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ANALISE NAO-LINEAR DE ARCOS

Paulo de Mattos Pimenta
Prof. Livre-Docente
Departamento de Engenharia de
Estruturas e Fundag¢Bes da
Escola Politécnica da
Universidade de S3o Psulo

Resumo

Este trabalho apresenta a dedu¢8o consistente de um elemento
finito de arco apropriado para a anélise n8o-linear. Os nés
do elemento podem sofrer grandes deslocamentos e rotagbes,
assim como o0 seu eixo pode sofrer grandes alongamentos e
curvaturas. 0 elemento & bastante geral, acomodando
curvaturas iniciais arbitréarias e material elasto-pléstico.

Abstract

This work presents a consistent derivation of s finite
element for the non 1linear analysis of arches. The element
nodes can undergo large displacements and rotations while
its axis can suffer large elongations and curvatures. This
very general element may have arbitrary initial curvature
and be made of elastic-plastic material.

1. Introducdo

Em [1] foi introduzida uma pPequena correg¢io na cléssica
equacdo da linha eléstica de barras retas, onde grandes
deslocamentos e rotag¢des s8o permitidos. Em [2] foi, ent&o,
desenvolvido um elemento finito para a analise nZo-linear de
pérticos planos, o qual permite que os nés do pértico sofram
grandes deslocamentos e rotagdes € gue as barras,
inicialmente retas, sofram grandes alongamentos e
curavatursas.
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Os resultados dos dois trabalhos supra-citados s#@o aqui
extendidos para barras inicialmente curvas, No item 2, a
equag¢do da linha eléstica de arcos € corretamente deduzida,
para depois, no item 3, com a ajuda de uma formulacgdo
Lagrangiana, apresentar-se um elemento finito consistente de
arco.

2. A equagdio da linha eléastica de barras inicialmente curvas

Considere-se um elemento diferencial de uma barra curva na
configurag¢do inicial, ou de referéncia, limitado por duas
segdes transversais normais a um eixo arbitrariasmnete
definido, conforme a figura 1. A fibra ao longo deste eixo
tem o comprimento dS. dado por

d§r = Rr dB (1)
onde Rr é o raio de curvatura da barra naquele ponto e dp
€ o &ngulo interno do setor definido pelas sec¢des
transversais. Para uma fibra distante ;i do eixo, como
indicado na figura 1, tem-se ums expressio semelhante.

dsr = ( R - r ) dB (2)

De (1) e (2) tem-se, imediatamente, que

dsr = dS» - r dB (3

figura 1: Elemento diferencisal de barra curva

Considere-se, agora, 0O mesmo elemento diferencial na
configura¢c@o deformada, ou atual, de acordo com a mesms
figura 1. A hipétese de Euler-Bernoulli das segdes
transversais permanecerenm planas e indeformaveis foi
adotada. A fibra do eixo mede agora dSe , dado por

dSe = Ra ( da + dB ) (4)






onde Ra € o novo raio de curvatura e da + dB é o novo
&ngulo interno. Uma fibra distante r do eixo mede ent#o

dse = ( Ra = r ) ( da + dB ) (5)
De (4) e (5) segue imediatamente, que

dse = dSe - r ( da + dB ) (B)
0 estiramento da fibra do eixo & definido como

A= dSe/dEx (7

enquanto o estiramento de uma fibra distante r do eixo é
dado por

2 = dse/ds» | (8)
Mas
dse/dsr = (dse/dSr)/(dsx/dS=z) (8)
Assim, ao introduzir-se (3) e (B6), tem-se
- r(a’+B")

o (10)
1 - rB”

onde a diferenciag¢8o segundo 8§»r foi indicada por
0O alongamento linear da fibra do eixo é definido por
& = %=1 (11)

Ja para o alongamento linear de uma fibra distante r do
eixo, tem-se a seguinte expressido.

€= -1 (12)

Com a ajuda de (10) e (11), de (12) chega-se em

€ - ra’
o P I (13)
1 - rB-

Definindo o esforg¢o normal e o momento fletor em fungfo da
tensd@o normal o© , como usual, tem-se

R = J o dA (14)
A
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M = - J r o dA (15)
A
onde A ¢é a se¢#o transversal da barra. Se se admitir s lei
de Hooke
o =E € (18)

para cada fibra, com E sendo o médulo de elasticidade,
tem-se de (13),(14) e (15)

N = EA*E - ES*q°’ (17)
M = - ES*€ + EI*a’ (18)
onde
1
A* = _ dA (19)
A 1-rB-
r
8* = — dA (20)
A 1-rB~
r2
I% = — dA (21)
A 1-rB-

Se o eixo for colocado de tal forma que S* = 0, tem-se
N = EA*e (22)

M

1

EI*a’ (23)

que s#@o muito semelhantes &s expressdes correspondentes das
barras retas.

Resta, agora, deduzir as expressBes analiticas de a° e €
em fung¢8o das coordenadas dos pontos do eixo da bsrra na
configuragso de referéncia e de seus deslocamentos. Parsa
tanto considere-se a figura 2, onde as coordenadas dos
pontos do eixo s#o designadas por Xr e Ve na
configuragso de refer@&ncia e por Xa e Ve na configuragdo
atual. Os deslocamentos 14 indicados s#o designados por u
e Vv , sendo que

Xa = X» + 1 Ve = Vr + V (24)
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figura 2: Deslocamentos de uma barra curva
0 estiramento da fibra do eixo & dado por
L iz

— dSe® Xa'2 + ya'*®
oo [l 7] ] 29)
dse*® Xr % + yr'®

Introduzindo-se (24) em (25), chega-se em

(28)

_ (x2 40" )2 + (yr +V° )% %
e | |
Xr 2 + Yr‘

Voltando-se a (1) e (7), tem-se que o estiramento da fibra
do eixo pode ser expresso da seguinte forma

A =Ra (a + B ) (27)
Logo
a’ = A/Ra - B’ (28)

E interessante observar que & curvatura inicial da barra é
dada por

Kr = 1/Rx = B~ (29)
assim como a curvatura atual é dada por

kg = 1/Ra = a” + B” (30)
De (28) decorre enté&o

a’ = xKg - Kp (31)

As curvaturas inicial e atual s#o expressas pela conhecida
formuls da curvatura para curvas planas
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Ve 'Xe -Xe"ye’
Ky = (32)
[Xr 2+yr 2]3/2

Ya“Xa'—Xa“Ya'
Ke = (33)
[xa'¢+y.'2]3/2

Introduzindo (28),(32) e (33) em (31), tem-se, finalmente,
que

(lel+v|l )(xr o+u [ )_(xr""‘u“ )(Yr '+vc ) yruxr r_xruyr -

(xz"+u’ )2+ (yx"+v’)? Xr 4y’
a’ = (34)
[ X" + y2»'2%2 ]%

As expresstes (26) e (34) podem ser colocadas em fung¢fo das
derivadas das coordenadas e dos deslocamentos segundo a
coordenada X» , O qQue, &as vezes, & mais cdmodo:

% (1+u’")® + (yr"+v")2 %
| |
1 + Yr'z
(yx"+v")(1+u’ )-u"(y="+v’") ye"
(1+u’ )2+ (yx"+v’ )= l1+yx"2

QS = (386)

[ 1+ yxr"% 1%
Em (35) e (36) o sinal " indica diferenciag¢io segundo
Xr . Felizmente as expressfes acima ndo s30 necessarias

para a formulagZo do elemento do préximo item.

Observe-se, para concluir, que , se a barra for inicialmente
reta, isto &, se Ky = yr' = y2" = 0, entdo as férmulas
acima se reduzem as obtidas em [1].

3. 0 elemento finito de arco

Considere-se que a estrutura esteja colocada no plano

definido pelos eixos cartesianos X e v . 0Os noés da
estrutura possuem trés graus de liberdade, a saber, os
deslocamentos u e v e a rotagdo B8 . As rotagdes s&o

consideradas positivas se forem anti-horéarias.

Examine-se, agora, um elemento de barra curva, cuja corda
tem o0 comprimento l» , de acordo com a figura 3. Centrado
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nesta corda, coloca-se um sistema local de coordenadas Xr
& yvr» , de acordo com a mesma figura. A corda faz um &ngulo
D, com 0o eixo b4 do sistema global, enquanto o eixo da
barra faz um &ngulo B com o eixo XxX»r do sistema local.

r ,vv ,P

figura 3: Barra curva nas configura¢des de referéncia e
atual

Na configurag¢sio atual, & corda da barra deformada tem
comprimento le . Um sistema local com 05 eix0s Xe € Ve
é colocado centrado nesta corda, conforme a figura 3. O
&ngulo entre a corda e o0 e€ixo X é denotado por Qe ,
enguanto o &ngulo entre o eixo da barra e o eixo xe ¢ dado
por a+ B

0 estiramento e o alongamento linear da corda s8o definidos
por

Ao le/1> (37)

€c = A - 1 (38)

Os graus de liberdade naturais ou corrotacionais do elemento
s8o definidos por

gi = €c (38)
gz = de — db (40)
g3 = de + ab (41)

onde a e b identificam as extremidades do elemento. g1
mede o alongamento da corda, enquanto gz € g3 medem a
flexdo simétrica e antissimétrica respectivamente.

Os graus de liberdade cartesianos do elemento s3o reunidos
no vetor






P={ Ua Va Ba ub vb Bb } = { p1 } (42)

E importante relacionar-se os graus de 1liberdade da
(a=1,2,3) com os graus de liberdade Pi (i=1,...8), 0
alongamento linear qi1 , é dado por (38) com

1- [(J’[rl::—}{:l.--aa.)z'|'('.‘r’:a:-l:'u"}"::'ﬁ.)a]’i (43)

le [(ch—Xea)z+(YQb—Yca)2]* (44)

Os graus de liberdade gz € Qg3 s#@o, por sua vez, dados
por

gz = (Ba-Bb) - (Ba-Bb) (45)
23 = (BetBb) - (Ba-Bb) - 2(Bc-0x) (46)

onde
Pe-0r = arcsen{ls"1[(Xrb-Xra)sen®c—(yrb-yra)cosdec]} (47)
cos®e = (Xeb-Xeca)/le (48)
sen®c = (yeb-yea)/le (48)

E oportuno determinar-se as derivadas de ga em relagdo a

P1 , indicando-as por Qa,1 . Elas podem, ent#o, ser

reunidas numa matriz 3x8 dada pelo seguinte produto
B=BT ' (50)

com

= g 0 0 1/1» 0 0
B = 0 (8] 1 0 0 =1 (51)
0 2/1le 1 0 -2/1le 1

T=[ ¢ 03 (52)

cos®P. sende 0
t = -sen®e cosde O (53)







T € a tradicional matriz de mudan¢a de sistema de
coordenadas e B ¢é a forma local de B . O é a matriz
nula 3x3

As segundas derivadas de (P em relagdo & P+ , aqui
denotadas por Qa,13 , sS8o reunidas em trés matrizes
simétricas Ga de dimens&o 6x6 , cujos elementos sdo os
Qa,13 , expressas pelos produtos:

Ga = TT G T (54)
com
0 0 0 0 0 0O
_ 1 1 0 0=1 @
Gi1 = 0 0 0 O (55)
lele 0 0 O
1 0
5
Gz = Os (56)
s )
0 1 0 0-1 0
_ 2 0 0-1 0 O
Ga = 0 0 0 O (57)
12 0 1 0O
0 0
0
% J

Admitindo que as deformagdes € de um elemento de arco
sejam fungdes de qa (a=1,2,3), tem-se

€ = €(qa) (58)
A deformag3io virtual de uma fibra, designada por de , é

obtida por diferenciagfio de (58), através da regra da
cadeia, resultando em

o€ = €,a2 Ga,1 Opi (59)
onde a conveng#o da somatéria foi adotada com os indices
Eregos variando de 1 a 3 e os indices latinos de 1 a B
Ademais g diferenciagsio foi indicada por uma virgula, como
usual.

0 trabalho virtusl interno de um elemento é dado por
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oW1 = J o b€ dV (60)
1

onde V & o volume do elemento.

Definindo-se o vetor das forgas nodais internas P de tal
forma que

oW1 = PT &p (B1)
chega-se, com a ajuda de (50), (59) e (60), em

P=TT P (62)
com

P = BT @ (63)

Q € um vetor de dimensfo 3 , cujas componentes @« s3o
dadas por

ch = J o e.va. dv (64)
\'/

A matriz de rigidez tangente do elemento € denotada por k ,
e suas componentes ki sdo dadas pela diferenciacsio de
P1 em relagsio a p3 . Para isso, coloca-se, inicialmente, a
expressdo (62) e (63) em forma indicial.

Pi1 = Qa ga,1 (8635)
A seguir, por diferenciag¢io de (635), tem-se

kij = Qa,B Qa,1 @B,3 + Qa Qa, id (B6B)

O termo Qa,s é dado pela diferenciag¢#@o de (64):
Qa,p = J (D €, €,8 + 0 €,ap ) dV (B87)
\'

onde
D = do/de (68)
é o m6dulo de rigidez tangente do material.

A matriz de rigidez tangente pode, ent#o, ser colocada de
forma matricial como se segue.







i1

k=TT kT (69)
k = ke + ke (70)
ke = BT D B (71)
ke = Q1 G1 + Qs Gs + BT H B (72)

onde ko & matriz de rigidez constitutiva e kg é matriz de
rigidez geométrica do elemento no sistema 1local. As
matrizes simétricas D e H , que constam de (71) e (72),
tém dimens8o 3x3 , e suas componentes s#o dadas por

Dap = J D €,a €,p dV (73)
Vv

I

Hap J O €,ap dV (74)
v

Resta, agora, determinar-se (58) para que as expressdes de
Q » D e H possam ser explicitadsas. Para isso, precisa-
se introduzir algum esquema de interpolagio para os
deslocamentos e rotagdes das se¢les transversais. Pode-se
generalizar a interpolsgfo de [2] da seguinte maneira:

Xe = e Xr = (1+Q1) X» (73)

a = gz I's(xr) + g3 TFa(xr) (76)
onde

Fa(xr) = -xx/1» Fa(xr) = 3(xx/1x)2-1/4 (77)

Reescrevendo (13), tem-se

dS» da
15 -r
dx» dx»
€ = (78)
dS» dB
S
dxr dx»

E fédcil ver que

dsSxr
= [ 1+ (dyx/dx=)® ]%

1

[ 1+ tg®B 1% = secB (78)

dx»

Invertendo, tem-se
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dx:-
= cosB (80)

O alongamento 1linear no eixo é dado, com a ajuda de (75) e
(80), por

dén dSe dxe dx=
- 1 = - 1 = sec(a+B) %o cosB - 1 (81)
dér dxc dxr dér

€ a rotagdo especifica da/dxr por

da
—— =g2Te’ + g3 I'a’ (82)
dx»-
onde
Il's (xx) = -1/1» Tea (xr) = Bxx/1r? (83)
Introduzindo-se (79), (81) e (83) em (78) chega-se,

finalmente, em

(1+gi)sec(a+B) - secB - r(qzl's "+gala )
€ (84)
secB - r (dB/dx»)

Para o cédlculo das integrais de (B64), (73) e (74) é, ainda,
necessério encontrar a expressio do elemento de volume dV
Vé-se, imediatamente, que

dV = dr dsr = [1-r(dB/d&x)] dr d&, =

[ secB - r (dB/dxr) ] dr dxs (85)

As integrais de (B4) sdo, portanto, dadas por

Qi = J N sec(a+B) dx» . (8B)
Qz = J [ N % sec(a+B)tg(a+B) + M I's" ] dx» (87)
Qa = J [ N 2c sec(a+B)tg(a+B) + M Ta’ ] dx» (88)

as integrais de (74) por
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as

Hix =

=

Hiz = sec(a+B)tg(a+B) T's dxs

=

Hzz = Ae sec3(a+B) I's s dx»

0
His = J N sec(a+B)tg(a+B) T'e dx»

Hzs = N Ac sec3(a+B) I'e T'e dx»

H33 = N Ac SBCS(CH'B) ra I'a er

integrais de (73) por

Dii = J Ci sec?®(a+B) dxr

Diz = J [ C1 Ac sec®*(a+B)tg(a+B)
- Cz sec(a+£3) I's” ] dx»
Dis = J [ C1 e sec®(a+B)tg(a+B)
- C2 sec(a+B) Ta" ] dx»
D22 = J [ C1 Ac?® sec?® (a+B)tg2(a+B) I's I's
- 2 C2 Ac sec(a+B) tg(a+B) I's I's’
+ CaTI's” I's" ] dx=
D2a = J [ C1 Ae® sec®*(a+B)tg2(a+B) T'e Te

- C2 Ae sec(a+B) tg(a+B) (I's Ta’ + T'e~

+ C& Tag” Fa”’ ] dx»
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(89)

(80)
(81)
(82)
(83)

(94)

(85)

(88)

(87)

(88)

Fe)
(88)
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Daas = [ [ Ci1i 2Ac? sec?(a+B)tg?®*(a+B) Ta Te
- 2 C2 Ac sec(a+B) tg(a+B) T'e T'a’
+ CaTl'e’ Tea” ] dx»r (100)

Os limites de integrag8@o de (88) a (100) s8o de -%1lr a
¥l» . Em (95) a (100), introduziu-se as seguintes grandezas:

) D

C1 = dA (101)
JA secB - r(dB/dxr)
r Dr

Cz = dA (102)
JA secB - r(dB/dx=x)
o P D rg

Cas = dA (103)
JA secB - r(dB/dx=r)

Note-se que as expressoes deduzidas s#o bastante semelhantes
as de [2], e se reduzem a elas no caso da curvatura inicial
da barra ser nula, isto é, se B = dB/dx» = 0

E também importante lembrar que outras generalizagdes da
interpolag¢do de [2] s&@o possiveis. a em (76) poderia ter
sido interpolado segundo & varidvel S» ou qualquer outro
parametro que defina a curva inicial do eixo da barra.
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