Trabalho

Titulo em Portugués:

Titulo em Inglés:

Area de Pesquisa / SubArea:

Agéncia Financiadora:

. gy para si I I

Controllers for cold atoms embedded systems

Anderson Eduardo de Carvalho Filho

Universidade de S3o Paulo

Instituto de Fisica de S3o Carlos

Daniel Varela Magalhdes

Fisica Atomica e Molecular

USP - Programa Unificado de Bolsas

frios

33

DSIICUSP

Controladores para sistemas embarcados de atomos frios

Anderson Eduardo De Carvalho Filho

Prof. Dr. Daniel Varela Magalhaes

Instituto de Fisica de Sdo Carlos/Universidade de Sdo Paulo

anderson.carvalho52@usp.br

Objetivos

O presente trabalho tem como foco o estudo de
técnicas de sincronizagdo entre dispositivos
embarcados heterogéneos, tomando como
referéncia a comunicagdo entre uma
BeagleBone Black Rev C[1], um Arduino
Nano[2] e um notebook que atua como
supervisor. O objetivo é avaliar como diferentes
protocolos de comunicacdo em especial o
CAN, comparado ao UART e ao I12C se
comportam em termos de laténcia, jitter e
robustez, dentro de um cenario de testes
plausivel em laboratério. Essa analise busca
nao apenas compreender as limitagdes praticas
de cada abordagem, mas também fornecer
subsidios para a concepgéo de arquiteturas de
controle distribuido aplicaveis a experimentos
embarcados mais complexos, como o0s
envolvidos em sistemas de atomos frios.

Métodos e Procedimentos

A BeagleBone Black foi configurada como uni-
dade principal, responsavel por gerar pulsos de
sincronizagao e atuar como mestre em cada
protocolo testado. O Arduino Nano desempe-
nhou o papel de né secundario, respondendo
aos sinais enviados e reportando o tempo de
processamento. O notebook, conectado simul-
taneamente a ambos, assumiu a fungéo de su-
pervisor, registrando dados de laténcia, anali-
sando o jitter e contabilizando falhas de comu-
nicacao.

Foram considerados trés cenarios distintos. No
primeiro, utilizou-se comunicagéo serial UART
a 115200 bps, de forma ponto a ponto entre
BeagleBone e Arduino. No segundo, adotou-se
0 barramento 12C a 100 kHz, no qual a
BeagleBone atuou como mestre e o Arduino

como escravo. No terceiro e principal cenario,
implementou-se o protocolo CAN operando a 1
Mbps, com a BeagleBone utilizando o
controlador DCAN interno € o Arduino Nano
acoplado a um moédulo MCP2515 com
transceptor dedicado. Esse arranjo permitiu
observar o comportamento de um barramento
mais robusto, adequado a sistemas
distribuidos.

As medicdes foram realizadas a partir de sinais
de teste gerados pela BeagleBone e
confirmados pelo Arduino, enquanto scripts em
Python no notebook fizeram a coleta e andlise
estatistica. Para cada protocolo foram extraidas
séries temporais de laténcia, valores médios,
desvios padrdo e taxas de erro em
aproximadamente sessenta amostras por caso.

Resultados

Os resultados mostraram diferengas claras no
desempenho dos protocolos. O UART apresen-
tou uma laténcia média proxima de 2,0 ms,
com jitter em torno de 0,3 ms e uma taxa de er-
ro inferior a 0,3%. Esse comportamento confir-
ma a eficiéncia do enlace serial para comunica-
¢bes diretas e relativamente estaveis, embora
sem recursos adicionais de confiabilidade.

No caso do I12C, a laténcia média elevou-se pa-
ra cerca de 4,6 ms, com jitter préximo de 0,7
ms e uma taxa de erro préxima de 1%. Esses
numeros refletem as limitagbes inerentes ao
clock mais baixo e ao overhead de endereca-
mento do protocolo, além de sua maior sensibi-
lidade a ruidos e perdas ocasionais de sincro-
nismo.

33
DSIICUSP

O CAN, por sua vez, apresentou o
desempenho mais equilibrado. A laténcia
média registrada foi de aproximadamente 1,2
ms, com jitter reduzido em torno de 0,2 ms e
uma taxa de erro praticamente nula (0,05%).
Esses resultados se explicam pela robustez do
protocolo, que conta com arbitragem por
prioridade, retransmissdo automatica em caso
de falhas e mecanismos internos de deteccao
de erros. Mesmo com cerca de 25% de carga
de barramento, o sistema manteve estabilidade
temporal superior aos demais protocolos.

O gréfico gerado reforga essa conclusdo: o
CAN apresenta a série temporal mais estavel,
seguido pelo UART, enquanto o 12C evidencia
maior disperséao.

Além dos aspectos quantitativos observados, é
importante considerar o contexto pratico de
cada protocolo. A escolha ndo depende apenas
de laténcia e erro, mas também da
complexidade da aplicagdo, da escalabilidade
do sistema e da integracdo com outros
dispositivos. Protocolos simples, como o UART,
sdo suficientes para sistemas de pequena
escala, enquanto o 12C, apesar de maior
laténcia, permite interligar multiplos sensores
com poucas linhas. O CAN, com sua robustez
e baixa taxa de erro, é ideal para sistemas
criticos e distribuidos, onde confiabilidade e
previsibilidade temporal sdo essenciais. Assim,
os resultados devem ser interpretados tanto em
termos de desempenho quanto das demandas
especificas de cada aplicagéo.

Laténcia de Comunicacdo

—— UART (115200 bps)
12€ (100 kHz)
—— CAN (1 Mbps)

IS 5} o

Laténcia (ms)

w

0 10 20 30 40 50 60
Tempo (amostras)

Figura 1: Grafico de Comparacéo de desempenho

Conclusoes

. A analise demonstrou que todos os trés
protocolos sdo capazes de realizar a
sincronizagdo entre BeagleBone, Arduino e
notebook, mas com desempenhos bastante
distintos. O CAN destacou-se como a solucao
mais robusta, oferecendo baixa laténcia,
pequeno jitter e praticamente nenhuma perda,
0 que o torna ideal para sistemas embarcados
que exigem previsibilidade e confiabilidade. O
UART mostrou-se competitivo em termos de
laténcia, sendo uma opg¢do valida para
comunicagbes ponto a ponto de menor
complexidade, embora sem o0s recursos de
priorizacao e redundancia do CAN. Ja o 12C
revelou limitagdes marcantes, devendo ser
reservado a tarefas secundarias que néo
exijam alta precisdo temporal.

Esses resultados sugerem que uma arquitetura
hibrida, combinando o CAN como barramento
critico de sincronizagdo e protocolos como
UART ou 12C para comunicagao auxiliar, pode
oferecer um equilibrio adequado entre
simplicidade, desempenho e confiabilidade.
Esse arranjo é particularmente promissor para
supervisao distribuida de subsistemas em
experimentos de referéncia temporal,
alinhando-se as necessidades previstas no
plano de trabalho original.

Referéncias

[1] BEAGLEBOARD. BeagleBoard.org. Dispo-
nivel em:
https://www.beagleboard.org/boards/beaglebon
e-black. Acesso em: 10 ago. 2025.

[2] ARDUINO. Arduino.cc. Disponivel em:
https://www.arduino.cc/en/hardware/#nano-
family. Acesso em: 10 ago. 2025.

33

DSIICUSP

Controllers for Embedded Cold Atom Systems

Anderson Eduardo de Carvalho Filho

Prof. Dr. Daniel Varela Magalhaes

Institute of Physics of Sdo Carlos / University of Sdo Paulo

anderson.carvalho52@usp.br

Objectives
This work focuses on the study of
synchronization techniques between

heterogeneous embedded devices, taking as
reference the communication among a
BeagleBone Black Rev C [1], an Arduino Nano
[2], and a notebook acting as a supervisor. The
objective is to evaluate how different
communication protocols particularly CAN,
compared to UART and I12C behave in terms of
latency, jitter, and robustness within a plausible
laboratory testing scenario. This analysis seeks
not only to understand the practical limitations
of each approach but also to provide insights
for the design of distributed control
architectures applicable to more complex
embedded experiments, such as those involved
in cold atom systems.

Materials and Methods

The BeagleBone Black was configured as the
main unit, responsible for generating
synchronization pulses and acting as the
master in each tested protocol. The Arduino
Nano played the role of secondary node,
responding to the signals sent and reporting
processing time. The notebook, connected
simultaneously to both, assumed the
supervisory role, recording latency data,
analyzing jitter, and logging communication
failures.

Three distinct scenarios were considered. In the
first, UART serial communication at 115200 bps
was used, in a point-to-point connection
between BeagleBone and Arduino. In the
second, the 12C bus at 100 kHz was adopted,
with the BeagleBone as master and the Arduino
as slave. In the third and main scenario, the
CAN protocol was implemented, operating at 1
Mbps, with the BeagleBone using its internal
DCAN controller and the Arduino Nano
connected to an MCP2515 module with a
dedicated transceiver. This setup enabled
observation of the behavior of a more robust
bus, suitable for distributed systems.

Measurements were carried out from test
signals generated by the BeagleBone and
confirmed by the Arduino, while Python scripts
on the notebook performed data collection and
statistical analysis. For each protocol, time
series of latency, mean values, standard
deviations, and error rates were obtained from
approximately sixty samples per case.

Results

The results showed clear differences in protocol
performance. UART presented an average
latency close to 2.0 ms, with jitter around 0.3
ms and an error rate below 0.3%. This behavior
confirms the efficiency of the serial link for
direct and relatively stable communications,
although lacking additional reliability features.

For 12C, the average latency rose to about 4.6
ms, with jitter near 0.7 ms and an error rate

33

DSIICUSP

around 1%. These numbers reflect the inherent
limitations of its lower clock speed and
addressing overhead, as well as its greater
sensitivity to noise and occasional
synchronization losses.

CAN, in turn, showed the most balanced
performance. The average latency recorded
was approximately 1.2 ms, with reduced jitter
around 0.2 ms and an almost negligible error
rate (0.05%). These results are explained by
the robustness of the protocol, which includes
priority-based arbitration, automatic
retransmission in case of failures, and internal
error detection mechanisms. Even with about
25% bus load, the system maintained superior
temporal stability compared to the other
protocols.

The generated graph reinforces this conclusion:
CAN shows the most stable time series,
followed by UART, while 12C displays greater
dispersion.

In addition to the quantitative aspects, it is
important to consider the practical context of
each protocol. The choice depends not only on
latency and error rates but also on application
complexity, system scalability, and integration
with other devices. Simple protocols like UART
are sufficient for small-scale systems, while
[2C, despite higher latency, enables
interconnection of multiple sensors with few
lines. CAN, with its robustness and low error
rate, is ideal for critical and distributed systems
where reliability and temporal predictability are
essential. Thus, results should be interpreted
both in terms of performance and in relation to
the specific demands of each application.

Laténcia de Comunicagdo

~— UART (115200 bps)
12C (100 kHz)
—— CAN (1 Mbps)

AN TA A

o 10 20 30 a0 50 60
Tempo (amostras)

Figure 1: Performance Comparison Graph

Conclusions

The analysis demonstrated that all three
protocols are capable of synchronizing
BeagleBone, Arduino, and notebook, but with
markedly different performances. CAN stood
out as the most robust solution, offering low
latency, minimal jitter, and virtually no loss,
making it ideal for embedded systems that
demand predictability and reliability. UART
proved competitive in terms of latency, being a
valid option for simpler point-to-point
communications, though lacking the
prioritization and redundancy features of CAN.
I12C, on the other hand, revealed significant
limitations and should be reserved for
secondary tasks that do not require high
temporal precision.

These results suggest that a hybrid
architecture, combining CAN as the critical
synchronization bus and protocols like UART or
I12C for auxiliary communication, may provide
an appropriate balance between simplicity,
performance, and reliability. This arrangement
is particularly promising for distributed
supervision of subsystems in time-reference
experiments, aligning with the needs outlined in
the original work plan.

References

[11 BEAGLEBOARD. BeagleBoard.org.
Available at:
https://www.beagleboard.org/boards/beaglebon
e-black. Accessed on: Aug. 10, 2025.

[2] ARDUINO. Arduino.cc. Available at:
https://www.arduino.cc/en/hardware/#nano-
family. Accessed on: Aug. 10, 2025.

