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Resuno

Este trabalho apresenta a dedução consistente de um elemento
finito de arco apropriado para a análise nXo-linear . Os nós
do elemento podem sofrer grandes deslocamentos e rotações ,
assin como o seu eixo pode sofrer grandes alongamentos e
eurvatur as . O elemento é bastante gera1 , acomod ando
curvaturas iniciais arbitrárias e material elasto–plástico .

Abstract

This work presentis a consistent derivation of a fin lte
element for the non linear anajysjs of arches . The element
nodes can undergo large displacements and rotations while
its axis can suf fer large elongations and curvatures . This
very general element may have arbitrary initia1 curvature
and be made of elastic–plastic material.

1_ Introdução

Em [ 1] foi introduzida uma pequena correção na clássiça
equação da linha elástica de barras retas , onde grandes
deslocamentos e rotações são permitidos . Em [2] foi , ent;go ,
desenvolvido um elemento finito para a análise não–linear de
pórticos planos , o qual permite que os nós do pórtico sofram
grandes deslocament os e rotações e que as barras
inicialmente retas , sofram grandes alongamentos
curavaturas .
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Os resultados dos dois trabalhos supra-citados sEo aqui
extendidos para barras inicialmente curvas . No item 2 , a
equação da linha elástica de arcos é corretamente deduzida ,
para depois, no item 3 , com a aiuda de urna formulação
Lagrangiana, apresentar–se um elemento finito consistente de
arco

$

l' u

2. A equação da linha elástica de barras inieialnente curvas

Considere–se um elemento diferencia1 de uma barra curva na
configuração inicial, ou de referência, limitado por duas
seções transversais normais a um eixo arbitrariannete
definido , conforme a figura 1. A fibra ao longo deste eixo
tem o comprimento dSp dado por

dÊr = Rr dB (1)
onde Rr é o raio de curvatura da barra naquele ponto e dB
é o ângulo interno do setor definido pelas seções
transversais . Para uma fibra distante r do eixo , como
indicado na figura 1, tem–se uma express 80 semelhante .

dsp = ( Rr - r ) dB (2)
De ( 1 ) e ( 2 ) tem–se , imediatamente , que

dsp = dgr - r dB (3)

pb\Ç

figura 1 : Elemento diferencial de barra curva

Considere-se , agora , o mesmo elemento dif erencia1 na
conf iguraçgo def ormada, ou atual, de acordo com a mesma
figura 1 . A hipótese de Eu ler-Bernou11 i das seções
transversais peralanecerem planas e indeformáve is foi
adotada , A fibra do eixo mede agora dSK , dado por

dER = RR ( da + dO ) (4)
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onde RR é o novo raio de curvatura e da + dO é o novo
ângulo interno . Uma fibra distante r do eixo mede entío

dsn = ( RR - r ) ( da + dB ) ( 5 )

De (4 ) e ( 5 ) segue imediatamente , que
dsa = dgR - r ( da + dO ) ( 6 )

O estiramento da fibra do eixo é def in ido como

dBa/dEr ( 7 )

enquanto o estiramento de urna fibra distante r do eixo é
dado por

X = dsa/dsp ( 8 )

Mas

dSR/dsp = (dsa/dgr)/(dsr/dgr ) ( 9 )

Assim, ao introduzir-se ( 3 } e ( 6 ) , te ia–se

\ - r(a’+6’)
1 - rB ’

onde a diferenciação segundo Br foi indicada por

O alongamento linear da fibra do eixo é definido por
é = 11– 1 (11)

Já para o alongamento linear de uma fibra distante r do
eixo , tem–se a seguinte expressão .

€ = À – 1 ( 12)

Com a ajuda de ( 10 ) e ( 11 ) , de ( 12 ) chega se eai

é - ra
€ = ( 13)

1 - rB ’

Definindo o esforço normal e o momento fletor em função da
tensão norna1 a , como usual, tem-se

N = ja dA ( 14 )

\

'd ' L

( 10)
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r a dA
A1 ( 15)

\

n+ c

P y

onde A é a seção transversal da barra . Se se admitir a lei
de Hooke

o = E e ( 16)

sendo o módulo de elasticidade ,para cada fibra, com E
tem-se de ( 13 ) , ( 14 ) e ( 15 )

EA#é - ES*a (17)

( 18)- ES*é + EI+a

onde

A+
rB

r

A 1–rB
2r

A 1–rB

( 19)

s+ (20)

1+ (21)

Se o eixo for colocado de tal forma que s+ tleal–se

EA+ € (22)
(23)EI #a

6
+ -L que são muito semelhantes às expressões correspondentes das

barras retas .

Resta, agora, deduzir as expressões analiticas de a ’ e €
em função das coordenadas dos pontos do eixo da barra na
configuração de referência e de seus deslocamentos . Para
tanto considere–se a figura 2 , onde as coordenadas dos
pontos do eixo são designadas por Xr e yr na
conf iguraç Xo de referência e por XR e ya na configuração
atual. Os deslocamentos lá indicados são designados por u
e v , sendo que

X& = Xr + U yR = yr + V ( 24 )
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figura 2 : Deslocamentos de uma barra curva

O estiramento da fibra do eixo é dado por

=]* = []* (25)

Introduzindo-se ( 24 ) em ( 25 ) , chega–se em

(Xr'+u ’ )= + (yr ’+v’ )= 1 b

Xr ’ 2 + yr ’ 2 J[

(26)

Voltando-se a ( 1 ) e ( 7 ) , tem–se que o estiramento da fibra
do eixo pode ser expresso da seguinte forma

X = Ra ( a ’ + 6 ’ (27)
Logo

ã /R& – 6 ’ (28)
E interessante observar que a curvatura inicia1 da barra é
dada por

b

b rt kr = 1/Rr (29)

assin como a curvatura atual é dada por

ku = 1/Ra = a ’ + 6 ’ (30)

De ( 28 ) decorre então
a ' = ibAn - Xr (31)

As curvaturas inicial e atua1 são expressas pela conhecida
fórmula da curvatura para curvas planas
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Kx
yr " Xr - –Xr ’' yr

(32)
[Xr ’ 2 +yr ’ 2 ] 3/2

\

n- (

8
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kR
yR81 XR -XR e yR

(33)
[XR ’ = +yR ’ = ] 3/2

Introduzindo ( 26 ) , ( 32 ) e ( 33 ) em ( 31 ) , tem–se , finalmente ,
que

<yr"+v" ) ( xp '+u ’ )–(Xr"+u" ) (yr ’+v ’ ) yr " Xr ’ -Xr " yr

(Xr '+u ’ )=+(yr ’+v ’ )= Xr ’ 2 +yr ’ z
( 34 )a

[ Xr ’= + yr “= ]%

As expressões ( 26 ) e ( 34 ) podem ser colocadas em funçgo das
derivadas das coordenadas e dos deslocamentos segundo a
coordenada Xr , o que , às vezes, é mais cômodo :

== []* (35)

(yr"+v" ) ( 1+u ’ )–u" (yr ’+v ’ ) yr

( 1+u ’ )=+<yr ’+v ’ )= 1+yr ’ 2
(36)

[ 1 + yr ’= ]’‘

Em ( 35 ) e ( 36 ) o sina1 ’ indica diferenciação segundo
Xr . Felizmente as expressões acima ngo são necessárias
para a formulaçlo do elemento do próximo item .

Observe-se , para concluir , que , se a barra for inicialmente
reta, isto é , se Kr = yr ’ = yr" = 0 , então as fórmulas
acina se reduzem às obtidas em [ 1] .

3 . O elemento finito de arco

Considere-se que a estrutura esteja colocada no plano
definido pelos eixos cartesianos x e y . Os nós da
estrutura possuem três graus de liberdade , a saber , os
deslocamentos u e v e a rotação O . As rotações são
consideradas positivas se forem anti–horárias .

Examine-se , agora,
tem o comprimento

um elemento de barra curva, cuja corda
lr , de acordo com a figura 3 . Centrado
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nesta corda , coloca-se um sistema local de coordenadas Xr
e yr , de acordo com a mesma figura . A corda faz um ângulo
Or com o eixo x do sistena global, enquanto o eixo da
barra faz um ângulo 6 com o eixo Xr do sistema local.

1
+ '' t

R

Ip 9

figura 3 : Barra curva nas configurações de referência e
atual

Na configuração atual, a corda da barra def orrnada tem
comprimento 1c . Um sistema local com os eixos Xe e ye
é colocado centrado nesta corda, conforme a figura 3 . O
ângulo entre a corda e o eixo x é derrotado por Qe ,
enquanto o ângulo entre o eixo da barra e o eixo xc é dado
por a + 6

O estiramento e o alongamento linear da corda são definidos
por

X e = 1 c/ 1 r (37)
Ce = Xc - 1 (38)

1 q t
Os graus de liberdade naturais ou corrotacionais do elemento
são definidos por

q 1 = € e (39)
92 = aa - ab (40)
93 = aR + ab (41)

onde a e b identificam as extremidades do elemento . qr
mede o alongamento da corda, enquanto 92 e 93 medem a
flexão simétrica e antissimétrica respectivamente .

Os graus de liberdade cartesianos do elemento . sEo reunidos
no vetor
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P Ua VR en Ub vb eb Pl (42)

E importante relacionar -se os graus de liberdade qa
(a=1, 2 , 3 ) com os graus de liberdade pr ( i=1, . . . 6 ) . O
alongamento linear q 1 , é dado por ( 38) com

1
L+ t

1

1. +

1= [(Xrb-Xrn)'=+(yrb-yBR)= ]1‘ (43)

(44 )lc [(Xeb-XeR)=+(yeb-yeR)=]%

Os graus
por

de liberdade 92 e q3 são , por sua vez , dados

q2 ( eR-ob )

(Oa+Ob )

( BR–Bb )

( On-Bb ) - 2 ( Qc-Or )

(45)

(46)93

onde

©c-Or = arcsen{lr-1[(Xrb-XrR)sen©c-(yrb-yrR)CosOe] } (47 )

COSOc = (Xeb-XCR)/ lc (48)

sen©e = (ycb–yeR)/lc (49 )

E oportuno determinar–se as derivadas de qa em relação a
pr , indicando-as por qa, 1 . Elas podem, então , ser
reunidas numa matriz 3x6 dada pelo seguinte produto

B = BT (50)
coin

-1/Ir 0 0 1/lr 0 0 1o o 1 o o -1 1
0 2/10 1 0 –2/le 1 1[

(51)

l R i

:’ 1 ( 52)

COSOc
-sen©e

0
[

t
senQc
COS©c

0 1 1 (53)
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T é a tradicional matriz de mudança de sistema de
coordenadas e É é a forma loca1 de B . O3 é a matriz
nula 3x3

As segundas derivadas de qa ex1 relação a pr , aqui
denotadas por qa, rJ , são reunidas em três matrizes
simétricas Ga de dimensão 6x6 , cujos elementos são os
qa, 15 , expressas pelos produtos :

!_ .

1

1, e Ga = TT êa T ( 54 )

coin

00
10

0

00
0 -1
00
00

1

0
0
0
0
0
0

lr 1 e
(55)

G2 = O6 (56)

1

0
o o -1
o –1 o
000

01
0

0
0
0
0
0
0

(57)

Admitindo que as deformações € de um elemento de arco
sejan funções de qa (a=1, 2 , 3 ) , tem–se

€ = €<qa) <58)

1 '+

b '+

A deformação virtual de uma fibra, designada por â€ , é
obtida por diferenciação de ( 58 ) , através da regra da
cadeia, resultando em

â€ = € ) a qa iI ÕP 1 < 59 )

onde a convenção da son&tóri& foi adotada com os indices
gregos variando de 1 a 3 e os índices latinos de 1 a 6
Ademais a diferenciaçgo foi indicada por uma virgula, como
usual

O trabalho virtua1 interno de UZI elemento é dado por
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'"= = I„. “ '" (60)

onde V é o volume do elemento .
}. .

ba +

Definindo–se o vetor das forç'as nodais internas
forma que

p de tal

ÔWI = PT ÔP (61)
chega–se , com a ajuda de ( 50 ) , ( 59 ) e ( 60 ) , em

P = TT É (62)
coin

É = BT Q (63)
Q é um vetor de dialensgo
dadas por

3 cujas componentes Qa são

'« = I„. ',“" ( 64 )

A matriz de rigidez tangente do elemento é denotada por k ,
e suas componentes krJ sEo dadas pela diferenciação de
Pr em relação a PJ . Para isso , coloca-se , inicialmente , a
expressão ( 62 ) e ( 63 ) em forma indicia1.

Pl = Qa qa 91 (65)
A seguir , por diferenciação de ( 65 ) , tem-se

k IJ = Qa ) 8 qa ) 1 qB 9 J + Qa qa » IJ (66)
O termo Qa , 8 é dado pela diferenciação de ( 64 )

Qa, 8 = | ( D € , a € , 3 + O € , ae ) dV (67)

onde

D = da/de ( 68 )

é o módulo de rigidez tangente do material.

Â matriz de rigidez tangente pode , então , ser colocada de
forma matricial como se segue .
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TT k T (69)

irc + ica
ÊT D É

(70)

(71)

(72)

1

4

l' , +

Ql êl + QB é3 + ÉT H É

onde ice é matriz de rigidez constitutiva e ik é matriz de
rigidez geométrica do elemento no sistema loca1 . As
matrizes sialétricas D e H , que constam de ( 71 ) e ( 72 ) ,
têm d irnensão 3x3 , e suas componentes são dadas por

Dan D € ,a € , O dV
V1 (73)

HaB 1O € , aO dV
V

( 74 )

Resta, agora, determinar–se ( 58 ) para que as expressões de
Q , D e H possam ser explicitadas . Para isso , precisa–
se introduzir algum esquema de int erpolação para os
deslocamentos e rotações das seções transversais . Pode–se
generalizar a interpolação de [2] da seguinte maneira :

Xc = X a Xr = ( 1+q 1 ) Xr (75)
a = 92 FB(Xr ) + 93 FR(Xr ) (76)

onde

FB ( Xr ) = –xp/ lr Fn( Xr ) 3( Xr/ lr ) = – 1/4 (77)
Reescrevendo ( 13 ) , tem–se

dãr da
é ––r

dXr dXr
tI b

dêr dB
r

dXr dXr

(78)

E fácil ver que

dêr
[ 1 + (dyr/dxr )2 ]&

dXr
1 + tg=6 ]h = sec6 ( 79 )

Invert;endo , tem-se
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dXr
o056

dgr
(80)

} . ,

1

r. n

O alongamento
( 80 ) + por

linear no eixo é dado , com a ajuda de ( 75 ) e

dÊ& dER dxc dxr
1 = sec(a+6 ) Xe cosB - 1 ( 81 )

dxc dx r dêrdÊr

e a rotação especifica da/dxr por

da
92 Fa ’ + 93 Fn

dXr
(82)

onde

FB ’ ( Xr ) = - 1/ 1r FR ’ ( Xr ) = 6Xr/lre ( 83 )

Introduzindo-se ( 79 ) ,
finalmente , em

( 81 ) e ( 83 ) em ( 78 ) chega-se ,

( 1+ql )sec(a+6 ) – seeD - r(q2FB’+q3F& ’ )
( 84 )

secB - r (dB/dXr )

Para o cálculo das integrais de ( 64 ) , ( 73) e ( 74 ) é , ainda,
necessário encontrar a expressão do elemento de volume dV
Vê-se , imediatamente , que

dV = dr dsp = [ 1-r(dB/der ) ] dr der =

[ secO - r (dB/dxr ) ] dr dxr (85)
As integrais de ( 64 ) são , portanto , dadas por

1

Ql = | N sec(a+B) dXr (86)

Q2 = | [ N Xc sec(a+6 )tg(a+6 ) + M FB ] dXr (87 )

Q3 = | [ N Xe sec(a+6 )tg(a+6 ) + H FR ] dXr (88)

as integrais de ( 74 ) por
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(89)

(90)

(91)

( 92)

( 93)

( 94 )

1111

H12

1Hr3

sec < a+6 ) tg( a+6 ) Fe dXr

1123 = | N Xe sec3(a+6 ) FB FR dxr

H33 = | N Ac sec3(a+6 ) Fa FR dxr

e as integrais de ( 73 ) por

Dll = | Cl sec2 (a+6 ) dxr

D12 = | [ Cl &= sec= (a+6 )tg(a+6 )

- C2 sec(a+6 ) FB ’ ] dxr

D13 = | [ Cl Xc sec2(a+6)tg(a+6)
- C2 sec(a+6 ) Fa ’ ] dxr

D22 = | [ Cl Xc= sec=(a+B)tg=(a+8) rB r B

2 C2 Xe sec(a+B ) tg(a+8 ) FB FB
+ C3 Fa ’ Fe ’ ] dXr

D,, = | [ C, X,= ,,,=(a+6)tg=(a+ 6) Fa Fe

C2 Ae sec(a+6 ) tg(a+6 ) (FB FR ’ + rB

+ C3 FB ’ Fa ’ ] dxr

N sec(a+O )tg(a+6) FR dxr

A,, = | N À, se,3(,+6) r, r, d,,

1

4 rB +

(95)

(96)

(97)

(98)

Fn )

(99)
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D33 = | [ Cl Ae' sec= (a+6 )tg= (a+B ) FR FR

2 C2 Xe sec(a+6 ) tg(a+6 ) FR FR

+ cs FR ' rn ’ ] dxr ( 100 )
B

1
( Os limites de integração de ( 86 ) a ( 100 ) sgo de -%lr a

%lr . Em (95) a ( 100 ) , introduziu–se as seguintes grandezas :

'= =f»“JA secO - r(dB/dxr)
( 101)

'= =f„'»JA secB - r(dB/dxp)
( 102)

.; = 1».” ( 103)

Note-se que as expressões deduzidas sXo bastante semelhantes
às de [2] , e se reduzern a elas no caso da curvatura inicia1
da barra ser nula, isto é , se 6 = dO/dxr = O

E também importante lembrar que outras generalizações da
interpolação de [2] sEo possíveis . a em ( 76 ) poderia ter
sido interpolado segundo a variável gr ou qualquer outro
parâmetro que defina a curva inicial do eixo da barra .
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