surface 
area A 
(cm²)

82.09 62.26 70.43 4.08 5.80
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area was calculated using Eqs. (1) and 2.
Table 2 presents the results of the linear regression for the 

morphometric variables of brown- and white-shelled eggs collected in 
Position A. The coefficient of determination (R²) indicates the goodness 
of fit of the model to the data. R² values ranged from 0.8523 to 0.9389, 
indicating a good fit of the equations. Numerically, white-shelled eggs 
showed slightly higher R² values compared to brown-shelled eggs for all 
analyzed variables.

Fig. 4 presents the curves obtained from the linear regression anal
ysis used to compare the manual and automated methods. In this anal
ysis, no distinction was made between white and brown eggs, and all 
samples were analyzed using both the conventional and the proposed 
methods. The results showed that the coefficient of determination (R²) 
reached 0.9303 for the maximum length (Fig. 4A), when comparing real 
measurements with pixel values obtained through digital processing. 
For maximum width (Fig. 4B), R² was 0.8988, indicating a similar range 
of variation.

A similar trend was observed for the comparison of surface areas 
(Fig. 4C), where R² reached 0.8382. It is worth noting that while the 
manual method estimated the area using equations, the digital pro
cessing system provided this value directly, simplifying the conventional 
process.

The crack detection process in eggs (Fig. 5) employed specific digital 
image processing steps to identify structural imperfections in a non- 
destructive manner. Initially, the original color image (Fig. 5A) was 
converted to grayscale (R channel), removing color information and 
emphasizing intensity variations that could indicate the presence of 
cracks.

Subsequently, binarization was applied — similar to the previously 
described steps — converting the image into black and white using a 
global intensity threshold of 0.12 (Fig. 5C). Pixels with intensity above 
the threshold were converted to white, while the rest became black, 
highlighting areas of interest such as cracks and reducing irrelevant 
information. The next step involved the use of analytical algorithms that 
identified linear and discontinuous patterns characteristic of cracks, 
isolating them while discarding noise, pores, or other irrelevant details 
(Fig. 5D). Finally, the detection results were overlaid onto the original 
image, making it easier to visualize the location and extent of the cracks 
(Fig. 5E).

Evaluating the accuracy of a crack detection method in eggs is 
essential to validate its effectiveness in identifying structural imperfec
tions. Table 3 presents the performance metrics of the proposed system, 
considering different eggshell colors (brown and white). The analyzed 
parameters included precision, recall, and F-score, which provide a 
detailed assessment of the method’s ability to correctly identify cracks 
while minimizing false positives and false negatives.

The results show that the crack detection precision was slightly 
higher for brown-shelled eggs (96.15 %) compared to white-shelled eggs 
(91.17 %). This performance may be related to differences in texture or 
light reflection between the different shell colors. Recall values were 
similar for both categories, indicating that the method successfully 
detected most existing cracks, with a slight advantage for brown eggs 
(89.28 %) over white eggs (88.57 %). The F-score, which combines 
precision and recall, was also higher for brown eggs (92.59 %) compared 

to white eggs (89.85 %), reinforcing the trend of better performance for 
this shell tone. These results suggest that shell color may influence the 
detection system’s response, indicating the need for adjustments to 
ensure greater consistency in crack identification across different egg 
types.

Finally, Fig. 6 presents representative failure cases observed during 
algorithm testing. The first case (Fig. 6A) highlights the effect of het
erogeneous shell pigmentation, where a darker patch of the brown shell 
(at the apical end of the egg) was partially excluded from the segmented 
area, leading to underestimated length and area measurements. In the 
second case (Fig. 6B), the egg’s low light transmittance (characteristic of 
a rotten egg) led to a more incomplete segmentation than in the first 
case, highlighting the system’s sensitivity to illumination and the in
ternal properties of the egg. The last case (Fig. 6C) illustrates a false- 
positive crack detection: a superficial imperfection that allowed 
greater light passage was misinterpreted as a true crack by the algo
rithm. These examples emphasize conditions, such as uneven pigmen
tation, poor light transmission, and surface irregularities, under which 
the pipeline may fail or produce misjudgments, reinforcing the need for 
improved lighting control, adaptive thresholding, and additional vali
dation steps to enhance robustness.

3.2. Processing and validation – position B

Similar to what was done for position A, the images obtained from 
position B were transformed from RGB images (Fig. 7A) to grayscale and 
then binarized. Unlike position A, the grayscale channel was found to be 
the best alternative for proceeding with the processing. Noise filtering 
and contrast adjustment procedures were required, as also performed in 
the image processing for position A. It was also observed that adjust
ments to processing functions were necessary depending on the shell 
color (white or brown), requiring different threshold values.

To evaluate segmentation performance, a representative subset of 90 
images encompassing a wide range of shell pigmentation patterns and 
egg morphometric characteristics was analyzed. Four methods were 
tested on this subset: global thresholding (Fig. 7B), Otsu’s thresholding 
(Fig. 7C), adaptive thresholding (Fig. 6D), and edge detection (Fig. 7E). 
Morphological filters were applied during segmentation to remove 
noise. Among the tested methods for pore segmentation, global thresh
olding combined with noise filtering yielded the best result (Fig. 7F) for 
both brown-shelled samples (threshold = 0.59) and white-shelled sam
ples (threshold = 0.56). Based on this optimal segmentation, feature 
extraction was performed, and pores were counted using object- 
counting functions. Table 4 presents the regression model fitting met
rics for predicting the number of pores in brown and white eggs. For 
white-shelled eggs, the R² value was 0.972, suggesting that the model 
explains 97.2 % of the variability in pore number, while for brown- 
shelled eggs, R² was lower (0.872), indicating that the model explains 
87.2 % of the variability. This suggests that the regression model is more 
efficient at predicting pore numbers in white eggs than in brown ones, 
corroborating results obtained from other metrics, as shown in Table 2.

The mean error (ME) and root mean square error (RMSE) indicate 
the model’s accuracy. The ME and RMSE values were significantly lower 
for white eggs (ME = 33.863 and RMSE = 5.819) compared to brown 
eggs (ME = 181.676 and RMSE = 13.478). This indicates that the pre
diction of pore numbers in white eggs was more accurate, while the 
model showed higher error for brown eggs. The sum of squares for 
regression (SSR) represents the variability explained by the model. SSR 
values were similar for both types of eggs (599,344.0 for brown eggs and 
566,364.6 for white eggs). However, the sum of squared errors (SSE) 
was higher for brown eggs (88,112.94) than for white eggs (16,423.45), 
highlighting that there is more unexplained variability in the model for 
brown-shelled eggs. The total sum of squares (SST) reflects the total 
variability in the number of pores. The higher SST value for brown eggs 
(687,456.9) compared to white eggs (582,788.0) suggests that the nat
ural variability in pore number is greater in brown eggs.

Table 2 
Regressão linear para as variáveis morfométricas coletadas da Posição A.

Parameter Shell color R² Characteristic equation

Maximum length Brown 0.9262 y = 0.0167x + 3.9135
White 0.9389 y = 0.0182x - 0.9002

Maximum width Brown 0.8873 y = 0.0134x + 10.229
White 0.9036 y = 0.0127x + 12.325

Surface area Brown 0.8523 z = 9E-06x + 16.449
White 0.8807 z = 9E-06x + 15.471

Notes: x indicates the pixel value of the variable; y indicates the variable value in 
mm; z indicates the variable value in cm².
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Fig. 4. Scatter plots: Maximum length (A), maximum width (B), and surface area (C).
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In addition to this analysis, Fig. 8 presents two types of analyses for 
assessing the number of pores in brown and white eggs: scatter plots (A 
and C) and Bland-Altman plots (B and D).

The scatter plots (Figs. 8A and 8C) show the relationship between 
automated and manual measurements of pore count. In both cases, a 
strong linear correlation was observed, evidenced by the distribution of 
points along the trend line. However, small variations were noted along 
the Y-axis, suggesting occasional discrepancies between the measure
ment methods.

The Bland-Altman plots (Figs. 8B and 8D) provide a more detailed 
assessment of agreement between the methods, identifying systematic 
error trends. In these plots, the difference between measurements is 
plotted against the mean of the measurements. The red dotted lines 
represent the limits of agreement, within which most observations are 
expected to lie. Comparing plots B and D, the dispersion of points in plot 
B is smaller than in plot D, indicating that pore count measurements in 
white-shelled eggs showed less variation between methods compared to 
brown-shelled eggs.

These results reinforce the earlier conclusion that pore number 
prediction in white-shelled eggs shows better model fit and lower mean 
error compared to brown-shelled eggs. Furthermore, the combined use 
of scatter plots and Bland-Altman plots provides a robust analysis of the 
model’s accuracy and precision, highlighting the importance of 
considering additional factors that may influence measurement in 
different egg types.

4. Discussion

The results obtained in this study demonstrate the feasibility of using 
computer vision for the automated extraction of eggshell morphometric 
characteristics. Linear regression analysis revealed coefficients of 
determination higher than 0.85 for the main morphometric variables 
extracted by the automated system. However, brown-shelled eggs 
showed inferior performance in the comparative analysis with the 
manual method, suggesting lower precision in segmentation and iden
tification of specific structures. In future work, exploring adaptive or 
hybrid thresholding strategies could further improve the robustness of 
the segmentation process, particularly when images are acquired under 
varying illumination conditions.

One of the main reasons for this discrepancy may be attributed to the 
tonal nuances of brown eggshells, which exhibit greater color variation 
compared to white eggs. Previous studies indicate that such heteroge
neity in pigmentation can hinder binary image segmentation, leading to 
errors in contour detection and morphological feature extraction [35,
36]. In addition, shadows cast by the candling light source may have 
been misinterpreted by the algorithm as part of the egg, affecting seg
mentation accuracy in some analyzed samples. Cunha and Martins [37] 
suggest that for R² values below 0.90, system adjustments are required 
to improve agreement between methods.

Despite these limitations, system validation demonstrated that the 
automated method is capable of replacing manual pore count, showing 
high agreement with values obtained through conventional methods. 
These findings are consistent with previous studies that used image 
processing for the characterization of biological structures [19,20].

Regarding the practical application of the proposed system, auto
mated monitoring of egg quality is a key aspect for the poultry industry, 
both for commercial egg selection and hatchery management. The non- 

Fig. 5. Stages of digital processing for a white eggshell sample. A: original RGB 
image; B: image with R channel; C: processed and binarized image; D: visual 
extraction of the crack; E: original image overlaid with the identified crack.

Table 3 
Crack identification metrics for the evaluated eggs.

Evaluation Metrics Shell Color

Brown White

Precision, % 96.15 91.17
Recall, % 89.28 88.57
f-score, % 92.59 89.85

Fig. 6. Representative failure cases of the computer-vision pipeline for eggshell 
analysis. Case A shows an egg with heterogeneous shell pigmentation, where a 
darker region was partially excluded from the segmented area. Case B presents 
a low-transmittance (rotten) egg in which insufficient light penetration pre
vented proper segmentation. Case C depicts a false-positive crack detection, in 
which a superficial shell irregularity allowing increased light passage was 
misclassified as a true crack.

Fig. 7. Digital processing steps for a white eggshell sample. A: original RGB 
image; B: binarization using global thresholding; C: binarization using Otsu’s 
method; D: binarization using adaptive thresholding; E: binarization using edge 
detection; F: binarization using global thresholding after morpholog
ical operations.

Table 4 
Regression model fitting metrics for predicting the number of pores in eggs.

Parameters Shell Color R² EM RQEM SQR SQE SQT

Number of pores Brown 0.872 181.676 13.478 599,344.0 88,112.94 687,456.9
White 0.972 33.863 5.819 566,364.6 16,423.45 582,788.0

Notes: R² – coefficient of determination; ME – mean error; RMSE – root mean square error; SSR – sum of squares for regression; SSE – sum of squares for error; SST – 
total sum of squares.
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destructive and automated analysis proposed in this study can be 
implemented in industrial grading lines to enhance the selection of eggs 
for consumption, reducing losses associated with cracked or non- 
standard-sized eggs. However, because porosity assessment requires 
shell fragments after egg breakage, its direct application to real-time 
hatchery grading is limited. The system is therefore more suitable for 
research laboratories or periodic quality-control sampling. Nevertheless, 
the porosity algorithm remains valuable, as the conventional method is 
labor-intensive, demands a trained specialist, and relies on chemical 
reagents, making an automatized approach a faster and more practical 
alternative.

In hatcheries, eggshell characteristics play a crucial role in embry
onic viability, influencing hatchability and chick development [10]. 
Parameters such as thickness, porosity, and the presence of microcracks 
can affect gas exchange and increase the risk of bacterial contamination, 
compromising the quality of the batch [3,11]. The incorporation of 
automated systems may enable more rigorous control of these factors, 
improving hatchability rates and reducing losses due to inadequate egg 
selection for incubation.

Additionally, the proposed system can be integrated with other 
technologies and precision livestock farming platforms, allowing for 
real-time data collection and process automation in high-throughput 
production chains. Such approaches are increasingly being explored in 
modern poultry farming to optimize operational efficiency and ensure 

high quality standards [18].
Despite the advances presented in this study, some limitations should 

be considered. The system’s sensitivity to eggshell color variations — 
particularly in brown eggs — suggests the need for improvements in 
lighting and algorithm calibration. Future testing may explore the use of 
deep learning models to enhance segmentation accuracy and microcrack 
detection, minimizing interference caused by shadows and reflections.

Moreover, more research should expand the sample size and include 
eggs from different genetic strains, housing systems, and storage periods 
to assess the robustness of the system under varied conditions. 
Comparative studies with other imaging techniques may also contribute 
to improving structural characterization accuracy. In particular, more 
comprehensive comparisons of thresholding methods should be con
ducted, especially for images used in pore-count analysis, to ensure 
optimal segmentation across diverse shell types and lighting conditions. 
Although the proposed computer vision system achieved high co
efficients of determination and strong agreement with manual mea
surements, the present analysis did not incorporate formal cross- 
validation or evaluation on an independent dataset. Consequently, 
some performance metrics may be overestimated due to potential 
overfitting. Future work should therefore implement k-fold cross- 
validation or external validation using eggs from diverse production 
batches and lighting conditions to confirm the generalizability of the 
segmentation thresholds and regression models, ensuring the robustness 

Fig. 8. Scatter plot (A) and Bland-Altman plot (B) for the number of pores in white-shelled eggs. Scatter plot (C) and Bland-Altman plot (D) for the number of pores in 
brown-shelled eggs.
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of the system for large-scale industrial deployment.
Finally, the integration of the automated system with IoT devices and 

cloud-based analytics platforms could enable remote, real-time moni
toring of egg quality throughout the production chain. This advance
ment may establish computer vision as an essential tool for automation 
and innovation in precision poultry farming, ensuring greater food 
safety and production efficiency in the egg industry.

In summary, this work demonstrates a practical advance toward fully 
automated, non-destructive evaluation of eggshell quality by uniting 
whole-egg morphometry, crack detection, and pore quantification 
within a single computer-vision pipeline that relies only on low-cost 
hardware. The system achieved strong agreement with manual mea
surements (R² > 0.85 for all key traits) and high crack-detection preci
sion, offering a scalable tool for industrial grading lines and research 
settings. Nevertheless, important challenges remain: the requirement to 
fracture shells for porosity analysis limits immediate use in hatcheries or 
commercial egg grading; brown-shell color heterogeneity and shadow 
artifacts reduce segmentation accuracy; and the absence of formal cross- 
validation leaves potential overfitting to be addressed in future work. 
Tackling these issues, through improved lighting, algorithm calibration, 
and the adoption of deep learning for more robust segmentation, will be 
essential for translating the method into routine, high-throughput 
poultry production.

5. Conclusion

This study presented the development of a computer vision system 
capable of efficiently analyzing the morphometric characteristics of 
eggshells, enabling the extraction of features such as length, width, 
surface area, porosity, and crack detection in a fast, real-time, non- 
invasive manner, without human interference or the use of chemical 
reagents. Comparison with manual methods indicated a high correlation 
for the analyzed morphological variables, although segmentation of 
brown-shelled eggs posed challenges due to greater color heterogeneity. 
While the system demonstrated promising results, there are opportu
nities for improvement, including algorithm adaptations to better 
handle color and shadow variations, as well as the integration of 
advanced machine learning techniques. Future research should aim to 
expand the dataset and validate the technology under different pro
duction conditions, establishing computer vision as a key tool for 
automation in modern poultry farming.
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